observatory-extension/scripts/generate_fixtures.py

92 lines
3.9 KiB
Python

from sqldumpr import Dumpr
def get_tablename_query(column_id, boundary_id, timespan):
"""
given a column_id, boundary-id (us.census.tiger.block_group), and
timespan, give back the current table hash from the data observatory
"""
q = """
SELECT t.tablename, geoid_ct.colname colname
FROM obs_table t,
obs_column_table geoid_ct,
obs_column_table data_ct
WHERE
t.id = geoid_ct.table_id AND
t.id = data_ct.table_id AND
geoid_ct.column_id =
(SELECT source_id
FROM obs_column_to_column
WHERE target_id = '{boundary_id}'
AND reltype = 'geom_ref'
) AND
data_ct.column_id = '{column_id}' AND
timespan = '{timespan}'
""".replace('\n','')
return q.format(column_id=column_id,
boundary_id=boundary_id,
timespan=timespan)
def select_star(tablename):
return "SELECT * FROM {}".format(tablename)
cdb = Dumpr('observatory.cartodb.com','')
metadata = ['obs_table', 'obs_column_table', 'obs_column', 'obs_column_tag', 'obs_tag', 'obs_column_to_column']
fixtures = [
('us.census.tiger.census_tract', 'us.census.tiger.census_tract', '2014'),
('us.census.tiger.block_group', 'us.census.tiger.block_group', '2014'),
('us.census.tiger.zcta5', 'us.census.tiger.zcta5', '2014'),
('us.census.tiger.county', 'us.census.tiger.county', '2014'),
('us.census.acs.B01003001', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01003001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.census.acs.B01003001', 'us.census.tiger.block_group', '2010 - 2014'),
('us.census.spielman_singleton_segments.X10', 'us.census.tiger.census_tract', '2010 - 2014'),
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2014-01'),
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2016-03'),
('whosonfirst.wof_country_geom', 'whosonfirst.wof_country_geom', '2016'),
('us.census.tiger.zcta5_clipped', 'us.census.tiger.zcta5_clipped', '2014'),
('us.census.tiger.block_group_clipped', 'us.census.tiger.block_group_clipped', '2014'),
]
unique_tables = set()
for f in fixtures:
column_id, boundary_id, timespan = f
tablename_query = get_tablename_query(*f)
resp = cdb.query(tablename_query).json()['rows'][0]
tablename = resp['tablename']
colname = resp['colname']
table_colname = (tablename, colname, boundary_id, )
if table_colname not in unique_tables:
print table_colname
unique_tables.add(table_colname)
print unique_tables
with open('src/pg/test/fixtures/load_fixtures.sql', 'w') as outfile:
with open('src/pg/test/fixtures/drop_fixtures.sql', 'w') as dropfiles:
outfile.write('SET client_min_messages TO WARNING;\n\set ECHO none\n')
dropfiles.write('SET client_min_messages TO WARNING;\n\set ECHO none\n')
for tablename in metadata:
cdb.dump(select_star(tablename), tablename, outfile, schema='observatory')
dropfiles.write('DROP TABLE IF EXISTS observatory.{};\n'.format(tablename))
print tablename
for tablename, colname, boundary_id in unique_tables:
if 'zcta5' in boundary_id:
where = '\'11%\''
compare = 'LIKE'
elif 'whosonfirst' in boundary_id:
where = '(\'85632785\',\'85633051\',\'85633111\',\'85633147\',\'85633253\',\'85633267\')'
compare = 'IN'
else:
where = '\'36047%\''
compare = 'LIKE'
print ' '.join([select_star(tablename), "WHERE {}::text {} {}".format(colname, compare, where)])
cdb.dump(' '.join([select_star(tablename), "WHERE {}::text {} {}".format(colname, compare, where)]),
tablename, outfile, schema='observatory')
dropfiles.write('DROP TABLE IF EXISTS observatory.{};\n'.format(tablename))