86 lines
3.6 KiB
Python
86 lines
3.6 KiB
Python
|
|
from sqldumpr import Dumpr
|
|
|
|
def get_tablename_query(column_id, boundary_id, timespan):
|
|
"""
|
|
given a column_id, boundary-id (us.census.tiger.block_group), and
|
|
timespan, give back the current table hash from the data observatory
|
|
"""
|
|
q = """
|
|
SELECT t.tablename, geoid_ct.colname colname
|
|
FROM obs_table t,
|
|
obs_column_table geoid_ct,
|
|
obs_column_table data_ct
|
|
WHERE
|
|
t.id = geoid_ct.table_id AND
|
|
t.id = data_ct.table_id AND
|
|
geoid_ct.column_id =
|
|
(SELECT source_id
|
|
FROM obs_column_to_column
|
|
WHERE target_id = '{boundary_id}'
|
|
AND reltype = 'geom_ref'
|
|
) AND
|
|
data_ct.column_id = '{column_id}' AND
|
|
timespan = '{timespan}'
|
|
""".replace('\n','')
|
|
|
|
return q.format(column_id=column_id,
|
|
boundary_id=boundary_id,
|
|
timespan=timespan)
|
|
|
|
def select_star(tablename):
|
|
return "SELECT * FROM {}".format(tablename)
|
|
|
|
cdb = Dumpr('observatory.cartodb.com','')
|
|
|
|
metadata = ['obs_table', 'obs_column_table', 'obs_column', 'obs_column_tag', 'obs_tag', 'obs_column_to_column']
|
|
|
|
fixtures = [
|
|
('us.census.tiger.census_tract', 'us.census.tiger.census_tract', '2014'),
|
|
('us.census.tiger.block_group', 'us.census.tiger.block_group', '2014'),
|
|
('us.census.tiger.zcta5', 'us.census.tiger.zcta5', '2014'),
|
|
('us.census.tiger.county', 'us.census.tiger.county', '2014'),
|
|
('us.census.acs.B01003001', 'us.census.tiger.census_tract', '2010 - 2014'),
|
|
('us.census.acs.B01003001_quantile', 'us.census.tiger.census_tract', '2010 - 2014'),
|
|
('us.census.acs.B01003001', 'us.census.tiger.block_group', '2010 - 2014'),
|
|
('us.census.spielman_singleton_segments.X10', 'us.census.tiger.census_tract', '2010 - 2014'),
|
|
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2014-01'),
|
|
('us.zillow.AllHomes_Zhvi', 'us.census.tiger.zcta5', '2016-03'),
|
|
('us.census.tiger.zcta5_clipped', 'us.census.tiger.zcta5_clipped', '2014'),
|
|
('us.census.tiger.block_group_clipped', 'us.census.tiger.block_group_clipped', '2014'),
|
|
]
|
|
|
|
unique_tables = set()
|
|
|
|
for f in fixtures:
|
|
column_id, boundary_id, timespan = f
|
|
tablename_query = get_tablename_query(*f)
|
|
resp = cdb.query(tablename_query).json()['rows'][0]
|
|
tablename = resp['tablename']
|
|
colname = resp['colname']
|
|
table_colname = (tablename, colname, boundary_id, )
|
|
if table_colname not in unique_tables:
|
|
print table_colname
|
|
unique_tables.add(table_colname)
|
|
|
|
print unique_tables
|
|
|
|
with open('src/pg/test/fixtures/load_fixtures.sql', 'w') as outfile:
|
|
with open('src/pg/test/fixtures/drop_fixtures.sql', 'w') as dropfiles:
|
|
outfile.write('SET client_min_messages TO WARNING;\n\set ECHO none\n')
|
|
dropfiles.write('SET client_min_messages TO WARNING;\n\set ECHO none\n')
|
|
for tablename in metadata:
|
|
cdb.dump(select_star(tablename), tablename, outfile, schema='observatory')
|
|
dropfiles.write('DROP TABLE IF EXISTS observatory.{};\n'.format(tablename))
|
|
print tablename
|
|
|
|
for tablename, colname, boundary_id in unique_tables:
|
|
if 'zcta5' in boundary_id:
|
|
where = '11%'
|
|
else:
|
|
where = '36047%'
|
|
print ' '.join([select_star(tablename), "WHERE {} LIKE '{}'".format(colname, where)])
|
|
cdb.dump(' '.join([select_star(tablename), "WHERE {} LIKE '{}'".format(colname, where)]),
|
|
tablename, outfile, schema='observatory')
|
|
dropfiles.write('DROP TABLE IF EXISTS observatory.{};\n'.format(tablename))
|