--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES -- Complain if script is sourced in psql, rather than via CREATE EXTENSION \echo Use "CREATE EXTENSION observatory" to load this file. \quit -- Version number of the extension release CREATE OR REPLACE FUNCTION cdb_observatory_version() RETURNS text AS $$ SELECT '1.3.3'::text; $$ language 'sql' STABLE STRICT; -- Internal identifier of the installed extension instence -- e.g. 'dev' for current development version CREATE OR REPLACE FUNCTION _cdb_observatory_internal_version() RETURNS text AS $$ SELECT installed_version FROM pg_available_extensions where name='observatory' and pg_available_extensions IS NOT NULL; $$ language 'sql' STABLE STRICT; -- Returns the table name with geoms for the given geometry_id -- TODO probably needs to take in the column_id array to get the relevant -- table where there is multiple sources for a column from multiple -- geometries. CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GeomTable( geom geometry(Geometry, 4326), geometry_id text, time_span text DEFAULT NULL ) RETURNS TEXT AS $$ DECLARE result text; BEGIN EXECUTE ' SELECT tablename FROM observatory.OBS_table WHERE id IN ( SELECT table_id FROM observatory.OBS_table tab, observatory.OBS_column_table coltable, observatory.OBS_column col WHERE type ILIKE ''geometry'' AND coltable.column_id = col.id AND coltable.table_id = tab.id AND col.id = $1 AND CASE WHEN $3::TEXT IS NOT NULL THEN timespan ILIKE $3::TEXT ELSE TRUE END ORDER BY timespan DESC LIMIT 1 ) ' USING geometry_id, geom, time_span INTO result; return result; END; $$ LANGUAGE plpgsql; -- A function that gets the column data for multiple columns -- Old: OBS_GetColumnData CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetColumnData( geometry_id text, column_ids text[], timespan text ) RETURNS SETOF JSON AS $$ BEGIN -- figure out highest-weight geometry_id/timespan pair for the first data column -- TODO this should be done for each data column separately IF geometry_id IS NULL OR timespan IS NULL THEN EXECUTE ' SELECT data_t.timespan timespan, geom_c.id boundary_id FROM observatory.obs_table data_t, observatory.obs_column_table data_ct, observatory.obs_column data_c, observatory.obs_column_table geoid_ct, observatory.obs_column_to_column c2c, observatory.obs_column geom_c WHERE data_c.id = $2 AND data_ct.column_id = data_c.id AND data_ct.table_id = data_t.id AND geoid_ct.table_id = data_t.id AND geoid_ct.column_id = c2c.source_id AND c2c.reltype = ''geom_ref'' AND geom_c.id = c2c.target_id AND CASE WHEN $3 IS NULL THEN True ELSE $3 = timespan END AND CASE WHEN $1 IS NULL THEN True ELSE $1 = geom_c.id END ORDER BY geom_c.weight DESC, data_t.timespan DESC LIMIT 1 ' INTO timespan, geometry_id USING geometry_id, (column_ids)[1], timespan; END IF; RETURN QUERY EXECUTE ' WITH geomref AS ( SELECT ct.table_id id FROM observatory.OBS_column_to_column c2c, observatory.OBS_column_table ct WHERE c2c.reltype = ''geom_ref'' AND c2c.target_id = $1 AND c2c.source_id = ct.column_id ), column_ids as ( select row_number() over () as no, a.column_id as column_id from (select unnest($2) as column_id) a ) SELECT row_to_json(a) from ( select colname, tablename, aggregate, name, type, c.description, $1 AS boundary_id FROM column_ids, observatory.OBS_column c, observatory.OBS_column_table ct, observatory.OBS_table t WHERE column_ids.column_id = c.id AND c.id = ct.column_id AND t.id = ct.table_id AND t.timespan = $3 AND t.id in (SELECT id FROM geomref) order by column_ids.no ) a ' USING geometry_id, column_ids, timespan RETURN; END; $$ LANGUAGE plpgsql; --Test point cause Stuart always seems to make random points in the water CREATE OR REPLACE FUNCTION cdb_observatory._TestPoint() RETURNS geometry(Point, 4326) AS $$ BEGIN -- new york city RETURN ST_SetSRID(ST_Point( -73.936669, 40.704512), 4326); END; $$ LANGUAGE plpgsql; --Test polygon cause Stuart always seems to make random points in the water -- TODO: remove as it's not used anywhere? CREATE OR REPLACE FUNCTION cdb_observatory._TestArea() RETURNS geometry(Geometry, 4326) AS $$ BEGIN -- Buffer NYC point by 500 meters RETURN ST_Buffer(cdb_observatory._TestPoint()::geography, 500)::geometry; END; $$ LANGUAGE plpgsql; --Problematic test area that tends to cause errors CREATE OR REPLACE FUNCTION cdb_observatory._ProblemTestArea() RETURNS geometry(Geometry, 4326) AS $$ BEGIN RETURN ST_Translate('0106000020E610000001000000010300000004000000A3030000A09400CAD92D5AC088FA8054CBD04340C74F1462DA2D5AC080F9946B63D043400CBFCDA8DA2D5AC048A9756963D04340BCA4A5B0DA2D5AC010733FD05FD0434054923667DA2D5AC0986276D25FD043406038BC25DB2D5AC0600F50FBDCCF43400453A577DB2D5AC0E834A8F6DCCF4340AC97C1A6DB2D5AC0A06DFAF5BBCF43401C80158CDC2D5AC0D8139CE81DCF43407008A7FBDC2D5AC058865A08EFCE4340DCD519AFDE2D5AC0982B0911EFCE43400C8832AFDE2D5AC070AED4FFEECE43406471BEBFDE2D5AC0B7B6E3FFEECE4340C01E93F2DE2D5AC0077C7A16CBCE4340B4EA55F2DE2D5AC0E0147D15CBCE4340385DF195DF2D5AC0585D07A158CE4340649353D3DF2D5AC010AF6FBD2CCE4340A4981805E02D5AC0889B302709CE434077676710E02D5AC0D8ECC62A01CE4340E7F37D10E02D5AC04047191B01CE4340A0F8F5CCDD2D5AC0B89BFF1501CE43404475C582DE2D5AC0B075C01A8CCD4340A8F865B4DE2D5AC090BC3DEC6BCD4340D89E52EBDE2D5AC038A7AD0C48CD4340971F1E40E12D5AC048E3BA1048CD43404463BE00FE2D5AC0D04FFE7C48CD4340DC6B6347FE2D5AC0C0DB48881BCD4340203BDB48FE2D5AC0C815D7981ACD43404CF94B49FE2D5AC0185A9C521ACD43401421F24CFE2D5AC0A0D6345C15CD43402F82F7CFFF2D5AC028761C9514CD43409FD10571152E5AC028DC1FED14CD43404C31B28A152E5AC050929DDA00CD4340444C4399152E5AC0F0E2E5D200CD4340E87E1A99152E5AC0B00DD8EC00CD4340F8D55ACD372E5AC070C9CECEEECC4340185D1ECB382E5AC0C0309E50EECC43406CDA9A473A2E5AC07FCC3DADEDCC43400053E4483B2E5AC0D003AE51EDCC434094CDD14D3C2E5AC018E78B04EDCC4340A0CEA9523D2E5AC0D0FCC1C5ECCC43402F1D2A5B3E2E5AC0988E0594ECCC434050DF93633F2E5AC018C4A770ECCC434050CC31EE402E5AC0488FAC57ECCC4340046D20FA412E5AC080815A58ECCC4340CC0A7184432E5AC0D8609D74ECCC43402C1E4F12452E5AC0E8E297B0ECCC4340C0FB8A98462E5AC0E085250CEDCC434058D39A1E482E5AC080FBCA88EDCC4340849AA8D84A2E5AC03849F9A4EECC43401CB8D1CD4C2E5AC078B0FB84EFCC434090E02BBF4E2E5AC02055DC71F0CC43404472BCAC502E5AC00052176DF1CC4340489D389A522E5AC0E09C4E75F2CC4340AC1EEA83542E5AC0E84A668AF3CC43405009D269562E5AC0B09CDCADF4CC43409024ED4B582E5AC098F3C1DCF5CC434054833C2A5A2E5AC0B8A2011AF7CC4340345EC3045C2E5AC010EEB862F8CC434067D235DF5D2E5AC01874D7B9F9CC4340E76C28B25F2E5AC090425A1CFBCC434004384E81612E5AC0B856CA8BFCCC4340447FAB4C632E5AC048A81808FECC434040E43A14652E5AC058655691FFCC43408C6F4AD4662E5AC08890FA2501CD4340A8DF4994682E5AC0F88527C602CD43405350C74C6A2E5AC0D0212A7304CD43405B177A016C2E5AC0977FA62B06CD4340247384F06E2E5AC06885D04B09CD4340D03C6AF36F2E5AC0902F206F0ACD4340A45FD598712E5AC0D891646F0CCD4340708FA911732E5AC0B8C3F4640ECD434044DF9286742E5AC080A29A7B10CD4340F45CE2D2752E5AC0F75A958612CD4340D487612C782E5AC0FF8FFDAD16CD4340ECF38E3C782E5AC0B8D443CC16CD434078184049782E5AC070F20BE416CD43401C81A16F742E5AC0B0A384AF1BCD4340EF78AFC7752E5AC01057146A1ECD434090475AD1762E5AC058D8C8BF20CD4340803AE7D2782E5AC070CE07BF25CD434030725C147D2E5AC040A74A7530CD4340D3D9C772812E5AC0D8B06C743BCD4340F8ABBF0C832E5AC0883E577C3FCD43400456A793842E5AC0F830465443CD434048E65526872E5AC080902ECE49CD43406CEF40BB882E5AC0D08441944DCD4340F82791DA8A2E5AC018AA351652CD4340FCA1D5D38B2E5AC0500DF6F153CD4340080BA67B8C2E5AC05091453255CD43407CE0BCFB8D2E5AC07093A3D057CD4340204B852F8E2E5AC0D06A022B58CD4340AB56181B8D2E5AC078A969685ACD4340AF292487922E5AC0C05E3D6862CD434088A3DCF7942E5AC0F036546B65CD434058B1590A952E5AC09055998265CD434048856440972E5AC0B86AB6E367CD4340E4948B549F2E5AC0A771539670CD4340A491D52E9F2E5AC06868F4F170CD4340AB776367A82E5AC0FF703DC87ACD4340E402822CB02E5AC027239D0A83CD4340440C2339B02E5AC0F8670D1883CD4340109761DEAE2E5AC0804BD43386CD4340107679BCAE2E5AC0102E387E86CD43403B3663ADAE2E5AC0A04C53A686CD43402090A065AE2E5AC02849636387CD434030B50E3CAE2E5AC0D0C3F7D587CD4340E4128012AE2E5AC0C0469B4888CD4340C88DA5ECAD2E5AC0381543BB88CD4340C8F5C9C6AD2E5AC03054C93089CD4340C73F7DA8AD2E5AC0F8AC239589CD4340EB4AEDA0AD2E5AC020934FA689CD434064F7189DAD2E5AC0903D6DBA89CD4340DFF5C77EAD2E5AC06096C71E8ACD434053559E5CAD2E5AC060BF41978ACD4340ACB9A449AD2E5AC0D01D33D98ACD4340A8C7753AAD2E5AC0972BB10F8BCD434090B5061CAD2E5AC0203738888BCD4340F45793FDAC2E5AC0E04197038CCD4340B81C43EEAC2E5AC0204D1E518CCD4340D088DAE2AC2E5AC06809017F8CCD4340E8931FC8AC2E5AC0C0247EFA8CCD43400CAF04B5AC2E5AC070625D568DCD4340C02D5EADAC2E5AC047A8CA788DCD43408C02AEA5AC2E5AC060B8C0A68DCD43404CC75D96AC2E5AC0A0C347F48DCD43407802587FAC2E5AC0F79AA7728ECD434084505368AC2E5AC0C72603F18ECD434000960055AC2E5AC028514E728FCD43400027B241AC2E5AC0000BBBF08FCD4340F0FA1932AC2E5AC0205B087290CD4340E0CE8122AC2E5AC008FF68F390CD4340A4F8A016AC2E5AC0B8C8CB7491CD434034EDC60EAC2E5AC008996CC291CD434098CC0807AC2E5AC060FB25F691CD434010730803AC2E5AC04040EC2992CD434074BDE5FEAB2E5AC0D081937792CD43400843E8F6AB2E5AC0D86D58D992CD4340D7110CEFAB2E5AC0E863FB2693CD4340609FD90BAB2E5AC00084664993CD4340C0F5C933AA2E5AC0F8BCFE6B93CD43405CA7CF43AA2E5AC028F2CC5493CD43405CAC16A8AA2E5AC0907AADC392CD4340EF233639AB2E5AC09FF2C2EC91CD43401842537EAB2E5AC088E2A08791CD4340A3C89280AB2E5AC098E0267391CD4340048BF7D4AB2E5AC0801FC6F28ECD4340B0CD6EDCAB2E5AC06F4867C38ECD4340985AD9E5AB2E5AC0E02BC58B8ECD43405478A1FDAB2E5AC0F0AD100F8ECD43406F17D027AC2E5AC030D62F2C8DCD43400CF4064EAC2E5AC0D81654778CCD4340E7C1AE6AAC2E5AC0582FFFEE8BCD43409C858D7DAC2E5AC0482B609D8BCD434044040DAAAB2E5AC0E037666285CD43402C6320BBAA2E5AC0B827C7587ECD43404C5CC802AA2E5AC0808BA0947DCD4340A4B6AA0BA92E5AC0C0EEA48D7CCD4340AC3D6997A52E5AC0CFA8A2E078CD434064F5840EA22E5AC0F002B51D75CD43405CDA4BDB9E2E5AC0C0EBEDB571CD434034B3E3DA9E2E5AC0306680B571CD4340D8390E689B2E5AC01F84207779CD4340E84871659B2E5AC0B00C047D79CD4340F4BCADB7972E5AC068BEBC007BCD4340545700B1972E5AC0501E7D037BCD43402FC174B0972E5AC028F1E8027BCD43407770A457962E5AC007C69A9479CD43406C6B1943952E5AC0F8E5BE027CCD4340841EAF42952E5AC0A06AAF037CCD43407035622E952E5AC0704F0A0C7CCD434048F38129922E5AC030833A4A7DCD43407C9B18D48F2E5AC0D02DB23F7ECD43408F2D5CCD8F2E5AC0781C6C427ECD434098C2A0058E2E5AC0A0DFE5F97ECD4340E027B9E98D2E5AC0A85A21057FCD4340CC0A5AE88D2E5AC008CBAA057FCD4340D40765898A2E5AC04823626180CD4340EC5E5F32882E5AC0D0FAC35281CD43400CC20E29872E5AC0E8EBA2BD81CD4340BF49F7F9832E5AC0C00D0F0683CD4340208FB9C8832E5AC040DAE51983CD434054496368802E5AC09831207684CD4340EC6112087D2E5AC0B8AE5CD285CD434024B9F0A7792E5AC088238A2E87CD4340A367C0A7792E5AC0109D9F2E87CD4340CC1ED6EB7B2E5AC0D07E55AF94CD43407C8769DF7C2E5AC0AFEFA95A9ACD4340FC12B3BC7D2E5AC010E444819FCD434054033DCF7D2E5AC020A9B6EF9FCD43409CEA25007E2E5AC0E0FA2C13A1CD4340046CD0C27E2E5AC0001A0B9BA5CD434068BCF25B7F2E5AC070F6962BA9CD434054765EB67F2E5AC0E0216846ABCD4340078E523C802E5AC098339564AECD434027F231A6802E5AC0100177DBB0CD4340581FF1B9802E5AC058DF1451B1CD4340F847C499812E5AC0304CC986B6CD4340039055D5812E5AC0E897AAE9B7CD4340EF9D27EA812E5AC0A0BAB965B8CD4340C06DB3FF812E5AC0E0FE1616BCCD4340A086E0FF812E5AC06095A11DBCCD4340A0CBCFFE812E5AC0583E48DFBCCD4340D40940ED812E5AC080471A6AC1CD4340AC2F6CDC812E5AC00095F5CBC2CD4340B3ADF2D9812E5AC08FBF9307C3CD4340A872B7D7812E5AC078688C34C3CD434094C24093812E5AC010173C96C8CD4340C07E7774812E5AC078A4C801CBCD43401C0B384E812E5AC0206A7203CECD43402C1C143C812E5AC038AC9E70CFCD4340EC6DC209812E5AC080D52C65D3CD434024BE4BF0802E5AC0D8FC8A65D5CD43408FA3B8C4802E5AC010DD5ED2D8CD4340EFB749B4802E5AC0E0E93B1DDACD43408464CAB2802E5AC0783B573BDACD4340B4F2DBD5802E5AC0CFF64E5DDDCD4340A83945E9802E5AC01FA27319DFCD4340F062D226812E5AC0A04DAE99E4CD4340BCC0C436812E5AC020DC5B06E6CD4340C0EBF54C812E5AC060EAE201E8CD43403030BFC1812E5AC038F76DE1E9CD43408064EA76822E5AC0885F4EC9ECCD43403C9ED6CD822E5AC0E881392EEECD43400F03F919842E5AC0C72FEB81F3CD4340D0BC7A7A842E5AC0380D3D0EF5CD4340D45BF0C0852E5AC0A0885E16F8CD4340A4E275E6862E5AC0C01B2FD0FACD4340BF29C9F3862E5AC07827DEEFFACD4340A420FDFE862E5AC0D09DFEF8FACD43401803E00F872E5AC0577DC006FBCD43403FB0091A872E5AC018340A0FFBCD4340642A2697882E5AC0D0579A45FCCD4340805B881F8D2E5AC0672FB7F5FFCD43401BA70D598D2E5AC01017342500CE4340745668A68F2E5AC09F27080502CE4340643ADBA68F2E5AC0207F640502CE4340A8406C6A922E5AC09063C00602CE4340C8B66BF3932E5AC0D81A880702CE4340D820273A952E5AC0A86F6D0902CE434098FB0D3B952E5AC098F3A58706CE4340406DA839952E5AC0506DE59C0DCE4340083C94F4922E5AC0408D72380CCE43400C6D999C922E5AC050D307020CCE434004AC12E8902E5AC078B261DB0FCE4340108D245D8D2E5AC0C84F85DA17CE4340705923ED8C2E5AC000785AD718CE4340C03B5AB18C2E5AC0107B535E19CE4340BFEA12B28C2E5AC0102A0C5F19CE4340FC9CCDD38E2E5AC0100A2FA01BCE4340F7826D5C902E5AC088CFFB3E1DCE43404C4F29F3922E5AC048AE25FB1FCE4340138FFC08962E5AC0D806923D23CE4340FB7DB1EA982E5AC06031C14826CE43406C4947CC9B2E5AC0084F1B5429CE43405438FCAD9E2E5AC0C8BC3F5F2CCE434008DE8F8FA12E5AC030009C6A2FCE434007F99085A22E5AC0D04A296E30CE434058D72767A52E5AC080FF8B7933CE434094863925A62E5AC0E8ECA34134CE4340F442B74DA72E5AC090280BD134CE4340F0A16B5CA82E5AC0103BFB5335CE4340409B80B2AB2E5AC05001F0EF36CE43403B584908AF2E5AC078771A8C38CE434060BC2E75B02E5AC07009B83B39CE4340D7E30085B02E5AC0F8CD534339CE4340680386CBBB2E5AC028F1BE3942CE4340C089E921BE2E5AC09FB6980246CE43405BA89F44BF2E5AC0609C50D947CE4340A85F6745BF2E5AC0E0E754D947CE43406C2EF645BF2E5AC088D53CDA47CE43401469B6E6BF2E5AC028C4F6DC47CE43409C8644E1C02E5AC0986435