--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES -- Complain if script is sourced in psql, rather than via CREATE EXTENSION \echo Use "CREATE EXTENSION crankshaft" to load this file. \quit -- Version number of the extension release CREATE OR REPLACE FUNCTION cdb_crankshaft_version() RETURNS text AS $$ SELECT '0.1.0'::text; $$ language 'sql' STABLE STRICT; -- Internal identifier of the installed extension instence -- e.g. 'dev' for current development version CREATE OR REPLACE FUNCTION _cdb_crankshaft_internal_version() RETURNS text AS $$ SELECT installed_version FROM pg_available_extensions where name='crankshaft' and pg_available_extensions IS NOT NULL; $$ language 'sql' STABLE STRICT; -- Internal function. -- Set the seeds of the RNGs (Random Number Generators) -- used internally. CREATE OR REPLACE FUNCTION _cdb_random_seeds (seed_value INTEGER) RETURNS VOID AS $$ from crankshaft import random_seeds random_seeds.set_random_seeds(seed_value) $$ LANGUAGE plpythonu; CREATE OR REPLACE FUNCTION CDB_PyAggS(current_state Numeric[], current_row Numeric[]) returns NUMERIC[] as $$ BEGIN if array_upper(current_state,1) is null then RAISE NOTICE 'setting state %',array_upper(current_row,1); current_state[1] = array_upper(current_row,1); end if; return array_cat(current_state,current_row) ; END $$ LANGUAGE plpgsql; CREATE AGGREGATE CDB_PyAgg(NUMERIC[])( SFUNC = CDB_PyAggS, STYPE = Numeric[], INITCOND = "{}" ); CREATE OR REPLACE FUNCTION CDB_CreateAndPredictSegment( target NUMERIC[], features NUMERIC[], target_features NUMERIC[], target_ids NUMERIC[], n_estimators INTEGER DEFAULT 1200, max_depth INTEGER DEFAULT 3, subsample DOUBLE PRECISION DEFAULT 0.5, learning_rate DOUBLE PRECISION DEFAULT 0.01, min_samples_leaf INTEGER DEFAULT 1) RETURNS TABLE(cartodb_id NUMERIC, prediction NUMERIC, accuracy NUMERIC) AS $$ import numpy as np import plpy from crankshaft.segmentation import create_and_predict_segment_agg model_params = {'n_estimators': n_estimators, 'max_depth': max_depth, 'subsample': subsample, 'learning_rate': learning_rate, 'min_samples_leaf': min_samples_leaf} def unpack2D(data): dimension = data.pop(0) a = np.array(data, dtype=float) return a.reshape(len(a)/dimension, dimension) return create_and_predict_segment_agg(np.array(target, dtype=float), unpack2D(features), unpack2D(target_features), target_ids, model_params) $$ LANGUAGE plpythonu; CREATE OR REPLACE FUNCTION CDB_CreateAndPredictSegment ( query TEXT, variable_name TEXT, target_table TEXT, n_estimators INTEGER DEFAULT 1200, max_depth INTEGER DEFAULT 3, subsample DOUBLE PRECISION DEFAULT 0.5, learning_rate DOUBLE PRECISION DEFAULT 0.01, min_samples_leaf INTEGER DEFAULT 1) RETURNS TABLE (cartodb_id TEXT, prediction NUMERIC, accuracy NUMERIC) AS $$ from crankshaft.segmentation import create_and_predict_segment model_params = {'n_estimators': n_estimators, 'max_depth':max_depth, 'subsample' : subsample, 'learning_rate': learning_rate, 'min_samples_leaf' : min_samples_leaf} return create_and_predict_segment(query,variable_name,target_table, model_params) $$ LANGUAGE plpythonu; -- 0: nearest neighbor -- 1: barymetric -- 2: IDW CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation( IN query text, IN point geometry, IN method integer DEFAULT 1, IN p1 numeric DEFAULT 0, IN p2 numeric DEFAULT 0 ) RETURNS numeric AS $$ DECLARE gs geometry[]; vs numeric[]; output numeric; BEGIN EXECUTE 'WITH a AS('||query||') SELECT array_agg(the_geom), array_agg(attrib) FROM a' INTO gs, vs; SELECT CDB_SpatialInterpolation(gs, vs, point, method, p1,p2) INTO output FROM