Add support for gc crossing antimeridian

This commit is contained in:
Dave Conway-Jones 2022-02-23 15:42:57 +00:00
parent 809ae45a3e
commit 0b259013bb
No known key found for this signature in database
GPG Key ID: 88BA2B8A411BE9FF
7 changed files with 268 additions and 7 deletions

View File

@ -1,5 +1,6 @@
### Change Log for Node-RED Worldmap ### Change Log for Node-RED Worldmap
- v2.27.2 - Try to handle greatcircles crossing antimeridian
- v2.27.1 - Reload existing markers for late joiners - v2.27.1 - Reload existing markers for late joiners
- v2.26.1 - Add QTH/Maidenhead option also - v2.26.1 - Add QTH/Maidenhead option also
- v2.26.0 - Add UTM and MGRS to coordinate display options. - v2.26.0 - Add UTM and MGRS to coordinate display options.

View File

@ -11,6 +11,7 @@ map web page for plotting "things" on.
### Updates ### Updates
- v2.27.2 - Try to handle greatcircles crossing antimeridian
- v2.27.1 - Reload existing markers for late joiners - v2.27.1 - Reload existing markers for late joiners
- v2.26.1 - Add QTH/Maidenhead option also - v2.26.1 - Add QTH/Maidenhead option also
- v2.26.0 - Add UTM and MGRS to coordinate display options. - v2.26.0 - Add UTM and MGRS to coordinate display options.

View File

@ -1,6 +1,6 @@
{ {
"name": "node-red-contrib-web-worldmap", "name": "node-red-contrib-web-worldmap",
"version": "2.27.1", "version": "2.27.2",
"description": "A Node-RED node to provide a web page of a world map for plotting things on.", "description": "A Node-RED node to provide a web page of a world map for plotting things on.",
"dependencies": { "dependencies": {
"@turf/bezier-spline": "~6.5.0", "@turf/bezier-spline": "~6.5.0",

View File

@ -73,6 +73,7 @@
<script src="leaflet/VectorTileLayer.umd.min.js"></script> <script src="leaflet/VectorTileLayer.umd.min.js"></script>
<script src="leaflet/Semicircle.js"></script> <script src="leaflet/Semicircle.js"></script>
<script src='leaflet/leaflet-arc.min.js'></script> <script src='leaflet/leaflet-arc.min.js'></script>
<script src='leaflet/leaflet.antimeridian-src.js'></script>
<script src="leaflet/L.TileLayer.PixelFilter.js"></script> <script src="leaflet/L.TileLayer.PixelFilter.js"></script>
<script src="leaflet/dialog-polyfill.js"></script> <script src="leaflet/dialog-polyfill.js"></script>

View File

@ -83,14 +83,14 @@ fetch('/-worldmap3d-key')
ws.onopen = function() { ws.onopen = function() {
console.log("CONNECTED"); console.log("CONNECTED");
// if (!inIframe) { // if (!inIframe) {
// document.getElementById("foot").innerHTML = "<font color='#494'>"+ibmfoot+"</font>"; // document.getElementById("foot").innerHTML = "<font color='#494'>"+pagefoot+"</font>";
// } // }
ws.send(JSON.stringify({action:"connected"})); ws.send(JSON.stringify({action:"connected"}));
}; };
ws.onclose = function() { ws.onclose = function() {
console.log("DISCONNECTED"); console.log("DISCONNECTED");
// if (!inIframe) { // if (!inIframe) {
// document.getElementById("foot").innerHTML = "<font color='#900'>"+ibmfoot+"</font>"; // document.getElementById("foot").innerHTML = "<font color='#900'>"+pagefoot+"</font>";
// } // }
setTimeout(function() { connect(); }, 2500); setTimeout(function() { connect(); }, 2500);
}; };

