/* Terminator.js -- Overlay day/night region on a Leaflet map */ Date.prototype.getJulian = function() { /* Calculate the present UTC Julian Date. Function is valid after * the beginning of the UNIX epoch 1970-01-01 and ignores leap * seconds. */ return (this / 86400000) + 2440587.5; } Date.prototype.getGMST = function() { /* Calculate Greenwich Mean Sidereal Time according to http://aa.usno.navy.mil/faq/docs/GAST.php */ var julianDay = this.getJulian(); var d = julianDay - 2451545.0; // Low precision equation is good enough for our purposes. return (18.697374558 + 24.06570982441908 * d) % 24; } L.Terminator = L.Polygon.extend({ options: { color: '#00', opacity: 0.1, fillColor: '#00', fillOpacity: 0.1, resolution: 2 }, initialize: function(options) { this.version = '0.1.0'; this._R2D = 180 / Math.PI; this._D2R = Math.PI / 180; L.Util.setOptions(this, options); var latLng = this._compute(this.options.time || null) this.setLatLngs(latLng); }, _sunEclipticPosition: function(julianDay) { /* Compute the position of the Sun in ecliptic coordinates at julianDay. Following http://en.wikipedia.org/wiki/Position_of_the_Sun */ // Days since start of J2000.0 var n = julianDay - 2451545.0; // mean longitude of the Sun var L = 280.460 + 0.9856474 * n; L %= 360; // mean anomaly of the Sun var g = 357.528 + 0.9856003 * n; g %= 360; // ecliptic longitude of Sun var lambda = L + 1.915 * Math.sin(g * this._D2R) + 0.02 * Math.sin(2 * g * this._D2R); // distance from Sun in AU var R = 1.00014 - 0.01671 * Math.cos(g * this._D2R) - 0.0014 * Math.cos(2 * g * this._D2R); return {"lambda": lambda, "R": R}; }, _eclipticObliquity: function(julianDay) { // Following the short term expression in // http://en.wikipedia.org/wiki/Axial_tilt#Obliquity_of_the_ecliptic_.28Earth.27s_axial_tilt.29 var n = julianDay - 2451545.0; // Julian centuries since J2000.0 var T = n / 36525; var epsilon = 23.43929111 - T * (46.836769 / 3600 - T * (0.0001831 / 3600 + T * (0.00200340 / 3600 - T * (0.576e-6 / 3600 - T * 4.34e-8 / 3600)))); return epsilon; }, _sunEquatorialPosition: function(sunEclLng, eclObliq) { /* Compute the Sun's equatorial position from its ecliptic * position. Inputs are expected in degrees. Outputs are in * degrees as well. */ var alpha = Math.atan(Math.cos(eclObliq * this._D2R) * Math.tan(sunEclLng * this._D2R)) * this._R2D; var delta = Math.asin(Math.sin(eclObliq * this._D2R) * Math.sin(sunEclLng * this._D2R)) * this._R2D; var lQuadrant = Math.floor(sunEclLng / 90) * 90; var raQuadrant = Math.floor(alpha / 90) * 90; alpha = alpha + (lQuadrant - raQuadrant); return {"alpha": alpha, "delta": delta}; }, _hourAngle: function(lng, sunPos, gst) { /* Compute the hour angle of the sun for a longitude on * Earth. Return the hour angle in degrees. */ var lst = gst + lng / 15; return lst * 15 - sunPos.alpha; }, _latitude: function(ha, sunPos) { /* For a given hour angle and sun position, compute the * latitude of the terminator in degrees. */ var lat = Math.atan(-Math.cos(ha * this._D2R) / Math.tan(sunPos.delta * this._D2R)) * this._R2D; return lat; }, _compute: function(time) { if (time == null) var today = new Date(); else var today = new Date(time); var julianDay = today.getJulian(); var gst = today.getGMST(); var latLng = []; var ha, lat; var sunEclPos = this._sunEclipticPosition(julianDay); var eclObliq = this._eclipticObliquity(julianDay); var sunEqPos = this._sunEquatorialPosition(sunEclPos.lambda, eclObliq); for (var i = 0; i <= 720 * this.options.resolution; i++) { lng = -360 + i / this.options.resolution; ha = this._hourAngle(lng, sunEqPos, gst); lat = this._latitude(ha, sunEqPos); latLng[i+1] = [lat, lng]; } if (sunEqPos.delta < 0) { latLng[0] = [90, -360]; latLng[latLng.length] = [90, 360]; } else { latLng[0] = [-90, -360]; latLng[latLng.length] = [-90, 360]; } return latLng; } }); L.terminator = function(options) { return new L.Terminator(options); };