a; RETURN output; END; $$ language plpgsql IMMUTABLE; CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation( IN geomin geometry[], IN colin numeric[], IN point geometry, IN method integer DEFAULT 1, IN p1 numeric DEFAULT 0, IN p2 numeric DEFAULT 0 ) RETURNS numeric AS $$ DECLARE gs geometry[]; vs numeric[]; gs2 geometry[]; vs2 numeric[]; g geometry; vertex geometry[]; sg numeric; sa numeric; sb numeric; sc numeric; va numeric; vb numeric; vc numeric; output numeric; BEGIN output := -999.999; -- nearest IF method = 0 THEN WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v) SELECT a.v INTO output FROM a ORDER BY point<->a.g LIMIT 1; RETURN output; -- barymetric ELSIF method = 1 THEN WITH a as (SELECT unnest(geomin) AS e), b as (SELECT ST_DelaunayTriangles(ST_Collect(a.e),0.001, 0) AS t FROM a), c as (SELECT (ST_Dump(t)).geom as v FROM b), d as (SELECT v FROM c WHERE ST_Within(point, v)) SELECT v INTO g FROM d; IF g is null THEN -- out of the realm of the input data RETURN -888.888; END IF; -- vertex of the selected cell WITH a AS (SELECT (ST_DumpPoints(g)).geom AS v) SELECT array_agg(v) INTO vertex FROM a; -- retrieve the value of each vertex WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c) SELECT c INTO va FROM a WHERE ST_Equals(geo, vertex[1]); WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c) SELECT c INTO vb FROM a WHERE ST_Equals(geo, vertex[2]); WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c) SELECT c INTO vc FROM a WHERE ST_Equals(geo, vertex[3]); SELECT ST_area(g), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[2], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[1], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point,vertex[1],vertex[2], point]))) INTO sg, sa, sb, sc; output := (coalesce(sa,0) * coalesce(va,0) + coalesce(sb,0) * coalesce(vb,0) + coalesce(sc,0) * coalesce(vc,0)) / coalesce(sg); RETURN output; -- IDW -- p1: limit the number of neighbors, 0->no limit -- p2: order of distance decay, 0-> order 1 ELSIF method = 2 THEN IF p2 = 0 THEN p2 := 1; END IF; WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v), b as (SELECT a.g, a.v FROM a ORDER BY point<->a.g) SELECT array_agg(b.g), array_agg(b.v) INTO gs, vs FROM b; IF p1::integer>0 THEN gs2:=gs; vs2:=vs; FOR i IN 1..p1 LOOP gs2 := gs2 || gs[i]; vs2 := vs2 || vs[i]; END LOOP; ELSE gs2:=gs; vs2:=vs; END IF; WITH a as (SELECT unnest(gs2) as g, unnest(vs2) as v), b as ( SELECT (1/ST_distance(point, a.g)^p2::integer) as k, (a.v/ST_distance(point, a.g)^p2::integer) as f FROM a ) SELECT sum(b.f)/sum(b.k) INTO output FROM b; RETURN output; END IF; RETURN -777.777; END; $$ language plpgsql IMMUTABLE; -- Moran's I Global Measure (public-facing) CREATE OR REPLACE FUNCTION CDB_AreasOfInterestGlobal( subquery TEXT, column_name TEXT, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE (moran NUMERIC, significance NUMERIC) AS $$ from crankshaft.clustering import moran_local # TODO: use named parameters or a dictionary return moran(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col) $$ LANGUAGE plpythonu; -- Moran's I Local (internal function) CREATE OR REPLACE FUNCTION _CDB_AreasOfInterestLocal( subquery TEXT, column_name TEXT, w_type TEXT, num_ngbrs INT, permutations INT, geom_col TEXT, id_col TEXT) RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) AS $$ from crankshaft.clustering import moran_local # TODO: use named parameters or a dictionary return moran_local(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col) $$ LANGUAGE plpythonu; -- Moran's I Local (public-facing function) CREATE OR REPLACE