E147CE4340446A78E5C02E5AC0800813E147CE4340D396F9F5C02E5AC0E85494E047CE4340F0B9AF0AC12E5AC0E06AA0DD47CE4340F49DE215C12E5AC02020C4DA47CE4340305B411FC12E5AC0F8F15DD847CE43404BD8B525C12E5AC00807EDD547CE4340C8896633C12E5AC03853C4D047CE43407C5DBA3AC12E5AC0106A4DCD47CE4340A41D3A47C12E5AC0A88D56C747CE434058852049C12E5AC0288741C647CE4340BFE8AA5AC12E5AC0D01BA7BB47CE4340B4805B6DC12E5AC008CBDEAD47CE43401B8D727FC12E5AC0002AF79D47CE434084EAD090C12E5AC06083778C47CE43406C4D72A1C12E5AC04F49E37847CE4340FFC40EB1C12E5AC01827AA6347CE434033BA9DBFC12E5AC0C0B3D44C47CE4340C0219AC7C12E5AC000E2643E47CE4340E08032CDC12E5AC0786D3E3447CE4340E4B67ED9C12E5AC0A0F2811A47CE43409C98CEE4C12E5AC0A89B78FF46CE43406B72A3EEC12E5AC058EA46E346CE4340283B71F7C12E5AC028DA26C646CE4340F8FBC3FEC12E5AC00FD40FA846CE4340A31DE9FFC12E5AC078B423A246CE4340185A8A02C22E5AC00F5F959446CE43407CC5B904C22E5AC000B6488946CE434008EE8705C22E5AC0D7BFA78346CE434078E53909C22E5AC06834CD6946CE4340CC2DDE09C22E5AC080D2686346CE4340E8335F0CC22E5AC068200F4A46CE4340B04EDB0DC22E5AC0A017812D46CE43409067080EC22E5AC0C09F102A46CE43406C80350EC22E5AC028D8D30946CE434064E85A0CC22E5AC050540AE245CE434038A845F6C12E5AC078CB9C0844CE43401FD45DF0C12E5AC0A09CE08943CE434040B1BBC4C12E5AC0DFD68F1A41CE4340A09C55BDC12E5AC0A0BEDECA40CE4340A860DC8CC12E5AC07032FBC03ECE43406C1C158BC12E5AC02858D2AD3ECE4340FB318D89C12E5AC06092BA9F3ECE434088F76477C12E5AC0304E6FF83DCE434067ACF475C12E5AC0C0D627EB3DCE43404BC21431C12E5AC0E821F4823BCE434047C47484C02E5AC0D8A1FA7135CE43409442DDC3C22E5AC0B8285FAF34CE434040242EF3C22E5AC0E09C5B9F34CE43400CC8E82AC42E5AC0B02B43E23FCE43409C99D947C42E5AC0E8F1317B40CE4340183B1561C42E5AC0E7461A1441CE434004B7CD6BC42E5AC0E03FDE6441CE434017B78D76C42E5AC0D8C0DCAF41CE434020CA0E8CC42E5AC088C9984B42CE4340045988A1C42E5AC0F73B74E442CE4340705947B3C42E5AC098D2018343CE43409C7F08C5C42E5AC000D3AE1E44CE4340F84F12D3C42E5AC0A0AD59BA44CE4340D0D417E1C42E5AC0C061DA5845CE434078742EE8C42E5AC0F7CC4B9845CE4340C8461CEFC42E5AC0208761F745CE4340349B6DF2C42E5AC04061613F46CE434074D4AEF5C42E5AC067E7CE9546CE4340978B8CFCC42E5AC088FA660047CE43405B16FEFFC42E5AC08048643147CE4340ABDC9306C52E5AC0485DCDCF47CE43406F5BAD09C52E5AC0A0E7024348CE4340E4DB6B09C52E5AC047710E7148CE43401BDB430CC52E5AC0903A730F49CE43405F97650BC52E5AC00FB0C4AD49CE4340A853870AC52E5AC0FFD9114C4ACE43407C89BE09C52E5AC0088602DC4ACE434004AF1605C52E5AC03008AA884BCE43402074C5FCC42E5AC01804E6264CCE43407C279AF8C42E5AC06F2772774CCE4340D0B42DF8C42E5AC0D0BC2CC54CCE4340EB7F08F0C42E5AC040439A464DCE4340F83626ECC42E5AC0A88A57634DCE434044A61DE0C42E5AC010A486014ECE43408B9A04DCC42E5AC0289492464ECE43404C3B17D4C42E5AC0B097B39F4ECE4340638D5AC4C42E5AC0085EF73A4FCE4340F89399B4C42E5AC0604915D94FCE43405C7D24A1C42E5AC0F0BB457450CE4340C05C6699C42E5AC0481EFFA750CE4340A89FF189C42E5AC0F8E2710F51CE43404CE23D7EC42E5AC0F0A0257151CE4340340D8476C42E5AC08855A2AA51CE4340947BFE6AC42E5AC01898F0E651CE434007A1965BC42E5AC0C828BB4552CE43404FAB1E4CC42E5AC0B8830EB052CE4340B8216944C42E5AC0106E02DE52CE434004E90F1EC42E5AC020C1C7AC53CE43406C08ED86C12E5AC078758BB666CE4340AB819877C12E5AC0B83CF50667CE4340F712B473C12E5AC0E08A712967CE4340D8272E64C12E5AC0C882649C67CE43402016E95FC12E5AC04023CEB367CE43403896A858C12E5AC018A797DB67CE4340E0E6F050C12E5AC0E7BD4C0F68CE43409867EE4CC12E5AC088910C4368CE4340B03E2145C12E5AC05F542F8568CE4340945B6B39C12E5AC01838E5E668CE4340C080C42DC12E5AC098A4FD3F69CE43408098CA29C12E5AC07771FE6D69CE43408C4FE825C12E5AC0A8DEBD8A69CE434050F0FA1DC12E5AC028E2DEE369CE4340C4FFF119C12E5AC08853661D6ACE4340F834EB15C12E5AC06879E9566ACE4340BCCFD10DC12E5AC02718DBCC6ACE434070B39A09C12E5AC070D806266BCE4340E4C8BD05C12E5AC0E01FC4426BCE434084FB9405C12E5AC0D8E0965F6BCE43401CF25E01C12E5AC0DF2FBCB86BCE434010AAF9FCC02E5AC068479B316CCE43406FF4D6F8C02E5AC0403E667C6CCE434047D39AF8C02E5AC0E7A297A76CCE434043303AF8C02E5AC0102AACEC6CCE43401478F5F7C02E5AC0B86F9A1D6DCE434008A157F7C02E5AC0C735DE8D6DCE4340D0AEA9F6C02E5AC0907AA6096ECE434010E2BEF9C02E5AC0DF29B67F6ECE43403428D5FCC02E5AC0F8FEC7F56ECE4340C8659D03C12E5AC057DCE86B6FCE4340A0146C0AC12E5AC0EF9307E26FCE43400C6FE90DC12E5AC068B5430D70CE4340F4773611C12E5AC05071285870CE4340F8DCA514C12E5AC040E4FF8B70CE4340E056BA1BC12E5AC0F85658CE70CE4340ECB94526C12E5AC0A0E99C4171CE434018082C2DC12E5AC0C85F95A371CE4340B7ABCA30C12E5AC0085EC6B771CE434098296734C12E5AC0C8A7FBCB71CE4340B8510C3FC12E5AC0F0F8192B72CE434038AC494DC12E5AC0E04F50A172CE43405F005C54C12E5AC0D0C180E672CE4340583F8A5BC12E5AC04F36A81473CE4340985A5A66C12E5AC01084265473CE4340CF73866DC12E5AC048FF0C8873CE4340CCF3867FC12E5AC0BF7C6DFB73CE4340DBC97D91C12E5AC040D5F36B74CE4340086732A7C12E5AC0FF5A63DF74CE43407C0E6FADC12E5AC030CAC6FF74CE434090CBE3BCC12E5AC00896F64F75CE4340887BD9C7C12E5AC0480B467B75CE4340388E5BD6C12E5AC0901C8EC075CE434050BA88DDC12E5AC0486BB3EE75CE4340046413ECC12E5AC0100C1D3176CE4340C4A64AFEC12E5AC058B46D7676CE434098D23809C22E5AC0A7C0C5A176CE43409058651BC22E5AC0700D9DF276CE4340BC49AC22C22E5AC070FC800F77CE4340B4643D31C22E5AC03769424977CE4340743CD93FC22E5AC048CF447D77CE4340EC0B664EC22E5AC0D01DEBB977CE43401042075DC22E5AC098ED0CEB77CE4340885A367AC22E5AC0B075F45578CE4340A03E2990C22E5AC08800529B78CE4340F89322A6C22E5AC01F8CD7DD78CE4340E7F06CC9C92E5AC08FD1E81894CE4340F8DC2494CB2E5AC0E761DBEE9ACE4340989E60C7CB2E5AC0E08DCC909BCE434063C142E8CB2E5AC0F8D196FE9BCE4340E027D8F6CB2E5AC048CE79359CCE4340B49C6810CC2E5AC0D85EEF919CCE4340880F5526CC2E5AC0B0A52FDA9CCE4340E41D5031CC2E5AC03814C0FF9CCE4340DC551652CC2E5AC08856BB819DCE43406B76D57DCC2E5AC0680747299ECE4340C8E2D7A5CC2E5AC0006CA6D39ECE43405F29D8CDCC2E5AC0D0AA037E9FCE434060460DE0CC2E5AC09F161EC99FCE43401FF4DFF5CC2E5AC028356528A0CE43409097FF07CD2E5AC0A888FB7EA0CE4340EC0A6A16CD2E5AC067B68FD5A0CE4340382A8228CD2E5AC068F2C934A1CE4340509DAD3ACD2E5AC0B8CEC282A1CE434050491B49CD2E5AC0B03F4CD9A1CE4340ACBC8557CD2E5AC0706DE02FA2CE4340DC1A0C66CD2E5AC0F89C4372A2CE4340FC1E1478CD2E5AC0F03100DDA2CE43401C1DF089CD2E5AC0A0AD9164A3CE4340A03E2B91CD2E5AC0D838ED8CA3CE4340445E42AACD2E5AC090FCE43CA4CE4340A838C0BFCD2E5AC080DF9ED8A4CE4340643255C3CD2E5AC0C099B2EFA4CE434033FCB4D8CD2E5AC0E0E3949FA5CE4340B8F607F5CD2E5AC0B0BBCBA8A6CE43406031A988D02E5AC0087089AFB8CE4340131253C9D02E5AC068E16E5ABACE43403881B70DD12E5AC0900F5F05BCCE43402C209259D12E5AC0502993ADBDCE4340D32725A9D12E5AC090D2E852BFCE4340700977FCD12E5AC0285F73F5C0CE43403BEFCF3DD22E5AC078F5AF21C2CE43403BE23B57D22E5AC080A80898C2CE43401C82BEB5D22E5AC0B064F434C4CE43408F9DFA17D32E5AC0E020E0D1C5CE43401C80F47DD32E5AC0A031076CC7CE43403CF0FFB0D32E5AC088D17630C8CE4340089BB2E7D32E5AC0F0AC7500C9CE43401F02B230D42E5AC0A71B6007CACE4340D33BDD58D42E5AC04856F594CACE43407CC9C7CDD42E5AC0B071A326CCCE4340E0567346D52E5AC0A08EA1B2CDCE43401428655CD52E5AC0EF89DDFACDCE4340D85FD8C2D52E5AC05868AA3ECFCE43405FE9BA25D62E5AC0C0137668D0CE43403BD1B646D62E5AC0686905C5D0CE4340DFE0586BD62E5AC048450030D1CE4340E3B39BCAD62E5AC0B0CC9845D2CE4340F467F155D72E5AC0108C4EC6D3CE4340C01B08E5D72E5AC0B7444541D5CE4340C483DB77D82E5AC0F05177B9D6CE4340B833FDB9D82E5AC0C7FF8C5BD7CE4340B89F2C12D92E5AC0B860F92BD8CE43408CCE7EACD92E5AC008FF9C9BD9CE43403CC533C6D92E5AC0A86548DBD9CE434098B18D4ADA2E5AC058786608DBCE43400B4244C0DA2E5AC0B82B4107DCCE4340735B1BF0DA2E5AC000F4A76CDCCE4340C8936399DB2E5AC0F877F8D0DDCE4340A8AFF428DC2E5AC0886F9BF5DECE43402063B442DC2E5AC0A8EDA22CDFCE43407805D863DC2E5AC020FB4C6FDFCE434008887DF3DC2E5AC0AF468285E0CE4340444E02A8DD2E5AC0088396DBE1CE4340D05D10F9DD2E5AC0805A766FE2CE4340A8988E5CDE2E5AC0588B0229E3CE4340D0A6B92EDF2E5AC0288D5A99E4CE43404075B90FE02E5AC050278C12E6CE4340C425DCCBE02E5AC040F70849E7CE4340C4FBC18BE12E5AC040C1EE76E8CE4340F8FD10B8E12E5AC0C82ABBB9E8CE434060E4694FE22E5AC0082305A2E9CE4340705BCC16E32E5AC057EF62C7EACE4340F8F7F1E1E32E5AC0F84B0AE7EBCE4340E0CCDBB0E42E5AC027AA0101EDCE4340C47B8483E52E5AC0D0DB3715EECE4340EC16ECDFE52E5AC0F830748CEECE434024763156E62E5AC088E89326EFCE434088D37DF1E62E5AC0E038B7E3EFCE434078245C30E72E5AC090F7672FF0CE4340F4568E0AE82E5AC020437232F1CE434023A60742E82E5AC040988272F1CE43407420C9E4E82E5AC0F01EC62FF2CE4340803F7CC6E92E5AC010226C27F3CE4340D8663EA8EA2E5AC037F16916F4CE4340A41CBB8DEB2E5AC0B03AA502F5CE434000063404EC2E5AC0886E5077F5CE4340CC0AFC76EC2E5AC0E8DE31E6F5CE434060E107C1EC2E5AC0EF17202FF6CE43401C7D4460ED2E5AC09FA9E8C6F6CE4340A4245A0EEE2E5AC06FA6A164F7CE4340F8440551EE2E5AC0B876179FF7CE434067AC1C3EEF2E5AC00053936EF8CE4340CC250A97EF2E5AC0303B8FBAF8CE4340B300F42EF02E5AC0D755393BF9CE4340D8418B23F12E5AC080784AFFF9CE4340A48CE983F12E5AC0C0BC684BFACE43403CCEE71BF22E5AC03051A7BDFACE4340C077E09EF22E5AC0F0626E1FFBCE4340781F5CA1F22E5AC0B8204B21FBCE434000B94914F32E5AC020234576FBCE43408B60B60CF42E5AC0980C3F26FCCE4340981992CDF42E5AC0A0006AA7FCCE43402BA99F0CF52E5AC0A08E91D0FCCE4340C0DA0F13F52E5AC0C0F8AFD4FCCE4340DC45DB08F62E5AC05F3D2472FDCE4340205ED008F72E5AC0B01B180EFECE4340A858930CF82E5AC050F34CA4FECE434078C45C10F92E5AC068E2DD31FFCE4340845C1295FD2E5AC0EF012AF100CF43407C7BB424FF2E5AC0C7CDB08B01CF4340FB760631032F5AC0F8DFD21D03CF434094C29291042F5AC0DF3A53E303CF43404805CBC7042F5AC0B873960304CF434008717C52052F5AC028F4165604CF4340E3E4FB98052F5AC0F891348204CF43402815B30F062F5AC030F8B6CB04CF43409B0CE894062F5AC0D04BA22405CF43406078D7CC062F5AC03099F64905CF434060273F86072F5AC068390ECB05CF434080C3A53F082F5AC098BAE25106CF4340AFA78373082F5AC0000ADB7A06CF4340BFDB43F5082F5AC000F771DE06CF434014832BF9082F5AC0681786E106CF43409C95DCAA092F5AC0A8C9E16D07CF4340BCE5FDF4092F5AC0F8C768A807CF4340F40371600A2F5AC0C8310A0308CF43401CB958F80A2F5AC03097908608CF4340748545120B2F5AC0E87AEF9D08CF4340CC8212C40B2F5AC04016983E09CF43408C6D1D720C2F5AC0903F12E209CF4340EC8F591E0D2F5AC0A03393890ACF4340AC1F25200D2F5AC0D8E0518B0ACF4340747D43670D2F5AC0C81427EF0ACF4340908FE4BF0E2F5AC090DFE3D20CCF434028E2A6CC0E2F5AC038C0CCE40CCF43400C9808CD0E2F5AC070CDD94C0FCF43404CB0F7C90E2F5AC08069098011CF4340E751F2C90E2F5AC0B823F28311CF434000B463D9222F5AC0B80A51E12FCF434068465CB9242F5AC0172142B732CF434090042528252F5AC050D6E95933CF4340FC33F496252F5AC00884AAF933CF4340F045D005262F5AC087FEEA8D34CF43403F2CE610262F5AC020BB769C34CF4340E4330F7C262F5AC05808CE2D35CF4340244EFAEA262F5AC0E0E56EB935CF43408464C5F9262F5AC078F5E5CA35CF43407F0DAA68272F5AC040AD845636CF4340DB61BEE2272F5AC060EE2EE536CF4340B46ACE5C282F5AC0F827F27037CF4340741DE8D6282F5AC098A5D2F937CF434088468C3E292F5AC0E094B76538CF4340F0CFC254292F5AC0C824037D38CF43402018A86E292F5AC0B85A259A38CF4340C4499AD2292F5AC070582F0039CF43401F08E2322A2F5AC02822915D39CF434057C332542A2F5AC01F42A77D39CF4340F0D3D3D52A2F5AC020E142F839CF4340331398232B2F5AC0F0D63B413ACF434087E474572B2F5AC0589EF96F3ACF434034BCD3DC2B2F5AC0585CD8E43ACF43401C81C5352C2F5AC0C0F9F72D3BCF43400C183A622C2F5AC09713F8533BCF43400495859D2C2F5AC00F5CB2853BCF4340E40AA9E72C2F5AC020803BC03BCF434048208F5A2D2F5AC040CD11183CCF434030F5C9702D2F5AC03813A9293CCF43401FAFF6F92D2F5AC0C09E2F903CCF434018002C832E2F5AC09823F7F03CCF4340A7CC1A102F2F5AC0771AED4E3DCF4340B0B2F11E2F2F5AC0CF1BBE573DCF4340BC7B169D2F2F5AC090731BA73DCF434054B68017302F5AC050788DF33DCF4340ACA60A2A302F5AC0B86352FF3DCF4340E8D90DB7302F5AC0986ABD513ECF4340D42E74F2302F5AC010E22F723ECF43403CD4CE47312F5AC0C8987A9E3ECF4340D47F00C6312F5AC047264FE23ECF4340AFBB8ED8312F5AC0F8C637EB3ECF4340074D5869322F5AC0207D2F323FCF43404CB6E5AF322F5AC0F82AC2523FCF4340279B2CFA322F5AC0D80666733FCF434047E9008B332F5AC048FABBB13FCF43409FEB911F342F5AC087EE39ED3FCF434080A74B57342F5AC0C0041B0240CF43405C4C28B4342F5AC04872D92540CF43401C44C748352F5AC00815BC5840CF4340183AAA8B352F5AC05887BF6D40CF434060876ADD352F5AC0C8A8D08540CF43406C871872362F5AC090AE13B040CF4340B761C406372F5AC0983B69D740CF43403FAD1F51372F5AC0004EACE940CF4340D828309F372F5AC02786F1FB40CF43408BF8E933382F5AC0B0C1AB1A41CF43402C0B0382382F5AC060CD2F2741CF4340DCDA65CC382F5AC0C767AD3341CF4340188D2C61392F5AC00F95C14941CF4340ABEB215E3A2F5AC010F9F46641CF4340D0C47C25422F5AC0B84FFF7A41CF4340E74BD03B422F5AC028794A7B41CF4340F8C8AF4A422F5AC04FBF607E41CF43407CD4495D422F5AC038C2818141CF43408C51296C422F5AC0D7BC938441CF434098CE087B422F5AC0B891A38741CF434044EDE289422F5AC05848988D41CF4340D01EBE98422F5AC0F8FE8C9341CF434000899CA7422F5AC098B5819941CF4340285C72B6422F5AC0780257A241CF43402F4249C5422F5AC0D80328AB41CF4340173B21D4422F5AC0F02AFBB341CF43407FE8F4E2422F5AC090C2ACBF41CF434088CECBF1422F5AC0F8F18EC841CF434010699E00432F5AC0488131D441CF4340C0ADB90B432F5AC0A03EE5DF41CF4340B41BA125432F5AC0500301FD41CF43403CB67334432F5AC070E6B60842CF4340C876873F432F5AC08013211A42CF4340384A9C4A432F5AC010D0AC2842CF43405FACAA55432F5AC060D7143A42CF43401C66D56B432F5AC0C8A2EF5C42CF4340E800E776432F5AC05884556E42CF434098AEF981432F5AC0A88BBD7F42CF43403491C68C432F5AC06832929342CF43401CD8048D432F5AC0C00B139442CF4340171D5F94432F5AC0885548A842CF43408C16B59B432F5AC08FA78CBC42CF43401814E8A1432F5AC070A4ECC742CF4340988BC4A6432F5AC0E06AD7D042CF4340684C17AE432F5AC0E72513E542CF43401C206BB5432F5AC0B0C233FC42CF43409419C1BC432F5AC0F8EE751043CF4340103958C0432F5AC07883872743CF4340A31FADC7432F5AC04020A83E43CF4340601942CB432F5AC078DABB5543CF434014ED95D2432F5AC04077DC6C43CF4340344530D6432F5AC08031F08343CF4340CF51C6D9432F5AC0C0EB039B43CF43406C5E5CDD432F5AC07816F6B443CF4340ECAEBADB432F5AC0D01B9A9145CF4340E488E3C3432F5AC0E05919CC60CF434064BF83D9432F5AC0A0355A097BCF434097F82FE5432F5AC0B0AB253189CF4340847661E0432F5AC04FE7B8F789CF434063E0D5DF432F5AC020E3735C8ACF43401C98C6D6432F5AC08F1AC2878BCF434020E7FEC9432F5AC070D8FAB28CCF434078E34AC1432F5AC0403D30998DCF4340631035BD432F5AC0587