4.3 KiB
Outlier Detection
This set of functions detects the presence of outliers. There are three functions for finding outliers from non-spatial data:
- Static Outliers
- Percentage Outliers
- Standard Deviation Outliers
CDB_StaticOutlier(column_value numeric, threshold numeric)
Arguments
Name | Type | Description |
---|---|---|
column_value | numeric | The column of values on which to apply the threshold |
threshold | numeric | The static threshold which is used to indicate whether a column_value is an outlier or not |
Returns
Returns a boolean (true/false) depending on whether a value is above or below (or equal to) the threshold
Name | Type | Description |
---|---|---|
outlier | boolean | classification of whether a row is an outlier or not |
Example Usage
With a table website_visits
and a column of the number of website visits in units of 10,000 visits:
| id | visits_10k |
|----|------------|
| 1 | 1 |
| 2 | 3 |
| 3 | 5 |
| 4 | 1 |
| 5 | 32 |
| 6 | 3 |
| 7 | 57 |
| 8 | 2 |
SELECT
id,
CDB_StaticOutlier(visits_10k, 11.0) As outlier,
visits_10k
FROM website_visits
| id | outlier | visits_10k |
|----|---------|------------|
| 1 | f | 1 |
| 2 | f | 3 |
| 3 | f | 5 |
| 4 | f | 1 |
| 5 | t | 32 |
| 6 | f | 3 |
| 7 | t | 57 |
| 8 | f | 2 |
CDB_PercentOutlier(column_values numeric[], outlier_fraction numeric, ids int[])
CDB_PercentOutlier
calculates whether or not a value falls above a given threshold based on a percentage above the mean value of the input values.
Arguments
Name | Type | Description |
---|---|---|
column_values | numeric[] | An array of the values to calculate the outlier classification on |
outlier_fraction | numeric | The threshold above which a column value divided by the mean of all values is considered an outlier |
ids | int[] | An array of the unique row ids of the input data (usually cartodb_id ) |
Returns
Returns a table of the outlier classification with the following columns
Name | Type | Description |
---|---|---|
is_outlier | boolean | classification of whether a row is an outlier or not |
rowid | int | original row id (e.g., input cartodb_id ) of the row which has the outlier classification |
Example Usage
This example find outliers which are more than 100% larger than the average (that is, more than 2.0 times larger).
WITH cte As (
SELECT
unnest(Array[1,2,3,4,5,6,7,8]) As id,
unnest(Array[1,3,5,1,32,3,57,2]) As visits_10k
)
SELECT
(CDB_PercentOutlier(array_agg(visits_10k), 2.0, array_agg(id))).*
FROM cte;
Output
| outlier | rowid |
|---------+-------|
| f | 1 |
| f | 2 |
| f | 3 |
| f | 4 |
| t | 5 |
| f | 6 |
| t | 7 |
| f | 8 |
CDB_StdDevOutlier(column_values numeric[], num_deviations numeric, ids int[], is_symmetric boolean DEFAULT true)
CDB_StdDevOutlier
calculates whether or not a value falls above or below a given threshold based on the number of standard deviations from the mean.
Arguments
Name | Type | Description |
---|---|---|
column_values | numeric[] | An array of the values to calculate the outlier classification on |
num_deviations | numeric | The threshold in units of standard deviation |
ids | int[] | An array of the unique row ids of the input data (usually cartodb_id ) |
is_symmetric (optional) | boolean | Consider outliers that are symmetric about the mean (default: true) |
Returns
Returns a table of the outlier classification with the following columns
Name | Type | Description |
---|---|---|
is_outlier | boolean | classification of whether a row is an outlier or not |
rowid | int | original row id (e.g., input cartodb_id ) of the row which has the outlier classification |
Example Usage
This example find outliers which are more than 100% larger than the average (that is, more than 2.0 times larger).
WITH cte As (
SELECT
unnest(Array[1,2,3,4,5,6,7,8]) As id,
unnest(Array[1,3,5,1,32,3,57,2]) As visits_10k
)
SELECT
(CDB_StdDevOutlier(array_agg(visits_10k), 2.0, array_agg(id))).*
FROM cte;
Output
| outlier | rowid |
|---------+-------|
| f | 1 |
| f | 2 |
| f | 3 |
| f | 4 |
| f | 5 |
| f | 6 |
| t | 7 |
| f | 8 |