View File

@ -0,0 +1,254 @@
(function (global, factory) {
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) :
typeof define === 'function' && define.amd ? define(['exports'], factory) :
(factory((global.L = global.L || {}, global.L.Wrapped = {})));
}(this, (function (exports) { 'use strict';
var version = "1.0.0+master.0861cee";
/*
* @namespace L.Wrapped
* Utility functions to calculate various aspects of linear geometry to
* calculate if lines should be wrapped as well as common functionality used by both Polygons and Polylines.
*/
// @function calculateAntimeridianLat (latLngA: LatLng, latLngB: latLng)
// Returns the calculated latitude where a line drawn between
// two Latitude/Longitude points will cross the antimeridian.
function calculateAntimeridianLat(latLngA, latLngB) {
// Ensure that the latitude A is less than latidue B. This will allow the
// crossing point to be calculated based on the purportional similarity of
// right triangles.
if (latLngA.lat > latLngB.lat) {
var temp = latLngA;
latLngA = latLngB;
latLngB = temp;
}
var A = 360 - Math.abs(latLngA.lng - latLngB.lng);
var B = latLngB.lat - latLngA.lat;
var a = Math.abs(180 - Math.abs(latLngA.lng));
return latLngA.lat + ((B * a) / A);
}
// @function isCrossAntimeridian(latLngA: LatLng, latLngB: LatLng)
// Returns true if the line between the two points will cross either
// the prime meridian (Greenwich) or its antimeridian (International Date Line)
function isCrossMeridian(latLngA, latLngB) {
// Returns true if the signs are not the same.
return sign(latLngA.lng) * sign(latLngB.lng) < 0;
}
// @function sign(Number)
// Returns NaN for non-numbers, 0 for 0, -1 for negative numbers,
// 1 for positive numbers
function sign(x) {
return typeof x === 'number' ? x ? x < 0 ? -1 : 1 : 0 : NaN;
}
// @function pushLatLng(ring: Point[], projectedBounds: LatLngBounds, latlng: LatLng, map: Map)
// Adds the latlng to the current ring as a layer point and expands the projected bounds.
function pushLatLng(ring, projectedBounds, latlng, map) {
ring.push(map.latLngToLayerPoint(latlng));
projectedBounds.extend(ring[ring.length - 1]);
}
// @function isBreakRing(latLngA: LatLng, latLngB: LatLng)
// Determines when the ring should be broken and a new one started.
function isBreakRing(latLngA, latLngB) {
return isCrossMeridian(latLngA, latLngB) &&
Math.abs(latLngA.lng) > 90 &&
Math.abs(latLngB.lng) > 90;
}
// @function breakRing(currentLat: LatLng, nextLat: LatLng, rings: Point[][],
// projectedBounds: LatLngBounds, map: Map)
// Breaks the existing ring along the anti-meridian.
// returns the starting latLng for the next ring.
function breakRing(currentLat, nextLat, rings, projectedBounds, map) {
var ring = rings[rings.length - 1];
// Calculate two points for the anti-meridian crossing.
var breakLat = calculateAntimeridianLat(currentLat, nextLat);
var breakLatLngs = [new L.LatLng(breakLat, 180), new L.LatLng(breakLat, -180)];
// Add in first anti-meridian latlng to this ring to finish it.
// Positive if positive, negative if negative.
if (sign(currentLat.lng) > 0) {
pushLatLng(ring, projectedBounds, breakLatLngs.shift(), map);
} else {
pushLatLng(ring, projectedBounds, breakLatLngs.pop(), map);
}
// Return the second anti-meridian latlng
return breakLatLngs.pop();
}
/*
* @namespace L.Wrapped
* A polyline that will automatically split and wrap around the Antimeridian (Internation Date Line).
*/
var Polyline = L.Polyline.extend({
// recursively turns latlngs into a set of rings with projected coordinates
_projectLatlngs: function (latlngs, result, projectedBounds) {
var flat = latlngs[0] instanceof L.LatLng;
if (flat) {
this._createRings(latlngs, result, projectedBounds);
} else {
for (var i = 0; i < latlngs.length; i++) {
this._projectLatlngs(latlngs[i], result, projectedBounds);
}
}
},
// Creates the rings used to render the latlngs.
_createRings: function (latlngs, rings, projectedBounds) {
var len = latlngs.length;
rings.push([]);
for (var i = 0; i < len; i++) {
var compareLatLng = this._getCompareLatLng(i, len, latlngs);
pushLatLng(rings[rings.length - 1], projectedBounds, latlngs[i], this._map);
// If the next point to check exists, then check to see if the
// ring should be broken.
if (compareLatLng && isBreakRing(compareLatLng, latlngs[i])) {