159DB8DCF43401B8B06B9432F5AC028C1A6318ECF4340207BFBA8432F5AC0E78F7A068FCF43401FDCB79C432F5AC0B89CD4CF8FCF434038ADBE94432F5AC078AE9B3190CF434020C2CD7C432F5AC07F2ECD5991CF4340045A2869432F5AC0884A741A92CF4340E0DF695D432F5AC08080ED8192CF43406023083E432F5AC0B81503AA93CF4340706FF41A432F5AC0A81438CF94CF4340A8CE20F4422F5AC0D0BF59F495CF4340AC1099C9422F5AC070886E1997CF4340443B75B2422F5AC0807BF2AB97CF4340D43F109F422F5AC0D7BAA23B98CF434044859278422F5AC0985D342799CF4340D40E1D6D422F5AC0A873C15D99CF4340A0E36C65422F5AC0C0C7D48899CF4340707F243B422F5AC0B806DE7F9ACF4340F0871C11422F5AC0C04AD5489BCF4340EC8FC101422F5AC0F7F2FB9E9BCF434028C660C8412F5AC038BA3FBB9CCF4340B83E52C83E2F5AC07066D704ABCF434068CD20B53E2F5AC0E0B9436CABCF4340806F43873E2F5AC018F3344CACCF43405CB0FF603E2F5AC0E856970CADCF4340A86731463E2F5AC0B0A46C96ADCF4340BC647A273E2F5AC0A8D7C642AECF4340541E8F0C3E2F5AC0A0F5BBE0AECF4340C4CA8FF53D2F5AC0F810395CAFCF434040AFEAD23D2F5AC0104EF22DB0CF4340309B6CA83D2F5AC07008614AB1CF4340B4FEB5A03D2F5AC090D4397BB1CF43403B7E36723D2F5AC090F970CBB2CF4340D0AA8B4B3D2F5AC0C836ABD6B3CF43408323B9433D2F5AC05844AA1BB4CF434040BCFB373D2F5AC050360686B4CF43409061A91C3D2F5AC0EF9ED96EB5CF43406448120D3D2F5AC010862FF0B5CF434080B29AF53C2F5AC008892ABFB6CF4340349CF9D53C2F5AC068F34F15B8CF43400365F1CD3C2F5AC068CF9F82B8CF4340203A15BA3C2F5AC01841AA68B9CF434057E2E3A13C2F5AC05096EBBEBACF43404884B2953C2F5AC0A0D9E479BBCF4340B477B1893C2F5AC008373115BCCF43403804F2783C2F5AC0882B8A6BBDCF43401432EE6B3C2F5AC0E073F6C1BECF4340105BE5623C2F5AC087519AE4BFCF4340406A9D623C2F5AC038536B18C0CF4340DF30075D3C2F5AC057ABCD71C1CF4340544D285B3C2F5AC000E63CCBC2CF4340E8501C593C2F5AC0F09A7AF1C6CF434078D12F5B3C2F5AC0F8AC2194DECF43405BE4305B3C2F5AC078BEE7A6DECF434084E9172C422F5AC0C08035A6DECF43409C68AC6A5A2F5AC078BC43A3DECF434013F20C705A2F5AC078BC43A3DECF43404CA6D69D5C2F5AC04804FFA2DECF4340CC35CED1632F5AC0683C19A2DECF434043624BBA662F5AC028BFBAA1DECF434084B4CAA2692F5AC060F657A1DECF43407F2C4C8B6C2F5AC02079F9A0DECF4340FC58C9736F2F5AC020D698A0DECF43401CBE495C722F5AC0580D36A0DECF434097EAC644752F5AC09044D39FDECF4340F429452D782F5AC0D07B709FDECF4340307CC4157B2F5AC008B30D9FDECF43406BCE43FE7D2F5AC088C4A89EDECF4340A720C3E6802F5AC000D6439EDECF4340046041CF832F5AC078E7DE9DDECF4340808CBEB7862F5AC0F0F8799DDECF4340C37546A0892F5AC0A8E4129DDECF43409C69C0888C2F5AC068D0AB9CDECF4340BCCE40718F2F5AC020BC449CDECF434037FBBD59922F5AC01082DB9BDECF434034733F42952F5AC0D06D749BDECF4340AF9FBC2A982F5AC0000E099BDECF4340D0043D139B2F5AC0F8D39F9ADECF4340C0B067289E2F5AC0E8022E9ADECF4340FF02E710A12F5AC0A0EEC699DECF43405C4265F9A32F5AC0D88E5B99DECF4340B881E3E1A62F5AC0102FF098DECF4340A0B24240A72F5AC0884CE398DECF4340183CA345A72F5AC0BF26E198DECF43403829A245A72F5AC0F08DDE99DECF4340240F40A7F62F5AC08850830EDFCF43405C25174A03305AC078AECA20DFCF43405C25174A03305AC008792720DFCF4340F096875903305AC0580EE84AD9CF4340DF1BA975FD2F5AC010CEAEB5D6CF43402B9D4F7DFD2F5AC0F05A5890D6CF4340446A3981FD2F5AC0C80CDC6DD6CF43406C67D888FD2F5AC0E82F664BD6CF4340C00EC08CFD2F5AC08007EC28D6CF4340B8EEAA90FD2F5AC018486906D6CF4340685D8F94FD2F5AC0EFF9ECE3D5CF434034226A98FD2F5AC000DFF0CCD5CF4340A4B4AC98FD2F5AC05899029CD5CF4340D86E959CFD2F5AC0B0FF8179D5CF4340FCF8C89CFD2F5AC000131654D5CF434028A93D99FD2F5AC088258231D5CF4340C7E76C99FD2F5AC09883F20ED5CF434078E3E595FD2F5AC060B479E9D4CF434018221596FD2F5AC0B083F0C6D4CF4340C81D8E92FD2F5AC0B04A58A4D4CF4340247AEF8EFD2F5AC038722990D4CF43403CFAAE87FD2F5AC038E6A56AD4CF4340C8712084FD2F5AC0B8D9CE4DD4CF434017CA3979FD2F5AC07830D719D4CF4340B0FEF471FD2F5AC0B0F616FAD3CF434090A65A6EFD2F5AC0783C03E3D3CF434057870267FD2F5AC0EFF1A5D1D3CF434064D9B05FFD2F5AC0680AA9B7D3CF4340C8CC1A5CFD2F5AC0285095A0D3CF4340FBC66D4DFD2F5AC098F71078D3CF43403C5A6D42FD2F5AC04FDB4358D3CF43404CD0B833FD2F5AC0B8B66738D3CF434087CCAF28FD2F5AC0A8307B1BD3CF434050D1F419FD2F5AC0981386FED2CF4340B051F30EFD2F5AC0D06797E1D2CF434038E53100FD2F5AC0F0B271C7D2CF434000EA76F1FC2F5AC0200783AAD2CF43404CA55BE6FC2F5AC0C8E0D79ED2CF434034E714D5FC2F5AC0F89EB283D2CF434008164ED2FC2F5AC0289A427FD2CF4340988239D0FC2F5AC0203BFF7BD2CF4340044FBABDFC2F5AC0C8D1DD61D2CF4340987BA5B2FC2F5AC0B8A47350D2CF4340BBD47B9CFC2F5AC010776033D2CF43408868F989FC2F5AC0303A001FD2CF434054FC7677FC2F5AC090D79D0AD2CF43407CDBE233FC2F5AC008290DDCD1CF434004A67E04FC2F5AC0284D69BBD1CF4340483CEB430C305AC0B876DFF4D8CF434093DF1AEC0E305AC098F0C32FDFCF43403CA48DC00B305AC0E8267190EFCF43400C8515F509305AC0688FC8F829D04340742E9B1F10305AC0F00AE4493AD04340F001394215305AC0284B57643FD04340C8698D7619305AC0000CC2513CD043406C1C0ED11C305AC0E021AA623DD0434010F25F2521305AC02F17141A49D043407C9A4AD425305AC008459B6C4ED04340D8FC24162F305AC0D05E075252D043401867B9BD3B305AC060D151D47AD043401CD1C72640305AC0882A302F83D0434084E73AC73F305AC037C0F2ABAFD043408C72EBC63F305AC0D0FE22D0AFD04340F0BD9AC43F305AC0F0085DE5B0D04340E087B9C03F305AC0E008E8B1B2D043408C6F0AB93F305AC088FDCD47B6D043407834A4A33F305AC000EE123FC0D04340F8C81F9F3F305AC0C843AC59C2D043403047258E3F305AC027C6D341CAD04340E47B35893F305AC028F3208ECCD043405405FCDDA52F5AC0789D3AE7CBD04340DFAABE62292F5AC0E8BF6E48CBD0434024DFABD7262F5AC010D115FDC5D043401C78A443252F5AC0E065EEDDC3D0434020C19D09222F5AC0A8FC4CD9C3D04340502249431F2F5AC0A7B684B1C2D04340D8CA4F001E2F5AC008C44F49C1D04340A82C97AE1C2F5AC020984F35BED04340781717901B2F5AC080784AFFB9D043406F29E0641C2F5AC0FFDCD5BAB3D04340848886B81E2F5AC068C6D547AED0434058F9A8961F2F5AC0C0C767ECAAD043400F18EC651F2F5AC047460992A8D043400B3CAF921E2F5AC08836D306A5D04340CBED520E192F5AC09798119290D043405FAD61B9172F5AC0786A3FD08CD0434044BF060F162F5AC0B79687C186D0434068A31D11152F5AC0FFC8FB4584D043408893413C122F5AC0E899565E80D043409C8DF453102F5AC0DF31267E7ED043403049DFE30D2F5AC0C068EE3F77D043406090D95E0D2F5AC058A1564576D04340F8C41C92072F5AC0484CEB046ED04340287D0321062F5AC0101ED16A6CD0434030445ED4032F5AC00097375C6BD043403C244D00012F5AC0875D9D9B6AD0434080182EF9FF2E5AC02891146369D043403068F412FF2E5AC02892D33766D043401092FE24FF2E5AC038E5204161D04340289737CE002F5AC00721E76A5CD04340E0A231C5022F5AC060CA72DF58D04340E0084EBA032F5AC028FA6BD555D043407C213CBE032F5AC057C6ABEB51D043406CBE6BDF022F5AC018BBD9334CD0434000C676CE012F5AC060CD379849D04340C071918FFE2E5AC060F6FB3048D04340E819CBECFA2E5AC0C0A00E6346D04340F085CD56F72E5AC070D18A5B44D0434098D014CFF32E5AC0D06D491B42D0434007DC1957F02E5AC0786332A33FD04340A0CD4AF0EC2E5AC02F9358F43CD04340588F3904EB2E5AC080074B513BD04340284EC9FAEC2E5AC0185D72A43FD043404CAB4011F12E5AC040D40B1846D0434007F759B1F42E5AC0D8477F534BD0434070A40EB3F62E5AC0D04271504DD04340B858AB85F82E5AC03FFCB4D84DD04340406F350EFC2E5AC0F88BD8484ED043408CD9C690FD2E5AC000F4609750D043400F463634FE2E5AC0983C2CAE53D043401CFDD0AEFD2E5AC0F0AAD39057D0434044221776FA2E5AC00879C9AE5DD04340C840EEEDF92E5AC06023ABF061D04340B87BC153FA2E5AC098E8909467D04340B8ADE4F8FB2E5AC0E8E540146ED043409F7C2C70FE2E5AC088539AC572D04340D0E10EF2FF2E5AC0A0B65D0D75D04340786C5D2D012F5AC078823BF275D04340EF4063DA022F5AC0F8622E9777D04340E85CBA77042F5AC0D858D57478D0434014B62610082F5AC0F79E56137CD043401463ABF4082F5AC08FADAADB7CD0434034B3A72E0A2F5AC0987ADAD77DD0434080D41F270D2F5AC0885CD59E81D04340B8F803670E2F5AC050C5DD5884D043400BCEC5E40F2F5AC0A7EEC89A89D043403C5E05B4112F5AC078C7B2988CD0434008195F19132F5AC0A0D07E2090D04340DCA68AD2132F5AC07F64FB7C93D04340A7C39E64152F5AC0804776DA97D04340EF19E3D2172F5AC0F03EEB7A9FD0434027593E60182F5AC0CF55DEEEA2D04340479E9BFE182F5AC0B86A6B9FA9D04340047A29EE182F5AC0A895E9D4ABD0434054AAAD06182F5AC0A075F42FB1D043401404A956172F5AC0B08CEA3AB5D04340630B3D9F172F5AC098914D3BBAD0434044101664172F5AC098C585EFBCD04340580F5BB7172F5AC030203EC7BFD04340F4B74746192F5AC0701061F4C3D0434048772A221B2F5AC0C889B3E5C6D0434018E546E21C2F5AC00864E31FC8D043405B1C54C91D2F5AC0B8AF6D38C9D04340F8BC18E61E2F5AC0C7E5BF47CAD043402FD1F115202F5AC06095FB1FCBD04340440CEE46202F5AC04063A33CCBD04340B0EF03F00C2F5AC0D81D8A23CBD043406F2413C70C2F5AC078AD0023CBD043406CC6440B6F2E5AC0A0327040CBD04340F40C55EF182E5AC00035134BCBD04340FC14A7BDF52D5AC0C8FF194FCBD04340A09400CAD92D5AC088FA8054CBD0434030000000481B335BE22E5AC068DFF620DECF4340D0471F74E22E5AC0201AD8F5CECF434074F18A4FDD2E5AC070DE6919C6CF4340E0CE84DADA2E5AC0D0273565BBCF434004977E57DE2E5AC000B622C2A3CF4340C4B02254DD2E5AC0D8E384978DCF43401B515676DB2E5AC000B8EC8C86CF43401071E4C8DD2E5AC0209DB5A67CCF4340983BD89AE12E5AC070D43C7A55CF434070004896E12E5AC090CECE164ECF4340F8FBEE7EDE2E5AC010DFBB004DCF4340E0091EBBD82E5AC048702F4546CF434073A06716D52E5AC0106D13D03FCF43400CD8B8D8D62E5AC018D8EE814ACF4340A0621C89DB2E5AC06727E43951CF4340F82B0385DC2E5AC0C8582FBE5CCF43409C5E1EA2D92E5AC030FEC4086ECF4340831A5434D92E5AC07818C5A57CCF43406B77BC1AD72E5AC03893C26B80CF4340DC76A203D62E5AC070E713FD8ACF434084D76C1AD82E5AC0C097DD8E8ECF4340D4A27BBFD92E5AC02F6FED359ECF434004DEB355D92E5AC098477D4DA7CF4340A822A4BAD52E5AC0AFD0E82AB7CF434020330F47D42E5AC0A077495AB9CF434050DA3DD4D12E5AC0FF50D05DBACF43402CE39DDECD2E5AC097CA2F7EB8CF434088A6EC87C72E5AC058BBE6F5AACF4340B3FC4F4ABD2E5AC0D88D72FBA8CF4340B43AB19BBA2E5AC0901D50E0A4CF43407C64CFD8B62E5AC01820C8B696CF4340678E1D9BB72E5AC0A08A77948BCF4340FCA4EFD5B12E5AC000A818DD7DCF434044105F3AAE2E5AC0B80BAED578CF4340EC0F2D42A92E5AC088E074DC7ACF4340BC172EC4AD2E5AC0E8C1DFC782CF4340D72AC7E5B12E5AC0A72037178DCF4340FBDC8FC2B22E5AC06005328799CF4340D03978B9B72E5AC09F6FD358A8CF4340A8AFDB8BBB2E5AC0183CF71EAECF43404C3EA79AC52E5AC0484C56A0B1CF434088A6C777C82E5AC0D82B6318B7CF43404058037DCA2E5AC0180B0135BFCF4340885C35A4D12E5AC00897EA16C2CF4340C4EFBE41D32E5AC05FEC21DAC1CF434060F3FE60DC2E5AC0E83018F6D0CF4340A0C5BB51DB2E5AC05069801CDECF4340481B335BE22E5AC068DFF620DECF434046000000C44021DFDE2E5AC02816D5E8B6D04340FB1D9C78DC2E5AC090F1EB9EB4D043403FF4B97AD82E5AC0F800BFAEB5D0434037D5120CD62E5AC0604F10E9B5D0434047C41412D42E5AC0507C9C73B4D043409BFDFBCBCF2E5AC02F428BBBADD043402809A854CF2E5AC0E8B10E63ACD0434018B80A2FCF2E5AC0B8130B3AA9D043409C5B22F6CD2E5AC0C0FD8D9EA4D04340886D8E7DCD2E5AC0182B11E5A1D04340170F7104CD2E5AC0D8B4ED499AD043407857DB7FCA2E5AC03794B6328DD04340BC3F19A1C72E5AC01039F6B988D0434068AFAA03C52E5AC078A019F480D0434098F9AA9CC32E5AC018AA634E7DD0434018502E74C22E5AC058926F3579D04340E4A8DF8FBF2E5AC090D0F04F71D0434094FAA6D4B82E5AC0A8B6A47564D04340E862D74CB72E5AC06F88A2C15FD0434028C6BB81B42E5AC0A7B964755BD043407FDF670BB12E5AC080F53A144BD043401C52DB9FAE2E5AC09879FBAB3BD0434000C27478AD2E5AC0A86B3B7A37D0434078D47D05AB2E5AC0E05D53CC33D04340C34398089F2E5AC068D3291327D04340601E30779C2E5AC008804C3329D04340342D211A9B2E5AC040DB236E2AD04340471BC1059A2E5AC0A88FD06E2BD04340B8CE1D629B2E5AC018CA8E9C2BD0434010F13B259E2E5AC060CE0A512DD04340EC8B78D6A12E5AC010015FF533D043404C6335A2A32E5AC0A8EFCED735D04340C88DAAA5A72E5AC03889586937D0434074C99AB9A92E5AC038EBCE783AD0434004B51115AB2E5AC050AE1F8B42D04340503E3E00AD2E5AC0C09D1ABB46D04340E083734DAE2E5AC080CB402B51D04340444D5F28B02E5AC09836E85A5AD0434094CF0A23B52E5AC0C8DE9AC763D043401F95AA66B62E5AC018C9AF7069D04340ACF31D99BA2E5AC040D777186FD04340D4E967E7BD2E5AC060C8AE1777D0434050591D31C12E5AC07070128581D0434040AFEB89C12E5AC038D7FFBF85D04340707CE672C42E5AC0A861E4118ED0434004B3E2B1C52E5AC090821A0A94D043403C10C2D1C52E5AC0C74D454B9AD043401BD2CC19C52E5AC088ACEB739CD04340D70176ECC22E5AC0083FBDFB9ED0434014754021C12E5AC04FA772D0A1D043403FB3D643C02E5AC0C069A459A4D04340E04404E1BF2E5AC010BE1D6CA7D04340ECA0CA4AC22E5AC00871F484A7D04340ECD7859BC32E5AC0CF9D06FDA6D04340307668DCC42E5AC010D5CF33A7D0434018D882C2C62E5AC02F570189A9D04340A00658B3C72E5AC0E82B5A83AED04340E36F6FA2C92E5AC0080043D3B5D04340F4EEF36BCD2E5AC0A0A757F0B9D04340BC2FB890CE2E5AC03884AEDABBD04340DBE80215D02E5AC07859275CBFD043406F508231D42E5AC01814658DBFD04340A45A51D1D82E5AC050223EF4C0D04340A89BFE5EDD2E5AC038C45EE6C3D043409000B0C5E42E5AC0C0979E2ACBD04340701FE046F32E5AC078760D28CBD04340B0AE822CEC2E5AC0788C7B2BC6D04340B3B86CF8E62E5AC0D009DD9CBFD04340F816163CE22E5AC050319B5BBCD04340C44021DFDE2E5AC02816D5E8B6D043402100000007B2A65E292E5AC0B0DF8B1D77D04340F47A8974292E5AC08041E9B067D0434020F7F5F51C2E5AC0382E54B267D043402006F0321D2E5AC0D00296C468D04340AC6573811D2E5AC00FF7EDCB69D043401000B3E01D2E5AC078E1BBC56AD04340CBE289A91F2E5AC068CAA1F46ED04340642D6918202E5AC0C890681170D04340B408BB77202E5AC088095D3B71D04340E8E0D6C6202E5AC040A16A7072D0434004A43805212E5AC0F8A689AE73D04340FC806E32212E5AC0302B83F374D0434018742F4E212E5AC0A7AF263D76D043403895D656212E5AC0F025235A77D04340B8B00F94162E5AC0B8B8BBAB77D04340A42735AC102E5AC0008C7CD877D0434050E74E39112E5AC0876F2A575AD0434074203B3A112E5AC0CFFB2A265AD0434068E863C7112E5AC0189A3FA13CD04340F07F55C8112E5AC0E8AADB6E3CD04340BC0B69271F2E5AC05068370C3CD0434050A198F40B2E5AC0B8B01E993CD04340A862A054032E5AC0F0BFC2DA3CD043405C11592A032E5AC0A857FB8F5AD043401BBF9524032E5AC0E0E1469C5ED04340F0FF05DDF92D5AC0482D4DE45ED04340509DA3C8F92D5AC0F00EDDE45ED04340609384C3F92D5AC0E852657D62D04340901A02C9F92D5AC010D1407D62D0434030B5761F032E5AC008EA6B3562D04340A0C85FFC022E5AC090BA633F78D04340D797E293162E5AC018D8FDAC77D0434007B2A65E292E5AC0B0DF8B1D77D04340'::geometry(geometry, 4326), -73.9366690032303 - -104.729102126902, 40.7045120351809 - 39.620441302097); END; $$ LANGUAGE plpgsql; --Used to expand a column based response to a table based one. Give it the desired --columns and it will return a partial query for rolling them out to a table. CREATE OR REPLACE FUNCTION cdb_observatory._OBS_BuildSnapshotQuery(names text[]) RETURNS TEXT AS $$ DECLARE q text; i numeric; BEGIN q := 'SELECT '; FOR i IN 1..array_upper(names,1) LOOP q = q || format(' vals[%s] As %I', i, names[i]); IF i < array_upper(names, 1) THEN q= q || ','; END IF; END LOOP; RETURN q; END; $$ LANGUAGE plpgsql; -- Function that replaces all non digits or letters with _ trims and lowercases the -- passed measure name CREATE OR REPLACE FUNCTION cdb_observatory._OBS_StandardizeMeasureName(measure_name text) RETURNS text AS $$ DECLARE result text; BEGIN -- Turn non letter or digits to _ result = regexp_replace(measure_name, '[^\dA-Za-z]+','_', 'g'); -- Remove duplicate _'s result = regexp_replace(result,'_{2,}','_', 'g'); -- Trim _'s from beginning and end result = trim(both '_' from result); result = lower(result); RETURN result; END; $$ LANGUAGE plpgsql; -- Function that returns the currently deployed obs_dump_version from the -- remote table of the same name. CREATE OR REPLACE FUNCTION cdb_observatory.OBS_DumpVersion( ) RETURNS TEXT AS $$ DECLARE result text; BEGIN EXECUTE ' SELECT MAX(dump_id) FROM observatory.obs_dump_version ' INTO result; RETURN result; END; $$ LANGUAGE plpgsql; -- Function we can call to raise an exception in the midst of a SQL statement CREATE OR REPLACE FUNCTION cdb_observatory._OBS_RaiseNotice( message TEXT ) RETURNS TEXT AS $$ BEGIN RAISE NOTICE '%', message; RETURN NULL; END; $$ LANGUAGE plpgsql; -- Create a function that always returns the first non-NULL item CREATE OR REPLACE FUNCTION cdb_observatory.first_agg ( anyelement, anyelement ) RETURNS anyelement LANGUAGE SQL IMMUTABLE STRICT AS $$ SELECT $1; $$; DROP AGGREGATE IF EXISTS cdb_observatory.FIRST (anyelement); -- And then wrap an aggregate around it CREATE AGGREGATE cdb_observatory.FIRST ( sfunc = cdb_observatory.first_agg, basetype = anyelement, stype = anyelement ); CREATE OR REPLACE FUNCTION cdb_observatory.isnumeric ( typename varchar ) RETURNS BOOLEAN LANGUAGE SQL IMMUTABLE STRICT AS $$ SELECT LOWER(typename) IN ( 'smallint', 'integer', 'bigint', 'decimal', 'numeric', 'real', 'double precision' ) $$; -- Attempt to perform intersection, if there's an exception then buffer -- https://gis.stackexchange.com/questions/50399/how-best-to-fix-a-non-noded-intersection-problem-in-postgis CREATE OR REPLACE FUNCTION cdb_observatory.safe_intersection( geom_a Geometry(Geometry, 4326), geom_b Geometry(Geometry, 4326) ) RETURNS Geometry(Geometry, 4326) AS $$ BEGIN RETURN ST_MakeValid(ST_Intersection(geom_a, geom_b)); EXCEPTION WHEN OTHERS THEN BEGIN RETURN ST_MakeValid(ST_Intersection(ST_Buffer(geom_a, 0.0000001), ST_Buffer(geom_b, 0.0000001))); EXCEPTION WHEN OTHERS THEN RETURN NULL; END; END $$ LANGUAGE 'plpgsql' STABLE STRICT; --Functions for augmenting specific tables -------------------------------------------------------------------------------- -- Creates a table of demographic snapshot CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetDemographicSnapshot(geom geometry(Geometry, 4326), timespan text DEFAULT NULL, boundary_id text DEFAULT NULL ) RETURNS SETOF JSON AS $$ DECLARE meta JSON; BEGIN boundary_id = COALESCE(boundary_id, 'us.census.tiger.census_tract'); EXECUTE $query$ SELECT cdb_observatory.OBS_GetMeta($1, ('[ ' || '{"numer_id": "us.census.acs.B01003001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B01001002", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B01001026", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B01002001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B03002003", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B03002004", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B03002006", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B03002012", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B03002005", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B03002008", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B03002009", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B03002002", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B11001001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B15003001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B15003017", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B15003019", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B15003020", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B15003021", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B15003022", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B15003023", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19013001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19083001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19301001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B25001001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B25002003", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B25004002", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B25004004", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B25058001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B25071001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B25075001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B25075025", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B25081002", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08134001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08134002", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08134003", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08134004", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08134005", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08134006", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08134007", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08134008", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08134009", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08134010", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B08135001", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001002", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001003", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001004", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001005", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001006", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001007", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001008", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001009", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001010", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001011", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001012", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001013", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001014", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001015", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001016", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '},' || '{"numer_id": "us.census.acs.B19001017", "numer_timespan": ' || $2 || ', "geom_id": ' || $3 || '}' || ']')::JSON) $query$ INTO meta USING geom, COALESCE('"' || timespan || '"', 'null'), COALESCE('"' || boundary_id || '"', 'null'); RETURN QUERY EXECUTE $query$ WITH vals AS (SELECT JSON_Array_Elements(data)->'value' val, JSON_Array_Elements($2) meta FROM cdb_observatory.OBS_GetData( ARRAY[($1, 1)::geomval], $2)) SELECT JSON_Build_Object( 'value', val, 'id', meta->'numer_id', 'name', meta->'numer_name', 'type', meta->'numer_type', 'description', meta->'numer_description' ) FROM vals $query$ USING geom, meta RETURN; END; $$ LANGUAGE plpgsql STABLE; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetMeta( geom geometry(Geometry, 4326), params JSON, max_timespan_rank INTEGER DEFAULT NULL, -- cutoff for timespan ranks when there's ambiguity max_score_rank INTEGER DEFAULT NULL, -- cutoff for geom ranks when there's ambiguity target_geoms INTEGER DEFAULT NULL ) RETURNS JSON AS $$ DECLARE numer_filters TEXT[]; geom_filters TEXT[]; meta_filter_clause TEXT; scores_clause TEXT; result JSON; BEGIN IF max_timespan_rank IS NULL THEN max_timespan_rank := 1; END IF; IF max_score_rank IS NULL THEN max_score_rank := 1; END IF; numer_filters := (SELECT Array_Agg(val) FILTER (WHERE val IS NOT NULL) FROM (SELECT (JSON_Array_Elements(params))->>'numer_id' val) foo); geom_filters := (SELECT Array_Agg(val) FILTER (WHERE val IS NOT NULL) FROM (SELECT (JSON_Array_Elements(params))->>'geom_id' val) bar); meta_filter_clause := '(m.numer_id = ANY ($6) OR m.geom_id = ANY ($7))'; scores_clause := 'SELECT * FROM cdb_observatory._OBS_GetGeometryScores($1, (SELECT Array_Agg(geom_id) FROM meta), $2) scores '; IF JSON_Array_Length(params) = 1 THEN IF numer_filters IS NULL AND geom_filters IS NOT NULL THEN meta_filter_clause := 'm.geom_id = ($7)[1]'; ELSIF geom_filters IS NULL AND numer_filters IS NOT NULL THEN meta_filter_clause := 'm.numer_id = ($6)[1]'; ELSIF numer_filters IS NOT NULL AND geom_filters IS NOT NULL THEN meta_filter_clause := 'm.numer_id = ($6)[1] AND m.geom_id = ($7)[1]'; ELSE RAISE EXCEPTION 'Must pass either numer_id or geom_id to every key in GetMeta'; END IF; IF geom_filters IS NOT NULL AND numer_filters IS NOT NULL THEN scores_clause := 'SELECT 1 score, null, geom_tid table_id, geom_id column_id, null, null, null, null, null, null FROM meta '; END IF; END IF; EXECUTE format($string$ WITH _filters AS (SELECT generate_series(1, array_length($3, 1)) id, (unnest($3))->>'numer_id' numer_id, (unnest($3))->>'denom_id' denom_id, (unnest($3))->>'geom_id' geom_id, (unnest($3))->>'numer_timespan' numer_timespan, (unnest($3))->>'geom_timespan' geom_timespan, (unnest($3))->>'normalization' normalization ), meta AS (SELECT id, f.numer_id, CASE WHEN f.numer_id IS NULL THEN NULL ELSE numer_aggregate END numer_aggregate, CASE WHEN f.numer_id IS NULL THEN NULL ELSE numer_colname END numer_colname, CASE WHEN f.numer_id IS NULL THEN NULL ELSE numer_geomref_colname END numer_geomref_colname, CASE WHEN f.numer_id IS NULL THEN NULL ELSE numer_tablename END numer_tablename, CASE WHEN f.numer_id IS NULL THEN NULL ELSE numer_type END numer_type, CASE WHEN f.numer_id IS NULL THEN NULL ELSE numer_name END numer_name, CASE WHEN f.numer_id IS NULL THEN NULL ELSE m.numer_timespan END numer_timespan, CASE WHEN f.numer_id IS NULL THEN NULL ELSE m.denom_id END denom_id, CASE WHEN f.numer_id IS NULL THEN NULL ELSE denom_aggregate END denom_aggregate, CASE WHEN f.numer_id IS NULL THEN NULL ELSE denom_colname END denom_colname, CASE WHEN f.numer_id IS NULL THEN NULL ELSE denom_geomref_colname END denom_geomref_colname, CASE WHEN f.numer_id IS NULL THEN NULL ELSE denom_tablename END denom_tablename, CASE WHEN f.numer_id IS NULL THEN NULL ELSE denom_name END denom_name, CASE WHEN f.numer_id IS NULL THEN NULL ELSE denom_type END denom_type, CASE WHEN f.numer_id IS NULL THEN NULL ELSE denom_reltype END denom_reltype, m.geom_id, m.geom_timespan, geom_colname, geom_tid, geom_geomref_colname, geom_tablename, geom_name, geom_type, normalization FROM observatory.obs_meta m JOIN _filters f ON CASE WHEN f.numer_id IS NULL THEN m.geom_id ELSE m.numer_id END = CASE WHEN f.numer_id IS NULL THEN f.geom_id ELSE f.numer_id END WHERE %s AND (m.numer_id = f.numer_id OR COALESCE(f.numer_id, '') = '') AND (m.denom_id = f.denom_id OR COALESCE(f.denom_id, '') = '') AND (m.geom_id = f.geom_id OR COALESCE(f.geom_id, '') = '') AND (m.geom_timespan = f.geom_timespan OR COALESCE(f.geom_timespan, '') = '') AND (m.numer_timespan = f.numer_timespan OR COALESCE(f.numer_timespan, '') = '') ), scores AS ( %s ), groups AS (SELECT id, scores.score, numer_timespan, dense_rank() OVER (PARTITION BY id ORDER BY numer_timespan DESC) timespan_rank, dense_rank() OVER (PARTITION BY id ORDER BY score DESC) score_rank, json_build_object( 'id', id, 'numer_id', numer_id, 'timespan_rank', dense_rank() OVER (PARTITION BY id ORDER BY numer_timespan DESC), 'score_rank', dense_rank() OVER (PARTITION BY id ORDER BY score DESC), 'score', scores.score, 'numer_aggregate', cdb_observatory.FIRST(meta.numer_aggregate), 'numer_colname', cdb_observatory.FIRST(meta.numer_colname), 'numer_geomref_colname', cdb_observatory.FIRST(meta.numer_geomref_colname), 'numer_tablename', cdb_observatory.FIRST(meta.numer_tablename), 'numer_type', cdb_observatory.FIRST(meta.numer_type), --'numer_description', cdb_observatory.FIRST(meta.numer_description), --'numer_t_description', cdb_observatory.FIRST(meta.numer_t_description), 'denom_aggregate', cdb_observatory.FIRST(meta.denom_aggregate), 'denom_colname', cdb_observatory.FIRST(denom_colname), 'denom_geomref_colname', cdb_observatory.FIRST(denom_geomref_colname), 'denom_tablename', cdb_observatory.FIRST(denom_tablename), 'denom_type', cdb_observatory.FIRST(meta.denom_type), 'denom_reltype', cdb_observatory.FIRST(meta.denom_reltype), --'denom_description', cdb_observatory.FIRST(meta.denom_description), --'denom_t_description', cdb_observatory.FIRST(meta.denom_t_description), 'geom_colname', cdb_observatory.FIRST(geom_colname), 'geom_geomref_colname', cdb_observatory.FIRST(geom_geomref_colname), 'geom_tablename', cdb_observatory.FIRST(geom_tablename), 'geom_type', cdb_observatory.FIRST(meta.geom_type), 'geom_timespan', cdb_observatory.FIRST(meta.geom_timespan), --'geom_description', cdb_observatory.FIRST(meta.geom_description), --'geom_t_description', cdb_observatory.FIRST(meta.geom_t_description), 