diff --git a/server/lib/python/cartodb_services/cartodb_services/mapzen/isolines.py b/server/lib/python/cartodb_services/cartodb_services/mapzen/isolines.py index 63aa2b3..6ad7464 100644 --- a/server/lib/python/cartodb_services/cartodb_services/mapzen/isolines.py +++ b/server/lib/python/cartodb_services/cartodb_services/mapzen/isolines.py @@ -27,25 +27,46 @@ class MapzenIsolines: Returns: Array of {lon: x, lat: y} as a representation of the isoline """ - def calculate_isochrone(self, origin, transport_mode, isorange): + def calculate_isochrone(self, origin, transport_mode, time_range): + if transport_mode == 'walk': + max_speed = 3.3333333 # In m/s, assuming 12km/h walking speed + costing_model = 'pedestrian' + elif transport_mode == 'car': + max_speed = 41.67 # In m/s, assuming 140km/h max speed + costing_model = 'auto' + else: + raise NotImplementedError('car and walk are the only supported modes for the moment') + + upper_rmax = max_speed * time_range # an upper bound for the radius + + return self.calculate_isoline(origin, costing_model, time_range, upper_rmax, 'time') + + """Get an isoline using mapzen API. + + The implementation tries to sick close to the SQL API: + cdb_isochrone(source geometry, mode text, range integer[], [options text[]]) -> SETOF isoline + + But this calculates just one isoline. + + Args: + origin dict containing {lat: y, lon: x} + costing_model string "auto" or "pedestrian" + isorange int Range of the isoline in seconds + upper_rmax float An upper bound for the binary search + cost_variable string Variable to optimize "time" or "distance" + + Returns: + Array of {lon: x, lat: y} as a representation of the isoline + """ + def calculate_isoline(self, origin, costing_model, isorange, upper_rmax, cost_variable): # NOTE: not for production #logging.basicConfig(level=logging.DEBUG, filename='/tmp/isolines.log') #logging.basicConfig(level=logging.DEBUG) logging.debug('origin = %s' % origin) - logging.debug('transport_mode = %s' % transport_mode) + logging.debug('costing_model = %s' % costing_model) logging.debug('isorange = %d' % isorange) - if transport_mode == 'walk': - upper_rmax = 3.3333333 * isorange # an upper bound for the radius, assuming 12km/h walking speed - costing_model = 'pedestrian' - elif transport_mode == 'car': - upper_rmax = 41.67 * isorange # assuming 140km/h max speed - costing_model = 'auto' - else: - raise NotImplementedError('car and walk are the only supported modes for the moment') - - # Formally, a solution is an array of {angle, radius, lat, lon, cost} with cardinality NUMBER_OF_ANGLES # we're looking for a solution in which abs(cost - isorange) / isorange <= TOLERANCE @@ -62,7 +83,7 @@ class MapzenIsolines: # Just assume isorange and stop the calculations there response = self._matrix_client.one_to_many([origin] + location_estimates, costing_model) - costs = [(c['time'] or isorange) for c in response['one_to_many'][0][1:]] + costs = [(c[cost_variable] or isorange) for c in response['one_to_many'][0][1:]] logging.debug('i = %d, costs = %s' % (i, costs))