var secondMeridianLatLng = breakRing(latlngs[i], compareLatLng,
rings, projectedBounds, this._map);
this._startNextRing(rings, projectedBounds, secondMeridianLatLng);
}
}
},
// returns the latlng to compare the current latlng to.
_getCompareLatLng: function (i, len, latlngs) {
return (i + 1 < len) ? latlngs[i + 1] : null;
},
// Starts a new ring and adds the second meridian point.
_startNextRing: function (rings, projectedBounds, secondMeridianLatLng) {
var ring = [];
rings.push(ring);
pushLatLng(ring, projectedBounds, secondMeridianLatLng, this._map);
}
});
// @factory L.wrappedPolyline(latlngs: LatLng[], options?: Polyline options)
// Instantiates a polyline that will automatically split around the
// antimeridian (Internation Date Line) if that is a shorter path.
function wrappedPolyline(latlngs, options) {
return new L.Wrapped.Polyline(latlngs, options);
}
/*
* @namespace L.Wrapped
* A polygon that will automatically split and wrap around the Antimeridian (Internation Date Line).
*/
var Polygon = L.Polygon.extend({
// recursively turns latlngs into a set of rings with projected coordinates
_projectLatlngs: function (latlngs, result, projectedBounds) {
var flat = latlngs[0] instanceof L.LatLng;
if (flat) {
this._createRings(latlngs, result, projectedBounds);
} else {
for (var i = 0; i < latlngs.length; i++) {
this._projectLatlngs(latlngs[i], result, projectedBounds);
}
}
},
// Creates the rings used to render the latlngs.
_createRings: function (latlngs, rings, projectedBounds) {
var len = latlngs.length;
rings.push([]);
for (var i = 0; i < len; i++) {
// Because this is a polygon, there will always be a comparison latlng
var compareLatLng = this._getCompareLatLng(i, len, latlngs);
pushLatLng(rings[rings.length - 1], projectedBounds, latlngs[i], this._map);
// Check to see if the ring should be broken.
if (isBreakRing(compareLatLng, latlngs[i])) {
var secondMeridianLatLng = breakRing(latlngs[i], compareLatLng,
rings, projectedBounds, this._map);
this._startNextRing(rings, projectedBounds, secondMeridianLatLng, i === len - 1);
}
}
// Join the last two rings if needed.
this._joinLastRing(rings, latlngs);
},
// Starts a new ring if needed and adds the second meridian point to the
// correct ring.
_startNextRing: function (rings, projectedBounds, secondMeridianLatLng, isLastLatLng) {
var ring;
if (!isLastLatLng) {
ring = [];
rings.push(ring);
pushLatLng(ring, projectedBounds, secondMeridianLatLng, this._map);
} else {
// If this is the last latlng, don't bother starting a new ring.
// instead, join the last meridian point to the first point, to connect
// the shape correctly.
ring = rings[0];
ring.unshift(this._map.latLngToLayerPoint(secondMeridianLatLng));
projectedBounds.extend(ring[0]);
}
},
// returns the latlng to compare the current latlng to.
_getCompareLatLng: function (i, len, latlngs) {
return (i + 1 < len) ? latlngs[i + 1] : latlngs[0];
},
// Joins the last ring to the first if they were accidently disconnected by
// crossing the anti-meridian
_joinLastRing: function (rings, latlngs) {
var firstRing = rings[0];
var lastRing = rings[rings.length - 1];
// If both either the first or last latlng cross the meridian immediately, then
// they have accidently been split by turning one ring into mulitiple.
// Rejoin them.
if (rings.length > 1 && (firstRing.length === 2 || lastRing.length === 2) &&
!isCrossMeridian(latlngs[0], latlngs[latlngs.length - 1])) {
var len = lastRing.length;
for (var i = 0; i < len; i++) {
firstRing.unshift(lastRing.pop());
}
// Remove the empty ring.
rings.pop();
}
}
});
// @factory L.wrappedPolygon(latlngs: LatLng[], options?: Polygon options)
// Instantiates a polygon that will automatically split around the
// antimeridian (Internation Date Line) if that is a shorter path.
function wrappedPolygon(latlngs, options) {
return new L.Wrapped.Polygon(latlngs, options);
}
exports.version = version;
exports.Polyline = Polyline;
exports.wrappedPolyline = wrappedPolyline;
exports.Polygon = Polygon;
exports.wrappedPolygon = wrappedPolygon;
exports.calculateAntimeridianLat = calculateAntimeridianLat;
exports.isCrossMeridian = isCrossMeridian;
exports.sign = sign;
exports.isBreakRing = isBreakRing;
})));
//# sourceMappingURL=leaflet.antimeridian-src.js.map