'numer_timespan', cdb_observatory.FIRST(numer_timespan), 'numer_name', cdb_observatory.FIRST(numer_name), 'denom_name', cdb_observatory.FIRST(denom_name), 'geom_name', cdb_observatory.FIRST(geom_name), 'normalization', cdb_observatory.FIRST(normalization), 'denom_id', denom_id, 'geom_id', meta.geom_id ) metadata FROM meta, scores WHERE meta.geom_id = scores.column_id AND meta.geom_tid = scores.table_id GROUP BY id, score, numer_id, denom_id, geom_id, numer_timespan ) SELECT JSON_AGG(metadata ORDER BY id) FROM groups WHERE timespan_rank <= $4 AND score_rank <= $5 $string$, meta_filter_clause, scores_clause) INTO result USING CASE WHEN ST_GeometryType(geom) = 'ST_Point' THEN ST_Buffer(geom::geography, 200)::geometry(geometry, 4326) ELSE geom END, target_geoms, (SELECT ARRAY(SELECT json_array_elements_text(params))::json[]), max_timespan_rank, max_score_rank, numer_filters, geom_filters ; RETURN result; END; $$ LANGUAGE plpgsql STABLE; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetMeasure( geom geometry(Geometry, 4326), measure_id TEXT, normalize TEXT DEFAULT NULL, boundary_id TEXT DEFAULT NULL, time_span TEXT DEFAULT NULL, simplification NUMERIC DEFAULT 0.00001 ) RETURNS NUMERIC AS $$ DECLARE geom_type TEXT; params JSON; map_type TEXT; result Numeric; numer_aggregate TEXT; BEGIN IF geom IS NULL THEN RETURN NULL; END IF; IF simplification IS NOT NULL THEN geom := ST_Simplify(geom, simplification); END IF; IF ST_GeometryType(geom) = 'ST_Point' THEN geom_type := 'point'; ELSIF ST_GeometryType(geom) IN ('ST_Polygon', 'ST_MultiPolygon') THEN geom_type := 'polygon'; geom := ST_CollectionExtract(ST_MakeValid(geom), 3); ELSE RAISE EXCEPTION 'Invalid geometry type (%), can only handle ''ST_Point'', ''ST_Polygon'', and ''ST_MultiPolygon''', ST_GeometryType(geom); END IF; params := (SELECT cdb_observatory.OBS_GetMeta( geom, JSON_Build_Array(JSON_Build_Object('numer_id', measure_id, 'geom_id', boundary_id, 'numer_timespan', time_span )), 1, 1, 500)); numer_aggregate := params->0->>'numer_aggregate'; IF normalize ILIKE 'area%' AND numer_aggregate ILIKE 'sum' THEN map_type := 'areaNormalized'; ELSIF normalize ILIKE 'denom%' THEN map_type := 'denominated'; ELSIF normalize ILIKE 'pre%' THEN map_type := 'predenominated'; ELSE -- defaults: area normalization for point if it's possible and none for -- polygon or non-summable point IF geom_type = 'point' AND numer_aggregate ILIKE 'sum' THEN map_type := 'areaNormalized'; ELSE map_type := 'predenominated'; END IF; END IF; params := JSON_Build_Array(JSONB_Set((params::JSONB)->0, '{normalization}', to_jsonb(map_type))::JSON); IF params->0->>'geom_id' IS NULL THEN RAISE NOTICE 'No boundary found for geom'; RETURN NULL; ELSE RAISE NOTICE 'Using boundary %', params->0->>'geom_id'; END IF; EXECUTE $query$ SELECT (data->0->>'value')::Numeric FROM cdb_observatory.OBS_GetData(ARRAY[($1, 1)::geomval], $2) $query$ INTO result USING geom, params; RETURN result; END; $$ LANGUAGE plpgsql STABLE; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetMeasureById( geom_ref TEXT, measure_id TEXT, boundary_id TEXT, time_span TEXT DEFAULT NULL ) RETURNS NUMERIC AS $$ DECLARE result NUMERIC; BEGIN IF geom_ref IS NULL THEN RETURN NULL; ELSIF boundary_id IS NULL THEN RETURN NULL; END IF; EXECUTE $query$ SELECT data->0->>'value' FROM cdb_observatory.OBS_GetData(Array[$1], cdb_observatory.OBS_GetMeta(ST_MakeEnvelope(-180, -90, 180, 90, 4326), JSON_Build_Array(JSON_Build_Object( 'numer_id', $2, 'geom_id', $3, 'numer_timespan', $4, 'normalization', 'predenominated' )))) $query$ INTO result USING geom_ref, measure_id, boundary_id, time_span; RETURN result; END; $$ LANGUAGE plpgsql STABLE; -- GetData that obtains data from array of geomrefs CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetData( geomrefs text[], params JSON ) RETURNS TABLE ( id TEXT, data JSON ) AS $$ DECLARE colspecs TEXT; tables TEXT; obs_wheres TEXT; user_wheres TEXT; q text; BEGIN IF params IS NULL OR JSON_ARRAY_LENGTH(params) = 0 THEN RETURN QUERY EXECUTE $query$ SELECT NULL::TEXT, NULL::JSON LIMIT 0 $query$; RETURN; END IF; EXECUTE $query$ WITH _meta AS (SELECT generate_series(1, array_length($1, 1)) colid, (unnest($1))->>'id' id, (unnest($1))->>'numer_id' numer_id, (unnest($1))->>'numer_aggregate' numer_aggregate, (unnest($1))->>'numer_colname' numer_colname, (unnest($1))->>'numer_geomref_colname' numer_geomref_colname, (unnest($1))->>'numer_tablename' numer_tablename, (unnest($1))->>'numer_type' numer_type, (unnest($1))->>'denom_id' denom_id, (unnest($1))->>'denom_aggregate' denom_aggregate, (unnest($1))->>'denom_colname' denom_colname, (unnest($1))->>'denom_geomref_colname' denom_geomref_colname, (unnest($1))->>'denom_tablename' denom_tablename, (unnest($1))->>'denom_type' denom_type, (unnest($1))->>'denom_reltype' denom_reltype, (unnest($1))->>'geom_id' geom_id, (unnest($1))->>'geom_colname' geom_colname, (unnest($1))->>'geom_geomref_colname' geom_geomref_colname, (unnest($1))->>'geom_tablename' geom_tablename, (unnest($1))->>'geom_type' geom_type, (unnest($1))->>'geom_timespan' geom_timespan, (unnest($1))->>'numer_timespan' numer_timespan, (unnest($1))->>'normalization' normalization, (unnest($1))->>'api_method' api_method, (unnest($1))->'api_args' api_args ) SELECT String_Agg( -- numeric 'JSON_Build_Object(' || CASE WHEN api_method IS NOT NULL THEN '''value'', ' || 'ARRAY_AGG( ' || api_method || '.' || numer_colname || ')::' || numer_type || '[]' -- numeric internal values WHEN cdb_observatory.isnumeric(numer_type) THEN '''value'', ' || CASE -- denominated WHEN LOWER(normalization) LIKE 'denom%' OR (normalization IS NULL AND denom_id IS NOT NULL) THEN 'cdb_observatory.FIRST(' || numer_tablename || '.' || numer_colname || ' / NullIf(' || denom_tablename || '.' || denom_colname || ', 0))' -- areaNormalized WHEN LOWER(normalization) LIKE 'area%' OR (normalization IS NULL AND numer_aggregate ILIKE 'sum') THEN 'cdb_observatory.FIRST(' || numer_tablename || '.' || numer_colname || ' / (ST_Area(' || geom_tablename || '.' || geom_colname || '::Geography)/1000000))' -- prenormalized ELSE 'cdb_observatory.FIRST(' || numer_tablename || '.' || numer_colname || ')' END || ':: ' || numer_type -- categorical/text WHEN LOWER(numer_type) LIKE 'text' THEN '''value'', ' || 'cdb_observatory.FIRST(' || numer_tablename || '.' || numer_colname || ') ' -- geometry WHEN numer_id IS NULL THEN '''geomref'', ' || 'cdb_observatory.FIRST(' || geom_tablename || '.' || geom_geomref_colname || '), ' || '''value'', ' || 'cdb_observatory.FIRST(' || geom_tablename || '.' || geom_colname || ')' ELSE '' END || ')', ', ') AS colspecs, (SELECT String_Agg(DISTINCT CASE -- External API WHEN tablename LIKE 'cdb_observatory.%' THEN 'LATERAL (SELECT * FROM ' || tablename || ') ' || REPLACE(split_part(tablename, '(', 1), 'cdb_observatory.', '') -- Internal obs_ table ELSE 'observatory.' || tablename END, ', ') FROM ( SELECT DISTINCT UNNEST(tablenames_ary) tablename FROM ( SELECT ARRAY_AGG(numer_tablename) || ARRAY_AGG(denom_tablename) || ARRAY_AGG(geom_tablename) || ARRAY_AGG('cdb_observatory.' || api_method || '(_geomrefs.id' || COALESCE(', ' || (SELECT STRING_AGG(REPLACE(val::text, '"', ''''), ', ') FROM (SELECT json_array_elements(api_args) as val) as vals), '') || ')') tablenames_ary ) tablenames_inner ) tablenames_outer) tablenames, String_Agg(DISTINCT array_to_string(ARRAY[ CASE WHEN numer_tablename != geom_tablename THEN numer_tablename || '.' || numer_geomref_colname || ' = ' || geom_tablename || '.' || geom_geomref_colname ELSE NULL END, CASE WHEN numer_tablename != denom_tablename THEN numer_tablename || '.' || numer_geomref_colname || ' = ' || denom_tablename || '.' || denom_geomref_colname ELSE NULL END ], ' AND '), ' AND ') AS obs_wheres, String_Agg(geom_tablename || '.' || geom_geomref_colname || ' = ' || '_geomrefs.id', ' AND ') AS user_wheres FROM _meta ; $query$ INTO colspecs, tables, obs_wheres, user_wheres USING (SELECT ARRAY(SELECT json_array_elements_text(params))::json[]); RETURN QUERY EXECUTE format($query$ WITH _geomrefs AS (SELECT UNNEST($1) as id) SELECT _geomrefs.id, Array_to_JSON(ARRAY[%s]::JSON[]) FROM _geomrefs, %s %s GROUP BY _geomrefs.id ORDER BY _geomrefs.id $query$, colspecs, tables, 'WHERE ' || NULLIF(ARRAY_TO_STRING(ARRAY[ Nullif(obs_wheres, ''), Nullif(user_wheres, '') ], ' AND '), '') ) USING geomrefs; RETURN; END; $$ LANGUAGE plpgsql STABLE; -- GetData that obtains data from array of (geom, id) geomvals. CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetData( geomvals geomval[], params JSON, merge BOOLEAN DEFAULT True ) RETURNS TABLE ( id INT, data JSON ) AS $$ DECLARE geom_colspecs TEXT; geom_tables TEXT; geomrefs_alias TEXT; geomrefs_noalias TEXT; data_colspecs TEXT; data_tables TEXT; obs_wheres TEXT; user_wheres TEXT; geomtype TEXT; BEGIN IF params IS NULL OR JSON_ARRAY_LENGTH(params) = 0 OR ARRAY_LENGTH(geomvals, 1) IS NULL THEN RETURN QUERY EXECUTE $query$ SELECT NULL::INT, NULL::JSON LIMIT 0 $query$; RETURN; END IF; geomtype := ST_GeometryType(geomvals[1].geom); EXECUTE $query$ WITH _meta AS (SELECT row_number() over () colid, meta->>'id' id, meta->>'numer_id' numer_id, meta->>'numer_aggregate' numer_aggregate, meta->>'numer_colname' numer_colname, meta->>'numer_geomref_colname' numer_geomref_colname, meta->>'numer_tablename' numer_tablename, meta->>'numer_type' numer_type, meta->>'denom_id' denom_id, meta->>'denom_aggregate' denom_aggregate, meta->>'denom_colname' denom_colname, meta->>'denom_geomref_colname' denom_geomref_colname, meta->>'denom_tablename' denom_tablename, meta->>'denom_type' denom_type, meta->>'denom_reltype' denom_reltype, meta->>'geom_id' geom_id, meta->>'geom_colname' geom_colname, meta->>'geom_geomref_colname' geom_geomref_colname, meta->>'geom_tablename' geom_tablename, meta->>'geom_type' geom_type, meta->>'numer_timespan' numer_timespan, meta->>'geom_timespan' geom_timespan, meta->>'normalization' normalization, meta->>'api_method' api_method, meta->'api_args' api_args FROM UNNEST($1) AS meta ) SELECT String_Agg(DISTINCT CASE -- pass-through geom if user is requesting it only WHEN numer_id IS NULL AND api_method IS NULL THEN geom_tablename || '.' || geom_colname || ' AS geom_' || geom_tablename WHEN cdb_observatory.isnumeric(numer_type) AND api_method IS NULL THEN -- for numeric points with area normalization, include areas of underlying geoms CASE WHEN $2 = 'ST_Point' AND (LOWER(normalization) LIKE 'area%' OR (normalization IS NULL AND numer_aggregate ILIKE 'sum')) THEN ' Nullif(ST_Area(' || geom_tablename || '.' || geom_colname || '::Geography), 0)/1000000 ' || ' AS area_' || geom_tablename -- for numeric areas, include more complex calcs WHEN $2 != 'ST_Point' THEN 'CASE WHEN ST_Within(_geoms.geom, ' || geom_tablename || '.' || geom_colname || ') ' || ' THEN ST_Area(_geoms.geom) / Nullif(ST_Area(' || geom_tablename || '.' || geom_colname || '), 0)' || ' WHEN ST_Within(' || geom_tablename || '.' || geom_colname || ', _geoms.geom) ' || ' THEN 1 ' || ' ELSE ST_Area(cdb_observatory.safe_intersection(_geoms.geom, ' || geom_tablename || '.' || geom_colname || ')) / ' || 'Nullif(ST_Area(' || geom_tablename || '.' || geom_colname || '), 0) ' || 'END pct_' || geom_tablename ELSE NULL END ELSE NULL END , ', ') AS geom_colspecs, String_Agg(DISTINCT 'observatory.' || geom_tablename, ', ') AS geom_tables, String_Agg( 'JSON_Build_Object(' || CASE -- api-delivered values WHEN api_method IS NOT NULL THEN '''value'', ' || 'ARRAY_AGG( ' || api_method || '.' || numer_colname || ')::' || numer_type || '[]' -- numeric internal values WHEN cdb_observatory.isnumeric(numer_type) THEN '''value'', ' || CASE -- denominated WHEN LOWER(normalization) LIKE 'denom%' OR (normalization IS NULL AND LOWER(denom_reltype) LIKE 'denominator') THEN CASE -- denominated point-in-poly WHEN $2 = 'ST_Point' THEN ' cdb_observatory.FIRST(' || numer_tablename || '.' || numer_colname || ' / NullIf(' || denom_tablename || '.' || denom_colname || ', 0))' -- denominated polygon interpolation -- SUM (numer * (% OBS geom in user geom)) / SUM (denom * (% OBS geom in user geom)) ELSE ' SUM(' || numer_tablename || '.' || numer_colname || ' ' || ' * pct_' || geom_tablename || ' ) / NULLIF(SUM(' || denom_tablename || '.' || denom_colname || ' ' || ' * pct_' || geom_tablename || '), 0) ' || ' / (COUNT(*) / COUNT(distinct geomref_' || geom_tablename || ')) ' END -- areaNormalized WHEN LOWER(normalization) LIKE 'area%' OR (normalization IS NULL AND numer_aggregate ILIKE 'sum') THEN CASE -- areaNormalized point-in-poly WHEN $2 = 'ST_Point' THEN ' cdb_observatory.FIRST(' || numer_tablename || '.' || numer_colname || ' / area_' || geom_tablename || ')' -- areaNormalized polygon interpolation -- SUM (numer * (% OBS geom in user geom)) / area of big geom ELSE --' NULL END ' ' SUM(' || numer_tablename || '.' || numer_colname || ' ' || ' * pct_' || geom_tablename || ' ) / (Nullif(ST_Area(cdb_observatory.FIRST(_procgeoms.geom)::Geography), 0) / 1000000) ' || ' / (COUNT(*) / COUNT(distinct geomref_' || geom_tablename || ')) ' END -- median/average measures with universe WHEN LOWER(numer_aggregate) IN ('median', 'average') AND denom_reltype ILIKE 'universe' AND (normalization IS NULL OR LOWER(normalization) LIKE 'pre%') THEN CASE -- predenominated point-in-poly WHEN $2 = 'ST_Point' THEN ' cdb_observatory.FIRST(' || numer_tablename || '.' || numer_colname || ') ' ELSE -- predenominated polygon interpolation weighted by universe -- SUM (numer * denom * (% user geom in OBS geom)) / SUM (denom * (% user geom in OBS geom)) -- (10 * 1000 * 1) / (1000 * 1) = 10 -- (10 * 1000 * 1 + 50 * 10 * 1) / (1000 + 10) = 10500 / 10000 = 10.5 ' SUM(' || numer_tablename || '.' || numer_colname || ' * ' || denom_tablename || '.' || denom_colname || ' * pct_' || geom_tablename || ' ) / Nullif(SUM(' || denom_tablename || '.' || denom_colname || ' * pct_' || geom_tablename || '), 0) ' || ' / (COUNT(*) / COUNT(distinct geomref_' || geom_tablename || ')) ' END -- prenormalized for summable measures. point or summable only! WHEN numer_aggregate ILIKE 'sum' AND (normalization IS NULL OR LOWER(normalization) LIKE 'pre%') THEN CASE -- predenominated point-in-poly WHEN $2 = 'ST_Point' THEN ' cdb_observatory.FIRST(' || numer_tablename || '.' || numer_colname || ') ' ELSE -- predenominated polygon interpolation -- SUM (numer * (% user geom in OBS geom)) ' SUM(' || numer_tablename || '.' || numer_colname || ' ' || ' * pct_' || geom_tablename || ' ) / (COUNT(*) / COUNT(distinct geomref_' || geom_tablename || ')) ' END -- Everything else. Point only! ELSE CASE WHEN $2 = 'ST_Point' THEN ' cdb_observatory.FIRST(' || numer_tablename || '.' || numer_colname || ') ' ELSE ' cdb_observatory._OBS_RaiseNotice(''Cannot perform calculation over polygon for ' || numer_id || '/' || coalesce(denom_id, '') || '/' || geom_id || '/' || numer_timespan || ''')::Numeric ' END END || '::' || numer_type -- categorical/text WHEN LOWER(numer_type) LIKE 'text' THEN '''value'', ' || 'MODE() WITHIN GROUP (ORDER BY ' || numer_tablename || '.' || numer_colname || ') ' -- geometry WHEN numer_id IS NULL THEN '''geomref'', geomref_' || geom_tablename || ', ' || '''value'', ' || 'cdb_observatory.FIRST(geom_' || geom_tablename || ')::TEXT' -- code below will return the intersection of the user's geom and the -- OBS geom --'''value'', ' || 'ST_Union(cdb_observatory.safe_intersection(_geoms.geom, ' || geom_tablename || -- '.' || geom_colname || '))::TEXT' ELSE '' END || ')', ', ') AS colspecs, -- geomrefs, used to separate out rows in case we don't want to merge -- results by user input IDs -- -- api_method and geom_tablename are interchangeable since when an -- api_method is passed, geom_tablename is ignored String_Agg(DISTINCT COALESCE(geom_tablename, api_method) || '.' || geom_geomref_colname || ' AS geomref_' || COALESCE(geom_tablename, api_method), ', ') AS geomrefs_alias, String_Agg(DISTINCT 'geomref_' || COALESCE(geom_tablename, api_method) , ', ') AS geomrefs_noalias, (SELECT String_Agg(DISTINCT CASE -- External API WHEN tablename LIKE 'cdb_observatory.%' THEN 'LATERAL (SELECT * FROM ' || tablename || ') ' || REPLACE(split_part(tablename, '(', 1), 'cdb_observatory.', '') -- Internal obs_ table ELSE 'observatory.' || tablename END, ', ') FROM ( SELECT DISTINCT UNNEST(tablenames_ary) tablename FROM ( SELECT ARRAY_AGG(numer_tablename) || ARRAY_AGG(denom_tablename) || ARRAY_AGG('cdb_observatory.' || api_method || '(_procgeoms.geom' || COALESCE(', ' || (SELECT STRING_AGG(REPLACE(val::text, '"', ''''), ', ') FROM (SELECT json_array_elements(api_args) as val) as vals), '') || ')') tablenames_ary ) tablenames_inner ) tablenames_outer) data_tables, String_Agg(DISTINCT array_to_string(ARRAY[ CASE WHEN numer_tablename IS NOT NULL AND geom_tablename IS NOT NULL THEN numer_tablename || '.' || numer_geomref_colname || ' = ' || '_procgeoms.geomref_' || geom_tablename ELSE NULL END, CASE WHEN numer_tablename != denom_tablename THEN numer_tablename || '.' || numer_geomref_colname || ' = ' || denom_tablename || '.' || denom_geomref_colname ELSE NULL END ], ' AND '), ' AND ') FILTER (WHERE numer_tablename != denom_tablename OR (numer_tablename IS NOT NULL AND geom_tablename IS NOT NULL)) AS obs_wheres, String_Agg(DISTINCT 'ST_Intersects(' || geom_tablename || '.' || geom_colname || ', _geoms.geom)', ' AND ') AS user_wheres FROM _meta ; $query$ INTO geom_colspecs, geom_tables, data_colspecs, geomrefs_alias, geomrefs_noalias, data_tables, obs_wheres, user_wheres USING (SELECT ARRAY(SELECT json_array_elements_text(params))::json[]), geomtype; RAISE NOTICE '%', format($query$ WITH _raw_geoms AS (SELECT %L::integer as id, %L::geometry AS geom), _geoms AS (SELECT id, CASE WHEN (ST_NPoints(geom) > 500) THEN ST_CollectionExtract(ST_MakeValid(ST_SimplifyVW(geom, 0.0001)), 3) ELSE geom END geom FROM _raw_geoms), _procgeoms AS (SELECT _geoms.id, _geoms.geom %s %s FROM _geoms %s %s ) SELECT _procgeoms.id::INT, Array_to_JSON(ARRAY[%s]::JSON[]) FROM _procgeoms %s %s GROUP BY _procgeoms.id %s ORDER BY _procgeoms.id $query$, geomvals[1].val, geomvals[1].geom, ', ' || NullIf(geomrefs_alias, ''), ', ' || NullIf(geom_colspecs, ''), ', ' || NullIf(geom_tables, ''), 'WHERE ' || NullIf( user_wheres, ''), data_colspecs, ', ' || NullIf(data_tables, ''), 'WHERE ' || NULLIF(obs_wheres, ''), CASE WHEN merge IS False THEN ', ' || geomrefs_noalias ELSE '' END); RETURN QUERY EXECUTE format($query$ WITH _raw_geoms AS (%s), _geoms AS (SELECT id, CASE WHEN (ST_NPoints(geom) > 500) THEN ST_CollectionExtract(ST_MakeValid(ST_SimplifyVW(geom, 0.0001)), 3) ELSE geom END geom FROM _raw_geoms), _procgeoms AS (SELECT _geoms.id, _geoms.geom %s %s FROM _geoms %s %s ) SELECT _procgeoms.id::INT, Array_to_JSON(ARRAY[%s]::JSON[]) FROM _procgeoms %s %s GROUP BY _procgeoms.id %s ORDER BY _procgeoms.id $query$, CASE WHEN ARRAY_LENGTH(geomvals, 1) = 1 THEN ' SELECT $1[1].val as id, $1[1].geom as geom ' ELSE ' SELECT val as id, geom FROM UNNEST($1) ' END, ', ' || NullIf(geomrefs_alias, ''), ', ' || NullIf(geom_colspecs, ''), ', ' || NullIf(geom_tables, ''), 'WHERE ' || NullIf( user_wheres, ''), data_colspecs, ', ' || NullIf(data_tables, ''), 'WHERE ' || NULLIF(obs_wheres, ''), CASE WHEN merge IS False THEN ', ' || geomrefs_noalias ELSE '' END) USING geomvals; RETURN; END; $$ LANGUAGE plpgsql STABLE; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetCategory( geom geometry(Geometry, 4326), category_id TEXT, boundary_id TEXT DEFAULT NULL, time_span TEXT DEFAULT NULL, simplification NUMERIC DEFAULT 0.00001 ) RETURNS TEXT AS $$ DECLARE geom_type TEXT; params JSON; map_type TEXT; result TEXT; BEGIN IF geom IS NULL THEN RETURN NULL; END IF; IF simplification IS NOT NULL THEN geom := ST_Simplify(geom, simplification); END IF; IF ST_GeometryType(geom) = 'ST_Point' THEN geom_type := 'point'; ELSIF ST_GeometryType(geom) IN ('ST_Polygon', 'ST_MultiPolygon') THEN geom_type := 'polygon'; geom := ST_CollectionExtract(ST_MakeValid(geom), 3); ELSE RAISE EXCEPTION 'Invalid geometry type (%), can only handle ''ST_Point'', ''ST_Polygon'', and ''ST_MultiPolygon''', ST_GeometryType(geom); END IF; params := (SELECT cdb_observatory.OBS_GetMeta( geom, JSON_Build_Array(JSON_Build_Object('numer_id', category_id, 'geom_id', boundary_id, 'numer_timespan', time_span )), 1, 1, 500)); IF params->0->>'geom_id' IS NULL THEN RAISE NOTICE 'No boundary found for geom'; RETURN NULL; ELSE RAISE NOTICE 'Using boundary %', params->0->>'geom_id'; END IF; EXECUTE $query$ SELECT data->0->>'value' FROM cdb_observatory.OBS_GetData(ARRAY[($1, 1)::geomval], $2) $query$ INTO result USING geom, params; RETURN result; END; $$ LANGUAGE plpgsql STABLE; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetUSCensusMeasure( geom geometry(Geometry, 4326), name TEXT, normalize TEXT DEFAULT NULL, boundary_id TEXT DEFAULT NULL, time_span TEXT DEFAULT NULL ) RETURNS NUMERIC AS $$ DECLARE standardized_name text; measure_id text; result Numeric; BEGIN standardized_name = cdb_observatory._OBS_StandardizeMeasureName(name); EXECUTE $string$ SELECT c.id FROM observatory.obs_column c JOIN observatory.obs_column_tag ct ON c.id = ct.column_id WHERE cdb_observatory._OBS_StandardizeMeasureName(c.name) = $1 AND ct.tag_id ILIKE 'us.census%' $string$ INTO measure_id USING standardized_name; EXECUTE 'SELECT cdb_observatory.OBS_GetMeasure($1, $2, $3, $4, $5)' INTO result USING geom, measure_id, normalize, boundary_id, time_span; RETURN result; END; $$ LANGUAGE plpgsql STABLE; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetUSCensusCategory( geom geometry(Geometry, 4326), name TEXT, boundary_id TEXT DEFAULT NULL, time_span TEXT DEFAULT NULL ) RETURNS TEXT AS $$ DECLARE standardized_name TEXT; category_id TEXT; result TEXT; BEGIN standardized_name = cdb_observatory._OBS_StandardizeMeasureName(name); EXECUTE $string$ SELECT c.id FROM observatory.obs_column c --JOIN observatory.obs_column_tag ct -- ON c.id = ct.column_id WHERE cdb_observatory._OBS_StandardizeMeasureName(c.name) = $1 AND c.type ILIKE 'TEXT' AND c.id ILIKE 'us.census%' -- TODO this should be done by tag --AND ct.tag_id = 'us.census.acs.demographics' $string$ INTO category_id USING standardized_name; EXECUTE 'SELECT cdb_observatory.OBS_GetCategory($1, $2, $3, $4)' INTO result USING geom, category_id, boundary_id, time_span; RETURN result; END; $$ LANGUAGE plpgsql STABLE; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetPopulation( geom geometry(Geometry, 4326), normalize TEXT DEFAULT NULL, boundary_id TEXT DEFAULT NULL, time_span TEXT DEFAULT NULL ) RETURNS NUMERIC AS $$ DECLARE population_measure_id TEXT; result Numeric; BEGIN -- TODO use a super-column for global pop population_measure_id := 'us.census.acs.B01003001'; EXECUTE $query$ SELECT cdb_observatory.OBS_GetMeasure( $1, $2, $3, $4, $5 ) LIMIT 1 $query$ INTO result USING geom, population_measure_id, normalize, boundary_id, time_span; RETURN result; END; $$ LANGUAGE plpgsql STABLE; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetSegmentSnapshot( geom geometry(Geometry, 4326), boundary_id text DEFAULT NULL ) RETURNS JSON AS $$ DECLARE meta JSON; data JSON; result JSON; BEGIN boundary_id = COALESCE(boundary_id, 'us.census.tiger.census_tract'); EXECUTE $query$ SELECT cdb_observatory.OBS_GetMeta($1, ('[ ' || '{"numer_id": "us.census.acs.B01003001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B01001002_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B01001026_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B01002001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B03002003_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B03002004_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B03002006_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B03002012_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B05001006_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B08006001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B08006002_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B08301010_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B08006009_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B08006011_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B08006015_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B08006017_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B09001001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B11001001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B14001001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B14001002_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B14001005_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B14001006_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B14001007_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B14001008_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B15003001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B15003017_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B15003022_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B15003023_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B16001001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B16001002_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B16001003_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B17001001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B17001002_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B19013001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B19083001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B19301001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B25001001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B25002003_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B25004002_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B25004004_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B25058001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B25071001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B25075001_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.acs.B25075025_quantile", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.spielman_singleton_segments.X10", "geom_id": ' || $2 || '},' || '{"numer_id": "us.census.spielman_singleton_segments.X55", "geom_id": ' || $2 || '}' || ']')::JSON) $query$ INTO meta USING geom, COALESCE('"' || boundary_id || '"', 'null'); EXECUTE $query$ SELECT data FROM cdb_observatory.OBS_GetData( ARRAY[($1, 1)::geomval], $2) $query$ INTO data USING geom, meta; EXECUTE $query$ WITH els AS (SELECT REPLACE(REPLACE(JSON_Array_Elements($1)->>'numer_id', 'us.census.spielman_singleton_segments.X55', 'x55_segment'), 'us.census.spielman_singleton_segments.X10', 'x10_segment') k, JSON_Array_Elements($2)->>'value' v) SELECT JSON_Object_Agg(k, v) FROM els $query$ INTO result USING meta, data; RETURN result; END; $$ LANGUAGE plpgsql STABLE; -- TODO: implement search for timespan CREATE OR REPLACE FUNCTION cdb_observatory._OBS_SearchTables( search_term text, time_span text DEFAULT NULL ) RETURNS table(tablename text, timespan text) As $$ DECLARE out_var text[]; BEGIN IF time_span IS NULL THEN RETURN QUERY EXECUTE 'SELECT tablename::text, timespan::text FROM observatory.obs_table t JOIN observatory.obs_column_table ct ON ct.table_id = t.id JOIN observatory.obs_column c ON ct.column_id = c.id WHERE c.type ILIKE ''geometry'' AND c.id = $1' USING search_term; RETURN; ELSE RETURN QUERY EXECUTE 'SELECT tablename::text, timespan::text FROM observatory.obs_table t JOIN observatory.obs_column_table ct ON ct.table_id = t.id JOIN observatory.obs_column c ON ct.column_id = c.id WHERE c.type ILIKE ''geometry'' AND c.id = $1 AND t.timespan = $2' USING search_term, time_span; RETURN; END IF; END; $$ LANGUAGE plpgsql IMMUTABLE; -- Functions used to search the observatory for measures -------------------------------------------------------------------------------- -- TODO allow the user to specify the boundary to search for measures -- CREATE OR REPLACE FUNCTION cdb_observatory.OBS_Search( search_term text, relevant_boundary text DEFAULT null ) RETURNS TABLE(id text, description text, name text, aggregate text, source text) as $$ DECLARE boundary_term text; BEGIN IF relevant_boundary then boundary_term = ''; else boundary_term = ''; END IF; RETURN QUERY EXECUTE format($string$ SELECT id::text, description::text, name::text, aggregate::text, NULL::TEXT source -- TODO use tags FROM observatory.OBS_column where name ilike '%%' || %L || '%%' or description ilike '%%' || %L || '%%' %s $string$, search_term, search_term,boundary_term); RETURN; END $$ LANGUAGE plpgsql; -- Functions to return the geometry levels that a point is part of -------------------------------------------------------------------------------- -- TODO add test response CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableBoundaries( geom geometry(Geometry, 4326), timespan text DEFAULT null) RETURNS TABLE(boundary_id text, description text, time_span text, tablename text) as $$ DECLARE timespan_query TEXT DEFAULT ''; BEGIN IF timespan != NULL THEN timespan_query = format('AND timespan = %L', timespan); END IF; RETURN QUERY EXECUTE $string$ SELECT column_id::text As column_id, obs_column.description::text As description, timespan::text As timespan, tablename::text As tablename FROM observatory.OBS_table, observatory.OBS_column_table, observatory.OBS_column WHERE observatory.OBS_column_table.column_id = observatory.obs_column.id AND observatory.OBS_column_table.table_id = observatory.obs_table.id AND observatory.OBS_column.type = 'Geometry' AND ST_Intersects($1, st_setsrid(observatory.obs_table.the_geom, 4326)) $string$ || timespan_query USING geom; RETURN; END $$ LANGUAGE plpgsql; -- Functions the interface works from to identify available numerators, -- denominators, geometries, and timespans CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableNumerators( bounds GEOMETRY DEFAULT NULL, filter_tags TEXT[] DEFAULT NULL, denom_id TEXT DEFAULT NULL, geom_id TEXT DEFAULT NULL, timespan TEXT DEFAULT NULL ) RETURNS TABLE ( numer_id TEXT, numer_name TEXT, numer_description TEXT, numer_weight NUMERIC, numer_license TEXT, numer_source TEXT, numer_type TEXT, numer_aggregate TEXT, numer_extra JSONB, numer_tags JSONB, valid_denom BOOLEAN, valid_geom BOOLEAN, valid_timespan BOOLEAN ) AS $$ DECLARE geom_clause TEXT; BEGIN filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]); denom_id := COALESCE(denom_id, ''); geom_id := COALESCE(geom_id, ''); timespan := COALESCE(timespan, ''); IF bounds IS NULL THEN geom_clause := ''; ELSE geom_clause := 'ST_Intersects(the_geom, $5) AND'; END IF; RETURN QUERY EXECUTE format($string$ SELECT numer_id::TEXT, numer_name::TEXT, numer_description::TEXT, numer_weight::NUMERIC, NULL::TEXT license, NULL::TEXT source, numer_type numer_type, numer_aggregate numer_aggregate, numer_extra::JSONB numer_extra, numer_tags numer_tags, $1 = ANY(denoms) valid_denom, $2 = ANY(geoms) valid_geom, $3 = ANY(timespans) valid_timespan FROM observatory.obs_meta_numer WHERE %s (numer_tags ?& $4 OR CARDINALITY($4) = 0) $string$, geom_clause) USING denom_id, geom_id, timespan, filter_tags, bounds; RETURN; END $$ LANGUAGE plpgsql; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableDenominators( bounds GEOMETRY DEFAULT NULL, filter_tags TEXT[] DEFAULT NULL, numer_id TEXT DEFAULT NULL, geom_id TEXT DEFAULT NULL, timespan TEXT DEFAULT NULL ) RETURNS TABLE ( denom_id TEXT, denom_name TEXT, denom_description TEXT, denom_weight NUMERIC, denom_license TEXT, denom_source TEXT, denom_type TEXT, denom_aggregate TEXT, denom_extra JSONB, denom_tags JSONB, valid_numer BOOLEAN, valid_geom BOOLEAN, valid_timespan BOOLEAN ) AS $$ DECLARE geom_clause TEXT; BEGIN filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]); numer_id := COALESCE(numer_id, ''); geom_id := COALESCE(geom_id, ''); timespan := COALESCE(timespan, ''); IF bounds IS NULL THEN geom_clause := ''; ELSE geom_clause := 'ST_Intersects(the_geom, $5) AND'; END IF; RETURN QUERY EXECUTE format($string$ SELECT denom_id::TEXT, denom_name::TEXT, denom_description::TEXT, denom_weight::NUMERIC, NULL::TEXT license, NULL::TEXT source, denom_type::TEXT, denom_aggregate::TEXT, denom_extra::JSONB, denom_tags::JSONB, $1 = ANY(numers) valid_numer, $2 = ANY(geoms) valid_geom, $3 = ANY(timespans) valid_timespan FROM observatory.obs_meta_denom WHERE %s (denom_tags ?& $4 OR CARDINALITY($4) = 0) $string$, geom_clause) USING numer_id, geom_id, timespan, filter_tags, bounds; RETURN; END $$ LANGUAGE plpgsql; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableGeometries( bounds GEOMETRY DEFAULT NULL, filter_tags TEXT[] DEFAULT NULL, numer_id TEXT DEFAULT NULL, denom_id TEXT DEFAULT NULL, timespan TEXT DEFAULT NULL ) RETURNS TABLE ( geom_id TEXT, geom_name TEXT, geom_description TEXT, geom_weight NUMERIC, geom_aggregate TEXT, geom_license TEXT, geom_source TEXT, valid_numer BOOLEAN, valid_denom BOOLEAN, valid_timespan BOOLEAN, score NUMERIC, numtiles BIGINT, notnull_percent NUMERIC, numgeoms NUMERIC, percentfill NUMERIC, estnumgeoms NUMERIC, meanmediansize NUMERIC ) AS $$ DECLARE geom_clause TEXT; BEGIN filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]); numer_id := COALESCE(numer_id, ''); denom_id := COALESCE(denom_id, ''); timespan := COALESCE(timespan, ''); IF bounds IS NULL THEN geom_clause := ''; ELSE geom_clause := 'ST_Intersects(the_geom, $5) AND'; END IF; RETURN QUERY EXECUTE format($string$ WITH available_geoms AS ( SELECT geom_id::TEXT, geom_name::TEXT, geom_description::TEXT, geom_weight::NUMERIC, NULL::TEXT geom_aggregate, NULL::TEXT license, NULL::TEXT source, $1 = ANY(numers) valid_numer, $2 = ANY(denoms) valid_denom, $3 = ANY(timespans) valid_timespan FROM observatory.obs_meta_geom WHERE %s (geom_tags ?& $4 OR CARDINALITY($4) = 0) ), scores AS ( SELECT * FROM cdb_observatory._OBS_GetGeometryScores($5, (SELECT ARRAY_AGG(geom_id) FROM available_geoms) ) ) SELECT available_geoms.*, score, numtiles, notnull_percent, numgeoms, percentfill, estnumgeoms, meanmediansize FROM available_geoms, scores WHERE available_geoms.geom_id = scores.column_id $string$, geom_clause) USING numer_id, denom_id, timespan, filter_tags, bounds; RETURN; END $$ LANGUAGE plpgsql; CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetAvailableTimespans( bounds GEOMETRY DEFAULT NULL, filter_tags TEXT[] DEFAULT NULL, numer_id TEXT DEFAULT NULL, denom_id TEXT DEFAULT NULL, geom_id TEXT DEFAULT NULL ) RETURNS TABLE ( timespan_id TEXT, timespan_name TEXT, timespan_description TEXT, timespan_weight NUMERIC, timespan_aggregate TEXT, timespan_license TEXT, timespan_source TEXT, valid_numer BOOLEAN, valid_denom BOOLEAN, valid_geom BOOLEAN ) AS $$ DECLARE geom_clause TEXT; BEGIN filter_tags := COALESCE(filter_tags, (ARRAY[])::TEXT[]); numer_id := COALESCE(numer_id, ''); denom_id := COALESCE(denom_id, ''); geom_id := COALESCE(geom_id, ''); IF bounds IS NULL THEN geom_clause := ''; ELSE geom_clause := 'ST_Intersects(the_geom, $5) AND'; END IF; RETURN QUERY EXECUTE format($string$ SELECT timespan_id::TEXT, timespan_name::TEXT, timespan_description::TEXT, timespan_weight::NUMERIC, NULL::TEXT timespan_aggregate, NULL::TEXT license, NULL::TEXT source, $1 = ANY(numers) valid_numer, $2 = ANY(denoms) valid_denom, $3 = ANY(geoms) valid_geom_id FROM observatory.obs_meta_timespan WHERE %s (timespan_tags ?& $4 OR CARDINALITY($4) = 0) $string$, geom_clause) USING numer_id, denom_id, geom_id, filter_tags, bounds; RETURN; END $$ LANGUAGE plpgsql; -- Function below should replace SQL in -- https://github.com/CartoDB/cartodb/blob/ab465cb2918c917940e955963b0cd8a050c06600/lib/assets/javascripts/cartodb3/editor/layers/layer-content-views/analyses/data-observatory-metadata.js CREATE OR REPLACE FUNCTION cdb_observatory.OBS_LegacyBuilderMetadata( aggregate_type TEXT DEFAULT NULL ) RETURNS TABLE ( name TEXT, subsection JSONB ) AS $$ DECLARE aggregate_condition TEXT DEFAULT ''; BEGIN IF LOWER(aggregate_type) ILIKE 'sum' THEN aggregate_condition := ' AND numer_aggregate IN (''sum'', ''median'', ''average'') '; ELSIF aggregate_type IS NOT NULL THEN aggregate_condition := format(' AND numer_aggregate ILIKE %L ', aggregate_type); END IF; RETURN QUERY EXECUTE format($string$ WITH expanded AS ( SELECT JSONB_Build_Object('id', numer_id, 'name', numer_name) "column", SUBSTR((sections).key, 9) section_id, (sections).value section_name, SUBSTR((subsections).key, 12) subsection_id, (subsections).value subsection_name FROM ( SELECT numer_id, numer_name, jsonb_each_text(numer_tags) as sections, jsonb_each_text as subsections FROM (SELECT numer_id, numer_name, numer_tags, jsonb_each_text(numer_tags) FROM cdb_observatory.obs_getavailablenumerators() WHERE numer_weight > 0 %s ) foo ) bar WHERE (sections).key LIKE 'section/%%' AND (subsections).key LIKE 'subsection/%%' ), grouped_by_subsections AS ( SELECT JSONB_Agg(JSONB_Build_Object('f1', "column")) AS columns, section_id, section_name, subsection_id, subsection_name FROM expanded GROUP BY section_id, section_name, subsection_id, subsection_name ) SELECT section_name as name, JSONB_Agg( JSONB_Build_Object( 'f1', JSONB_Build_Object( 'name', subsection_name, 'id', subsection_id, 'columns', columns ) ) ) as subsection FROM grouped_by_subsections GROUP BY section_name $string$, aggregate_condition); RETURN; END $$ LANGUAGE plpgsql; CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetGeometryScores( bounds Geometry(Geometry, 4326) DEFAULT NULL, filter_geom_ids TEXT[] DEFAULT NULL, desired_num_geoms INTEGER DEFAULT NULL ) RETURNS TABLE ( score NUMERIC, numtiles BIGINT, table_id TEXT, column_id TEXT, notnull_percent NUMERIC, numgeoms NUMERIC, percentfill NUMERIC, estnumgeoms NUMERIC, meanmediansize NUMERIC ) AS $$ BEGIN IF desired_num_geoms IS NULL THEN desired_num_geoms := 3000; END IF; filter_geom_ids := COALESCE(filter_geom_ids, (ARRAY[])::TEXT[]); -- Very complex geometries simply fail. For a boundary check, we can -- comfortably get away with the simplicity of an envelope IF ST_Npoints(bounds) > 10000 THEN bounds := ST_Envelope(bounds); END IF; RETURN QUERY EXECUTE $string$ WITH clipped_geom AS ( SELECT column_id, table_id , CASE WHEN $1 IS NOT NULL THEN ST_Clip(tile, $1, True) -- -20 ELSE tile END clipped_tile , tile FROM observatory.obs_column_table_tile_simple WHERE ($1 IS NULL OR ST_Intersects($1, tile)) AND (column_id = ANY($2) OR cardinality($2) = 0) ), clipped_geom_countagg AS ( SELECT column_id, table_id , BOOL_AND(ST_BandIsNoData(clipped_tile, 1)) nodata , ST_CountAgg(clipped_tile, 1, False)::Numeric pixels -- -10 FROM clipped_geom GROUP BY column_id, table_id ), clipped_geom_reagg AS ( SELECT COUNT(*)::BIGINT cnt, a.column_id, a.table_id, cdb_observatory.FIRST(nodata) first_nodata, cdb_observatory.FIRST(pixels) first_pixel, cdb_observatory.FIRST(tile) first_tile, (ST_SummaryStatsAgg(clipped_tile, 1, False)).sum::Numeric sum_geoms, -- ND (ST_SummaryStatsAgg(clipped_tile, 2, False)).mean::Numeric / 255 mean_fill --ND FROM clipped_geom_countagg a, clipped_geom b WHERE a.table_id = b.table_id AND a.column_id = b.column_id GROUP BY a.column_id, a.table_id ), final AS ( SELECT cnt, table_id, column_id , NULL::Numeric AS notnull_percent , (CASE WHEN first_nodata IS FALSE THEN sum_geoms ELSE COALESCE(ST_Value(first_tile, 1, ST_PointOnSurface($1)), 0) * (ST_Area($1) / ST_Area(ST_PixelAsPolygon(first_tile, 0, 0)) * first_pixel) -- -20 END)::Numeric AS numgeoms , (CASE WHEN first_nodata IS FALSE THEN mean_fill ELSE COALESCE(ST_Value(first_tile, 2, ST_PointOnSurface($1))::Numeric / 255, 0) -- -2 