FUNCTION CDB_AreasOfInterestLocal( subquery TEXT, column_name TEXT, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) AS $$ SELECT moran, quads, significance, rowid, vals FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col); $$ LANGUAGE SQL; -- Moran's I only for HH and HL (public-facing function) CREATE OR REPLACE FUNCTION CDB_GetSpatialHotspots( subquery TEXT, column_name TEXT, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) AS $$ SELECT moran, quads, significance, rowid, vals FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col) WHERE quads IN ('HH', 'HL'); $$ LANGUAGE SQL; -- Moran's I only for LL and LH (public-facing function) CREATE OR REPLACE FUNCTION CDB_GetSpatialColdspots( subquery TEXT, attr TEXT, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) AS $$ SELECT moran, quads, significance, rowid, vals FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col) WHERE quads IN ('LL', 'LH'); $$ LANGUAGE SQL; -- Moran's I only for LH and HL (public-facing function) CREATE OR REPLACE FUNCTION CDB_GetSpatialOutliers( subquery TEXT, attr TEXT, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) AS $$ SELECT moran, quads, significance, rowid, vals FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col) WHERE quads IN ('HL', 'LH'); $$ LANGUAGE SQL; -- Moran's I Global Rate (public-facing function) CREATE OR REPLACE FUNCTION CDB_AreasOfInterestGlobalRate( subquery TEXT, numerator TEXT, denominator TEXT, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE (moran FLOAT, significance FLOAT) AS $$ from crankshaft.clustering import moran_local # TODO: use named parameters or a dictionary return moran_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col) $$ LANGUAGE plpythonu; -- Moran's I Local Rate (internal function) CREATE OR REPLACE FUNCTION _CDB_AreasOfInterestLocalRate( subquery TEXT, numerator TEXT, denominator TEXT, w_type TEXT, num_ngbrs INT, permutations INT, geom_col TEXT, id_col TEXT) RETURNS TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) AS $$ from crankshaft.clustering import moran_local_rate # TODO: use named parameters or a dictionary return moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col) $$ LANGUAGE plpythonu; -- Moran's I Local Rate (public-facing function) CREATE OR REPLACE FUNCTION CDB_AreasOfInterestLocalRate( subquery TEXT, numerator TEXT, denominator TEXT, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) AS $$ SELECT moran, quads, significance, rowid, vals FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col); $$ LANGUAGE SQL; -- Moran's I Local Rate only for HH and HL (public-facing function) CREATE OR REPLACE FUNCTION CDB_GetSpatialHotspotsRate( subquery TEXT, numerator TEXT, denominator TEXT, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) AS $$ SELECT moran, quads, significance, rowid, vals FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col) WHERE quads IN ('HH', 'HL'); $$ LANGUAGE SQL; -- Moran's I Local Rate only for LL and LH (public-facing function) CREATE OR REPLACE FUNCTION CDB_GetSpatialColdspotsRate( subquery TEXT, numerator TEXT, denominator TEXT, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) AS $$ SELECT moran, quads, significance, rowid, vals FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col) WHERE quads IN ('LL', 'LH'); $$ LANGUAGE SQL; -- Moran's I Local Rate only for LH and HL (public-facing function) CREATE OR REPLACE FUNCTION CDB_GetSpatialOutliersRate( subquery TEXT, numerator TEXT, denominator TEXT, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) AS $$ SELECT