View File

@ -18,7 +18,7 @@ var menuOpen = false;
var clusterAt = 0; var clusterAt = 0;
var maxage = 900; // default max age of icons on map in seconds - cleared after 10 mins var maxage = 900; // default max age of icons on map in seconds - cleared after 10 mins
var baselayername = "OSM grey"; // Default base layer OSM but uniform grey var baselayername = "OSM grey"; // Default base layer OSM but uniform grey
var ibmfoot = "&nbsp;&copy; IBM 2015,2021" var pagefoot = "&nbsp;&copy; DCJ 2022"
var inIframe = false; var inIframe = false;
var showUserMenu = true; var showUserMenu = true;
var showLayerMenu = true; var showLayerMenu = true;
@ -58,7 +58,7 @@ var connect = function() {
ws.onopen = function() { ws.onopen = function() {
console.log("CONNECTED"); console.log("CONNECTED");
if (!inIframe) { if (!inIframe) {
document.getElementById("footer").innerHTML = "<font color='#494'>"+ibmfoot+"</font>"; document.getElementById("footer").innerHTML = "<font color='#494'>"+pagefoot+"</font>";
} }
ws.send(JSON.stringify({action:"connected",parameters:Object.fromEntries((new URL(location)).searchParams)})); ws.send(JSON.stringify({action:"connected",parameters:Object.fromEntries((new URL(location)).searchParams)}));
onoffline(); onoffline();
@ -66,7 +66,7 @@ var connect = function() {
ws.onclose = function() { ws.onclose = function() {
console.log("DISCONNECTED"); console.log("DISCONNECTED");
if (!inIframe) { if (!inIframe) {
document.getElementById("footer").innerHTML = "<font color='#900'>"+ibmfoot+"</font>"; document.getElementById("footer").innerHTML = "<font color='#900'>"+pagefoot+"</font>";
} }
setTimeout(function() { connect(); }, 2500); setTimeout(function() { connect(); }, 2500);
}; };
@ -1445,7 +1445,11 @@ function setMarker(data) {
if (!data.hasOwnProperty("weight")) { opt.weight = 3; } //Standard settings different for lines if (!data.hasOwnProperty("weight")) { opt.weight = 3; } //Standard settings different for lines
if (!data.hasOwnProperty("opacity")) { opt.opacity = 0.8; } if (!data.hasOwnProperty("opacity")) { opt.opacity = 0.8; }
var greatc = L.Polyline.Arc(data.greatcircle[0], data.greatcircle[1], opt); var greatc = L.Polyline.Arc(data.greatcircle[0], data.greatcircle[1], opt);
polygons[data.name] = rightmenu(greatc); // // opt.smoothFactor= 1;
// // opt.noWrap = true;
var aml = new L.Wrapped.Polyline(greatc._latlngs, opt);
polygons[data.name] = rightmenu(aml);
if (data.hasOwnProperty("fit") && data.fit === true) { if (data.hasOwnProperty("fit") && data.fit === true) {
map.fitBounds(polygons[data.name].getBounds(),{padding:[50,50]}) map.fitBounds(polygons[data.name].getBounds(),{padding:[50,50]})
} }