END)::Numeric AS percentfill , null::numeric estnumgeoms , null::numeric meanmediansize FROM clipped_geom_reagg ) SELECT ((100.0 / (1+abs(log(0.0001 + $3) - log(0.0001 + numgeoms::Numeric)))) * percentfill)::Numeric AS score, * FROM final $string$ USING bounds, filter_geom_ids, desired_num_geoms; RETURN; END $$ LANGUAGE plpgsql IMMUTABLE; -- Data Observatory -- Welcome to the Future -- These Data Observatory functions provide access to boundary polyons (and -- their ids) such as those available through the US Census Tiger, Who's on -- First, the Spanish Census, and so on -- OBS_GetBoundary -- -- Returns the boundary polygon(s) that overlap with the input point geometry. -- From an input point geometry, find the boundary which intersects with the -- centroid of the input geometry -- Inputs: -- geom geometry: input point geometry -- boundary_id text: source id of boundaries -- see function OBS_ListGeomColumns for all avaiable -- boundary ids -- time_span text: time span that the geometries were collected (optional) -- -- Output: -- boundary geometry: geometry boundary that intersects with geom, is at the -- resolution requested with boundary_id, and time_span -- CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundary( geom geometry(Point, 4326), boundary_id text, time_span text DEFAULT NULL) RETURNS geometry(Geometry, 4326) AS $$ DECLARE boundary geometry(Geometry, 4326); target_table text; BEGIN -- TODO: Check if SRID = 4326, if not transform? -- if not a point, raise error IF ST_GeometryType(geom) != 'ST_Point' THEN RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_Point''', ST_GeometryType(geom); END IF; -- return the first boundary in intersections EXECUTE $query$ SELECT * FROM cdb_observatory._OBS_GetBoundariesByGeometry($1, $2, $3) LIMIT 1 $query$ INTO boundary USING geom, boundary_id, time_span; RETURN boundary; END; $$ LANGUAGE plpgsql; -- OBS_GetBoundaryId -- -- retrieves the boundary identifier (e.g., '36047' = Kings County/Brooklyn, NY) -- corresponding to the location geom and boundary types (e.g., -- us.census.tiger.county) -- Inputs: -- geom geometry: location where the boundary is requested to overlap with -- boundary_id text: source id of boundaries (e.g., us.census.tiger.county) -- see function OBS_ListGeomColumns for all avaiable -- boundary ids -- time_span text: time span that the geometries were collected (optional) -- -- Output: -- geometry_id text: identifier of the geometry which overlaps with the input -- point geom in the table corresponding to boundary_id and -- time_span -- CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundaryId( geom geometry(Point, 4326), boundary_id text, time_span text DEFAULT NULL ) RETURNS text AS $$ DECLARE result TEXT; BEGIN EXECUTE $query$ SELECT geom_refs FROM cdb_observatory._OBS_GetBoundariesByGeometry( $1, $2, $3) LIMIT 1 $query$ INTO result USING geom, boundary_id, time_span; RETURN result; END; $$ LANGUAGE plpgsql; -- OBS_GetBoundaryById -- -- Given a geometry reference (e.g., geoid for US Census), and it's geometry -- level (see OBS_ListGeomColumns() for all available boundary ids), give back -- the boundary that corresponds to that geometry_id, boundary_id, and -- time_span -- Inputs: -- geometry_id text: geometry id of the requested boundary -- boundary_id text: source id of boundaries (e.g., us.census.tiger.county) -- see function OBS_ListGeomColumns for all avaiable -- boundary ids -- time_span text: time span that the geometries were collected (optional) -- -- Output: -- boundary geometry: geometry boundary that matches geometry_id, is at the -- resolution requested with boundary_id, and time_span -- CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundaryById( geometry_id text, -- ex: '36047' boundary_id text, -- ex: 'us.census.tiger.county' time_span text DEFAULT NULL -- ex: '2009' ) RETURNS geometry(geometry, 4326) AS $$ DECLARE result GEOMETRY; BEGIN EXECUTE $query$ SELECT (data->0->>'value')::Geometry FROM cdb_observatory.OBS_GetData( ARRAY[$1], cdb_observatory.OBS_GetMeta( ST_MakeEnvelope(-180, -90, 180, 90, 4326), ('[{"geom_id": "' || $2 || '"}]')::JSON)) $query$ INTO result USING geometry_id, boundary_id; RETURN result; END; $$ LANGUAGE plpgsql; -- _OBS_GetBoundariesByGeometry -- internal function for retrieving geometries based on an input geometry -- see OBS_GetBoundariesByGeometry or OBS_GetBoundariesByPointAndRadius for -- more information CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetBoundariesByGeometry( geom geometry(Geometry, 4326), boundary_id text, time_span text DEFAULT NULL, overlap_type text DEFAULT NULL) RETURNS TABLE ( the_geom geometry, geom_refs text ) AS $$ DECLARE meta JSON; BEGIN overlap_type := COALESCE(overlap_type, 'intersects'); -- check inputs IF lower(overlap_type) NOT IN ('contains', 'intersects', 'within') THEN -- recognized overlap type (map to ST_Contains, ST_Intersects, and ST_Within) RAISE EXCEPTION 'Overlap type ''%'' is not an accepted type (choose intersects, within, or contains)', overlap_type; END IF; EXECUTE $query$ SELECT cdb_observatory.OBS_GetMeta($1, JSON_Build_Array(JSON_Build_Object( 'geom_id', $2, 'geom_timespan', $3))) $query$ INTO meta USING geom, boundary_id, time_span; IF meta->0->>'geom_id' IS NULL THEN RETURN QUERY EXECUTE 'SELECT NULL::Geometry, NULL::Text LIMIT 0'; RETURN; END IF; -- return first boundary in intersections RETURN QUERY EXECUTE $query$ SELECT (data->0->>'value')::Geometry the_geom, data->0->>'geomref' geom_refs FROM cdb_observatory.OBS_GetData( ARRAY[($1, 1)::geomval], $2, False ) $query$ USING geom, meta; RETURN; END; $$ LANGUAGE plpgsql; -- OBS_GetBoundariesByGeometry -- -- Given a bounding box (or a polygon), and it's geometry level (see -- OBS_ListGeomColumns() for all available boundary ids), give back the -- boundaries that are contained within the bounding box polygon and the -- associated geometry ids -- Inputs: -- geom geometry: bounding box (or polygon) of the region of interest -- boundary_id text: source id of boundaries (e.g., us.census.tiger.county) -- see function OBS_ListGeomColumns for all avaiable -- boundary ids -- time_span text: time span that the geometries were collected (optional) -- -- Output: -- table with the following columns -- boundary geometry: geometry boundary that is contained within the input -- bounding box at the requested geometry level -- with boundary_id, and time_span -- geom_refs text: geometry identifiers (e.g., geoid for the US Census) -- CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundariesByGeometry( geom geometry(Geometry, 4326), boundary_id text, time_span text DEFAULT NULL, overlap_type text DEFAULT NULL) RETURNS TABLE(the_geom geometry, geom_refs text) AS $$ BEGIN RETURN QUERY SELECT * FROM cdb_observatory._OBS_GetBoundariesByGeometry( geom, boundary_id, time_span, overlap_type ); RETURN; END; $$ LANGUAGE plpgsql; -- OBS_GetBoundariesByPointAndRadius -- -- Given a point and radius, and it's geometry level (see -- OBS_ListGeomColumns() for all available boundary ids), give back the -- boundaries that are contained within the point buffered by radius meters and -- the associated geometry ids -- Inputs: -- geom geometry: point geometry centered on area of interest -- radius numeric: radius (in meters) of a circle centered on geom for -- selecting polygons -- boundary_id text: source id of boundaries (e.g., us.census.tiger.county) -- see function OBS_ListGeomColumns for all avaiable -- boundary ids -- time_span text: time span that the geometries were collected (optional) -- -- Output: -- table with the following columns -- boundary geometry: geometry boundary that is contained within the input -- bounding box at the requested geometry level -- with boundary_id, and time_span -- geom_refs text: geometry identifiers (e.g., geoid for the US Census) -- -- TODO: move to ST_DWithin instead of buffer + intersects? CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetBoundariesByPointAndRadius( geom geometry(Point, 4326), -- point radius numeric, -- radius in meters boundary_id text, time_span text DEFAULT NULL, overlap_type text DEFAULT NULL) RETURNS TABLE(the_geom geometry, geom_refs text) AS $$ DECLARE circle_boundary geometry(Geometry, 4326); BEGIN IF ST_GeometryType(geom) != 'ST_Point' THEN RAISE EXCEPTION 'Input geometry ''%'' is not a point', ST_AsText(geom); ELSE circle_boundary := ST_Buffer(geom::geography, radius)::geometry; END IF; RETURN QUERY SELECT * FROM cdb_observatory._OBS_GetBoundariesByGeometry( circle_boundary, boundary_id, time_span, overlap_type); RETURN; END; $$ LANGUAGE plpgsql; -- _OBS_GetPointsByGeometry CREATE OR REPLACE FUNCTION cdb_observatory._OBS_GetPointsByGeometry( geom geometry(Geometry, 4326), boundary_id text, time_span text DEFAULT NULL, overlap_type text DEFAULT NULL) RETURNS TABLE(the_geom geometry, geom_refs text) AS $$ DECLARE boundary geometry(Geometry, 4326); geom_colname text; geoid_colname text; target_table text; BEGIN overlap_type := COALESCE(overlap_type, 'intersects'); IF lower(overlap_type) NOT IN ('contains', 'within', 'intersects') THEN RAISE EXCEPTION 'Overlap type ''%'' is not an accepted type (choose intersects, within, or contains)', overlap_type; ELSIF ST_GeometryType(geom) NOT IN ('ST_Polygon', 'ST_MultiPolygon') THEN RAISE EXCEPTION 'Invalid geometry type (%), expecting ''ST_MultiPolygon'' or ''ST_Polygon''', ST_GeometryType(geom); END IF; -- return first boundary in intersections RETURN QUERY EXECUTE $query$ SELECT ST_PointOnSurface(the_geom), geom_refs FROM cdb_observatory._OBS_GetBoundariesByGeometry($1, $2) $query$ USING geom, boundary_id; RETURN; END; $$ LANGUAGE plpgsql; -- OBS_GetPointsByGeometry -- -- Given a polygon, and it's geometry level (see -- OBS_ListGeomColumns() for all available boundary ids), give back a point -- which lies in a boundary from the requested geometry level that is contained -- within the bounding box polygon and the associated geometry ids -- -- Inputs: -- geom geometry: bounding box (or polygon) of the region of interest -- boundary_id text: source id of boundaries (e.g., us.census.tiger.county) -- see function OBS_ListGeomColumns for all avaiable -- boundary ids -- time_span text: time span that the geometries were collected (optional) -- -- Output: -- table with the following columns -- boundary geometry: point that lies on a boundary that is contained within -- the input bounding box at the requested geometry -- level with boundary_id, and time_span -- geom_refs text: geometry identifiers (e.g., geoid for the US Census) -- CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetPointsByGeometry( geom geometry(Geometry, 4326), boundary_id text, time_span text DEFAULT NULL, overlap_type text DEFAULT NULL) RETURNS TABLE(the_geom geometry, geom_refs text) AS $$ BEGIN RETURN QUERY SELECT * FROM cdb_observatory._OBS_GetPointsByGeometry( geom, boundary_id, time_span, overlap_type); RETURN; END; $$ LANGUAGE plpgsql; -- OBS_GetBoundariesByPointAndRadius -- -- Given a point and radius, and it's geometry level (see -- OBS_ListGeomColumns() for all available boundary ids), give back the -- boundaries that are contained within the point buffered by radius meters and -- the associated geometry ids -- Inputs: -- geom geometry: point geometry centered on area of interest -- radius numeric: radius (in meters) of a circle centered on geom for -- selecting polygons -- boundary_id text: source id of boundaries (e.g., us.census.tiger.county) -- see function OBS_ListGeomColumns for all avaiable -- boundary ids -- time_span text: time span that the geometries were collected (optional) -- -- Output: -- table with the following columns -- boundary geometry: geometry boundary that is contained within the input -- bounding box at the requested geometry level -- with boundary_id, and time_span -- geom_refs text: geometry identifiers (e.g., geoid for the US Census) -- CREATE OR REPLACE FUNCTION cdb_observatory.OBS_GetPointsByPointAndRadius( geom geometry(Point, 4326), -- point radius numeric, -- radius in meters boundary_id text, time_span text DEFAULT NULL, overlap_type text DEFAULT NULL) RETURNS TABLE(the_geom geometry, geom_refs text) AS $$ DECLARE circle_boundary geometry(Geometry, 4326); BEGIN IF ST_GeometryType(geom) != 'ST_Point' THEN RAISE EXCEPTION 'Input geometry ''%'' is not a point', ST_AsText(geom); ELSE circle_boundary := ST_Buffer(geom::geography, radius)::geometry; END IF; RETURN QUERY SELECT * FROM cdb_observatory._OBS_GetPointsByGeometry( ST_Buffer(geom::geography, radius)::geometry, boundary_id, time_span, overlap_type); RETURN; END; $$ LANGUAGE plpgsql; -- Placeholder for permission tweaks at creation time. -- Make sure by default there are no permissions for publicuser -- NOTE: this happens at extension creation time, as part of an implicit transaction. -- REVOKE ALL PRIVILEGES ON SCHEMA cdb_observatory FROM PUBLIC, publicuser CASCADE; -- Grant permissions on the schema to publicuser (but just the schema) -- GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser; -- Revoke execute permissions on all functions in the schema by default -- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_observatory FROM PUBLIC, publicuser;