moran, quads, significance, rowid, vals FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col) WHERE quads IN ('HL', 'LH'); $$ LANGUAGE SQL; CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer,no_init integer default 20) RETURNS table (cartodb_id integer, cluster_no integer) as $$ from crankshaft.clustering import kmeans return kmeans(query,no_clusters,no_init) $$ language plpythonu; CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC) RETURNS Numeric[] AS $$ DECLARE newX NUMERIC; newY NUMERIC; newW NUMERIC; BEGIN IF weight IS NULL OR the_geom IS NULL THEN newX = state[1]; newY = state[2]; newW = state[3]; ELSE newX = state[1] + ST_X(the_geom)*weight; newY = state[2] + ST_Y(the_geom)*weight; newW = state[3] + weight; END IF; RETURN Array[newX,newY,newW]; END $$ LANGUAGE plpgsql; CREATE OR REPLACE FUNCTION CDB_WeightedMeanF(state Numeric[]) RETURNS GEOMETRY AS $$ BEGIN IF state[3] = 0 THEN RETURN ST_SetSRID(ST_MakePoint(state[1],state[2]), 4326); ELSE RETURN ST_SETSRID(ST_MakePoint(state[1]/state[3], state[2]/state[3]),4326); END IF; END $$ LANGUAGE plpgsql; CREATE AGGREGATE CDB_WeightedMean(geometry(Point, 4326), NUMERIC)( SFUNC = CDB_WeightedMeanS, FINALFUNC = CDB_WeightedMeanF, STYPE = Numeric[], INITCOND = "{0.0,0.0,0.0}" ); -- Spatial Markov -- input table format: -- id | geom | date_1 | date_2 | date_3 -- 1 | Pt1 | 12.3 | 13.1 | 14.2 -- 2 | Pt2 | 11.0 | 13.2 | 12.5 -- ... -- Sample Function call: -- SELECT CDB_SpatialMarkov('SELECT * FROM real_estate', -- Array['date_1', 'date_2', 'date_3']) CREATE OR REPLACE FUNCTION CDB_SpatialMarkovTrend ( subquery TEXT, time_cols TEXT[], num_classes INT DEFAULT 7, w_type TEXT DEFAULT 'knn', num_ngbrs INT DEFAULT 5, permutations INT DEFAULT 99, geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id') RETURNS TABLE (trend NUMERIC, trend_up NUMERIC, trend_down NUMERIC, volatility NUMERIC, rowid INT) AS $$ from crankshaft.space_time_dynamics import spatial_markov_trend ## TODO: use named parameters or a dictionary return spatial_markov_trend(subquery, time_cols, num_classes, w_type, num_ngbrs, permutations, geom_col, id_col) $$ LANGUAGE plpythonu; -- input table format: identical to above but in a predictable format -- Sample function call: -- SELECT cdb_spatial_markov('SELECT * FROM real_estate', -- 'date_1') -- CREATE OR REPLACE FUNCTION -- cdb_spatial_markov ( -- subquery TEXT, -- time_col_min text, -- time_col_max text, -- date_format text, -- '_YYYY_MM_DD' -- num_time_per_bin INT DEFAULT 1, -- permutations INT DEFAULT 99, -- geom_column TEXT DEFAULT 'the_geom', -- id_col TEXT DEFAULT 'cartodb_id', -- w_type TEXT DEFAULT 'knn', -- num_ngbrs int DEFAULT 5) -- RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT) -- AS $$ -- plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()') -- from crankshaft.clustering import moran_local -- # TODO: use named parameters or a dictionary -- return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs) -- $$ LANGUAGE plpythonu; -- -- -- input table format: -- -- id | geom | date | measurement -- -- 1 | Pt1 | 12/3 | 13.2 -- -- 2 | Pt2 | 11/5 | 11.3 -- -- 3 | Pt1 | 11/13 | 12.9 -- -- 4 | Pt3 | 12/19 | 10.1 -- -- ... -- -- CREATE OR REPLACE FUNCTION -- cdb_spatial_markov ( -- subquery TEXT, -- time_col text, -- num_time_per_bin INT DEFAULT 1, -- permutations INT DEFAULT 99, -- geom_column TEXT DEFAULT 'the_geom', -- id_col TEXT DEFAULT 'cartodb_id', -- w_type TEXT DEFAULT 'knn', -- num_ngbrs int DEFAULT 5) -- RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT) -- AS $$ -- plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()') -- from