Iterative part of the algorithm (WIP)

This commit is contained in:
Rafa de la Torre 2016-07-05 17:07:43 +02:00
parent 87413255af
commit 9becf1adb4

View File

@ -31,30 +31,50 @@ class MapzenIsolines:
# TODO move this restriction to the appropriate place # TODO move this restriction to the appropriate place
raise NotImplementedError('walk is the only supported mode for the moment') raise NotImplementedError('walk is the only supported mode for the moment')
bearings = self._get_bearings(self.NUMBER_OF_ANGLES) # Formally, a solution is an array of {angle, radius, lat, lon, cost} with cardinality NUMBER_OF_ANGLES
location_estimates = [self._get_dest_location_estimate(origin, b, isorange) for b in bearings] # we're looking for a solution in which abs(cost - isorange) / isorange <= TOLERANCE
# Initial setup
angles = self._get_angles(self.NUMBER_OF_ANGLES) # array of angles
upper_rmax = 3.3333333 * isorange # an upper bound for the radius, assuming 12km/h walking speed
rmax = [upper_rmax] * self.NUMBER_OF_ANGLES
rmin = [0.0] * self.NUMBER_OF_ANGLES
location_estimates = [self._calculate_dest_location(origin, a, upper_rmax / 2.0) for a in angles]
# calculate the "actual" cost for each location estimate as first iteration # calculate the "actual" cost for each location estimate as first iteration
resp = self._matrix_client.one_to_many([origin] + location_estimates, 'pedestrian') resp = self._matrix_client.one_to_many([origin] + location_estimates, 'pedestrian')
costs = resp['one_to_many'][0][1:] costs = [c['time'] for c in resp['one_to_many'][0][1:]]
#import pdb; pdb.set_trace() #import pdb; pdb.set_trace()
# iterate to refine the first solution, if needed
for i in xrange(0, self.MAX_ITERS):
errors = [(cost - isorange) / float(isorange) for cost in costs]
max_abs_error = [abs(e) for e in errors]
if max_abs_error <= self.TOLERANCE:
# good enough, stop there
break
# let's refine the solution, binary search
for j in xrange(0, self.NUMBER_OF_ANGLES):
if errors[j] > 0:
rmax[j] = (rmax[j] - rmin[j]) / 2.0
else:
rmin[j] = (rmax[j] - rmin[j]) / 2.0
location_estimates[j] = self._calculate_dest_location(origin, angles[j], (rmax[j]-rmin[j])/2.0)
# and check "actual" costs again
resp = self._matrix_client.one_to_many([origin] + location_estimates, 'pedestrian')
costs = [c['time'] for c in resp['one_to_many'][0][1:]]
return location_estimates
# NOTE: all angles in calculations are in radians # NOTE: all angles in calculations are in radians
def _get_bearings(self, number_of_angles): def _get_angles(self, number_of_angles):
step = (2.0 * pi) / number_of_angles step = (2.0 * pi) / number_of_angles
return [(x * step) for x in xrange(0, number_of_angles)] return [(x * step) for x in xrange(0, number_of_angles)]
# TODO: this just works for walk isochrone
# TODO: split this into two
def _get_dest_location_estimate(self, origin, bearing, trange):
# my rule of thumb: normal walk speed is about 1km in 10 minutes = 6 km/h
# use 12 km/h as an upper bound
speed = 3.333333 # in m/s
distance = speed * trange
return self._calculate_dest_location(origin, bearing, distance)
def _calculate_dest_location(self, origin, angle, radius): def _calculate_dest_location(self, origin, angle, radius):
origin_lat_radians = radians(origin['lat']) origin_lat_radians = radians(origin['lat'])
origin_long_radians = radians(origin['lon']) origin_long_radians = radians(origin['lon'])