142 lines
4.3 KiB
PL/PgSQL
142 lines
4.3 KiB
PL/PgSQL
--- Usage
|
|
|
|
--SELECT (geocode_admin1_polygons(Array['TX','Cuidad Real', 'sevilla'])).*
|
|
|
|
--- Function
|
|
|
|
CREATE OR REPLACE FUNCTION test_geocode_admin1_polygons(name text[])
|
|
RETURNS SETOF geocode_admin_v1 AS $$
|
|
DECLARE
|
|
ret geocode_admin_v1%rowtype;
|
|
BEGIN
|
|
FOR ret IN
|
|
SELECT
|
|
q, geom, CASE WHEN geom IS NULL THEN FALSE ELSE TRUE END AS success
|
|
FROM (
|
|
SELECT
|
|
q, (
|
|
SELECT the_geom
|
|
FROM global_province_polygons
|
|
WHERE d.c = ANY (synonyms)
|
|
-- To calculate frequency, I simply counted the number of users
|
|
-- we had signed up in each country. Countries with more users,
|
|
-- we favor higher in the geocoder :)
|
|
ORDER BY frequency DESC LIMIT 1
|
|
) geom
|
|
FROM (SELECT trim(replace(lower(unnest(name)),'.',' ')) c, unnest(name) q) d
|
|
) v
|
|
LOOP
|
|
RETURN NEXT ret;
|
|
END LOOP;
|
|
RETURN;
|
|
END
|
|
$$ LANGUAGE 'plpgsql' SECURITY DEFINER;
|
|
Text array, country name
|
|
|
|
|
|
-- CREATE OR REPLACE FUNCTION test_geocode_admin1_polygons(name text[])
|
|
-- RETURNS SETOF geocode_admin_v1 AS $$
|
|
-- DECLARE
|
|
-- ret geocode_admin_v1%rowtype;
|
|
-- BEGIN
|
|
-- -- FOR ret IN
|
|
-- RETURN QUERY
|
|
-- SELECT
|
|
-- d.q, n.the_geom as geom,
|
|
-- CASE WHEN s.adm1_code IS NULL then FALSE ELSE TRUE END AS success
|
|
-- FROM (
|
|
-- SELECT
|
|
-- q, lower(regexp_replace(q, '[^a-zA-Z\u00C0-\u00ff]+', '', 'g'))::text x
|
|
-- FROM (SELECT unnest(name) q) g
|
|
-- ) d
|
|
-- LEFT OUTER JOIN
|
|
-- admin1_synonyms s ON name_ = d.x
|
|
-- LEFT OUTER JOIN
|
|
-- ne_admin1_v3 n ON s.adm1_code = n.adm1_code;
|
|
-- END
|
|
-- $$ LANGUAGE 'plpgsql' SECURITY DEFINER;
|
|
|
|
|
|
--- Usage
|
|
|
|
--- SELECT (geocode_admin1_polygons(Array['az', 'Texas'], 'Ecuador')).*
|
|
|
|
--- Function
|
|
CREATE OR REPLACE FUNCTION test_geocode_admin1_polygons(name text[], inputcountry text)
|
|
RETURNS SETOF geocode_admin_v1 AS $$
|
|
DECLARE
|
|
ret geocode_admin_v1%rowtype;
|
|
BEGIN
|
|
|
|
FOR ret IN WITH
|
|
p AS (SELECT r.c, r.q, (SELECT iso3 FROM country_decoder WHERE lower(inputcountry) = ANY (synonyms)) i FROM (SELECT trim(replace(lower(unnest(name)),'.',' ')) c, unnest(name) q) r)
|
|
SELECT
|
|
q, geom, CASE WHEN geom IS NULL THEN FALSE ELSE TRUE END AS success
|
|
FROM (
|
|
SELECT
|
|
q, (
|
|
SELECT the_geom
|
|
FROM global_province_polygons
|
|
WHERE p.c = ANY (synonyms)
|
|
AND iso3 = p.i
|
|
-- To calculate frequency, I simply counted the number of users
|
|
-- we had signed up in each country. Countries with more users,
|
|
-- we favor higher in the geocoder :)
|
|
ORDER BY frequency DESC LIMIT 1
|
|
) geom
|
|
FROM p) n
|
|
LOOP
|
|
RETURN NEXT ret;
|
|
END LOOP;
|
|
RETURN;
|
|
END
|
|
$$ LANGUAGE 'plpgsql' SECURITY DEFINER;
|
|
Text array, country array
|
|
|
|
--- Usage
|
|
|
|
--- SELECT (geocode_admin1_polygons(Array['az', 'az'], Array['Ecuador', 'USA'])).*
|
|
|
|
--- Function
|
|
|
|
CREATE OR REPLACE FUNCTION test_geocode_admin1_polygons(names text[], country text[])
|
|
RETURNS SETOF geocode_admin_country_v1 AS $$
|
|
DECLARE
|
|
ret geocode_admin_country_v1%rowtype;
|
|
nans TEXT[];
|
|
BEGIN
|
|
|
|
|
|
SELECT array_agg(p) INTO nans FROM (SELECT unnest(names) p, unnest(country) c) g WHERE c IS NULL;
|
|
|
|
IF 0 < array_length(nans, 1) THEN
|
|
SELECT array_agg(p), array_agg(c) INTO names, country FROM (SELECT unnest(names) p, unnest(country) c) g WHERE c IS NOT NULL;
|
|
FOR ret IN SELECT g.q, NULL as c, g.geom, g.success FROM (SELECT (geocode_admin1_polygons(nans)).*) g LOOP
|
|
RETURN NEXT ret;
|
|
END LOOP;
|
|
END IF;
|
|
|
|
|
|
FOR ret IN WITH
|
|
p AS (SELECT r.p, r.q, c, (SELECT iso3 FROM country_decoder WHERE lower(r.c) = ANY (synonyms)) i FROM (SELECT trim(replace(lower(unnest(names)),'.',' ')) p, unnest(names) q, unnest(country) c) r)
|
|
SELECT
|
|
q, c, geom, CASE WHEN geom IS NULL THEN FALSE ELSE TRUE END AS success
|
|
FROM (
|
|
SELECT
|
|
q, c, (
|
|
SELECT the_geom
|
|
FROM global_province_polygons
|
|
WHERE p.p = ANY (synonyms)
|
|
AND iso3 = p.i
|
|
-- To calculate frequency, I simply counted the number of users
|
|
-- we had signed up in each country. Countries with more users,
|
|
-- we favor higher in the geocoder :)
|
|
ORDER BY frequency DESC LIMIT 1
|
|
) geom
|
|
FROM p) n
|
|
LOOP
|
|
RETURN NEXT ret;
|
|
END LOOP;
|
|
RETURN;
|
|
END
|
|
$$ LANGUAGE 'plpgsql' SECURITY DEFINER; |