crankshaft.clustering import moran_local -- # TODO: use named parameters or a dictionary -- return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs) -- $$ LANGUAGE plpythonu; -- Function by Stuart Lynn for a simple interpolation of a value -- from a polygon table over an arbitrary polygon -- (weighted by the area proportion overlapped) -- Aereal weighting is a very simple form of aereal interpolation. -- -- Parameters: -- * geom a Polygon geometry which defines the area where a value will be -- estimated as the area-weighted sum of a given table/column -- * target_table_name table name of the table that provides the values -- * target_column column name of the column that provides the values -- * schema_name optional parameter to defina the schema the target table -- belongs to, which is necessary if its not in the search_path. -- Note that target_table_name should never include the schema in it. -- Return value: -- Aereal-weighted interpolation of the column values over the geometry CREATE OR REPLACE FUNCTION cdb_overlap_sum(geom geometry, target_table_name text, target_column text, schema_name text DEFAULT NULL) RETURNS numeric AS $$ DECLARE result numeric; qualified_name text; BEGIN IF schema_name IS NULL THEN qualified_name := Format('%I', target_table_name); ELSE qualified_name := Format('%I.%s', schema_name, target_table_name); END IF; EXECUTE Format(' SELECT sum(%I*ST_Area(St_Intersection($1, a.the_geom))/ST_Area(a.the_geom)) FROM %s AS a WHERE $1 && a.the_geom ', target_column, qualified_name) USING geom INTO result; RETURN result; END; $$ LANGUAGE plpgsql; -- -- Creates N points randomly distributed arround the polygon -- -- @param g - the geometry to be turned in to points -- -- @param no_points - the number of points to generate -- -- @params max_iter_per_point - the function generates points in the polygon's bounding box -- and discards points which don't lie in the polygon. max_iter_per_point specifies how many -- misses per point the funciton accepts before giving up. -- -- Returns: Multipoint with the requested points CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry , no_points Integer, max_iter_per_point Integer DEFAULT 1000) RETURNS GEOMETRY AS $$ DECLARE extent GEOMETRY; test_point Geometry; width NUMERIC; height NUMERIC; x0 NUMERIC; y0 NUMERIC; xp NUMERIC; yp NUMERIC; no_left INTEGER; remaining_iterations INTEGER; points GEOMETRY[]; bbox_line GEOMETRY; intersection_line GEOMETRY; BEGIN extent := ST_Envelope(geom); width := ST_XMax(extent) - ST_XMIN(extent); height := ST_YMax(extent) - ST_YMIN(extent); x0 := ST_XMin(extent); y0 := ST_YMin(extent); no_left := no_points; LOOP if(no_left=0) THEN EXIT; END IF; yp = y0 + height*random(); bbox_line = ST_MakeLine( ST_SetSRID(ST_MakePoint(yp, x0),4326), ST_SetSRID(ST_MakePoint(yp, x0+width),4326) ); intersection_line = ST_Intersection(bbox_line,geom); test_point = ST_LineInterpolatePoint(st_makeline(st_linemerge(intersection_line)),random()); points := points || test_point; no_left = no_left - 1 ; END LOOP; RETURN ST_Collect(points); END; $$ LANGUAGE plpgsql VOLATILE; -- Make sure by default there are no permissions for publicuser -- NOTE: this happens at extension creation time, as part of an implicit transaction. -- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE; -- Grant permissions on the schema to publicuser (but just the schema) GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser; -- Revoke execute permissions on all functions in the schema by default -- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;