Merge pull request #19 from CartoDB/restructure-moran-redux
Restructure moran redux
This commit is contained in:
commit
f6e8524669
@ -1,37 +1,89 @@
|
|||||||
-- Moran's I
|
-- Moran's I (global)
|
||||||
CREATE OR REPLACE FUNCTION
|
CREATE OR REPLACE FUNCTION
|
||||||
cdb_moran_local (
|
CDB_AreasOfInterest_Global (
|
||||||
t TEXT,
|
subquery TEXT,
|
||||||
attr TEXT,
|
attr_name TEXT,
|
||||||
significance float DEFAULT 0.05,
|
permutations INT DEFAULT 99,
|
||||||
num_ngbrs INT DEFAULT 5,
|
geom_col TEXT DEFAULT 'the_geom',
|
||||||
permutations INT DEFAULT 99,
|
id_col TEXT DEFAULT 'cartodb_id',
|
||||||
geom_column TEXT DEFAULT 'the_geom',
|
w_type TEXT DEFAULT 'knn',
|
||||||
id_col TEXT DEFAULT 'cartodb_id',
|
num_ngbrs INT DEFAULT 5)
|
||||||
w_type TEXT DEFAULT 'knn')
|
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
|
||||||
RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT)
|
|
||||||
AS $$
|
AS $$
|
||||||
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
|
||||||
from crankshaft.clustering import moran_local
|
from crankshaft.clustering import moran_local
|
||||||
# TODO: use named parameters or a dictionary
|
# TODO: use named parameters or a dictionary
|
||||||
return moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
|
return moran(subquery, attr, num_ngbrs, permutations, geom_col, id_col, w_type)
|
||||||
$$ LANGUAGE plpythonu;
|
$$ LANGUAGE plpythonu;
|
||||||
|
|
||||||
|
-- Moran's I Local
|
||||||
|
CREATE OR REPLACE FUNCTION
|
||||||
|
CDB_AreasOfInterest_Local(
|
||||||
|
subquery TEXT,
|
||||||
|
attr TEXT,
|
||||||
|
permutations INT DEFAULT 99,
|
||||||
|
geom_col TEXT DEFAULT 'the_geom',
|
||||||
|
id_col TEXT DEFAULT 'cartodb_id',
|
||||||
|
w_type TEXT DEFAULT 'knn',
|
||||||
|
num_ngbrs INT DEFAULT 5)
|
||||||
|
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, ids INT, y NUMERIC)
|
||||||
|
AS $$
|
||||||
|
from crankshaft.clustering import moran_local
|
||||||
|
# TODO: use named parameters or a dictionary
|
||||||
|
return moran_local(subquery, attr, permutations, geom_col, id_col, w_type, num_ngbrs)
|
||||||
|
$$ LANGUAGE plpythonu;
|
||||||
|
|
||||||
|
-- Moran's I Rate (global)
|
||||||
|
CREATE OR REPLACE FUNCTION
|
||||||
|
CDB_AreasOfInterest_Global_Rate(
|
||||||
|
subquery TEXT,
|
||||||
|
numerator TEXT,
|
||||||
|
denominator TEXT,
|
||||||
|
permutations INT DEFAULT 99,
|
||||||
|
geom_col TEXT DEFAULT 'the_geom',
|
||||||
|
id_col TEXT DEFAULT 'cartodb_id',
|
||||||
|
w_type TEXT DEFAULT 'knn',
|
||||||
|
num_ngbrs INT DEFAULT 5)
|
||||||
|
RETURNS TABLE (moran FLOAT, significance FLOAT)
|
||||||
|
AS $$
|
||||||
|
from crankshaft.clustering import moran_local
|
||||||
|
# TODO: use named parameters or a dictionary
|
||||||
|
return moran_rate(subquery, numerator, denominator, permutations, geom_col, id_col, w_type, num_ngbrs)
|
||||||
|
$$ LANGUAGE plpythonu;
|
||||||
|
|
||||||
|
|
||||||
-- Moran's I Local Rate
|
-- Moran's I Local Rate
|
||||||
CREATE OR REPLACE FUNCTION
|
CREATE OR REPLACE FUNCTION
|
||||||
cdb_moran_local_rate(t TEXT,
|
CDB_AreasOfInterest_Local_Rate(
|
||||||
numerator TEXT,
|
subquery TEXT,
|
||||||
denominator TEXT,
|
numerator TEXT,
|
||||||
significance FLOAT DEFAULT 0.05,
|
denominator TEXT,
|
||||||
num_ngbrs INT DEFAULT 5,
|
permutations INT DEFAULT 99,
|
||||||
permutations INT DEFAULT 99,
|
geom_col TEXT DEFAULT 'the_geom',
|
||||||
geom_column TEXT DEFAULT 'the_geom',
|
id_col TEXT DEFAULT 'cartodb_id',
|
||||||
id_col TEXT DEFAULT 'cartodb_id',
|
w_type TEXT DEFAULT 'knn',
|
||||||
w_type TEXT DEFAULT 'knn')
|
num_ngbrs INT DEFAULT 5)
|
||||||
RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric)
|
RETURNS
|
||||||
|
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, ids INT, y NUMERIC)
|
||||||
AS $$
|
AS $$
|
||||||
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
|
||||||
from crankshaft.clustering import moran_local_rate
|
from crankshaft.clustering import moran_local_rate
|
||||||
# TODO: use named parameters or a dictionary
|
# TODO: use named parameters or a dictionary
|
||||||
return moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
|
return moran_local_rate(subquery, numerator, denominator, permutations, geom_col, id_col, w_type, num_ngbrs)
|
||||||
$$ LANGUAGE plpythonu;
|
$$ LANGUAGE plpythonu;
|
||||||
|
|
||||||
|
-- -- Moran's I Local Bivariate
|
||||||
|
-- CREATE OR REPLACE FUNCTION
|
||||||
|
-- cdb_moran_local_bv(
|
||||||
|
-- subquery TEXT,
|
||||||
|
-- attr1 TEXT,
|
||||||
|
-- attr2 TEXT,
|
||||||
|
-- permutations INT DEFAULT 99,
|
||||||
|
-- geom_col TEXT DEFAULT 'the_geom',
|
||||||
|
-- id_col TEXT DEFAULT 'cartodb_id',
|
||||||
|
-- w_type TEXT DEFAULT 'knn',
|
||||||
|
-- num_ngbrs INT DEFAULT 5)
|
||||||
|
-- RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric)
|
||||||
|
-- AS $$
|
||||||
|
-- from crankshaft.clustering import moran_local_bv
|
||||||
|
-- # TODO: use named parameters or a dictionary
|
||||||
|
-- return moran_local_bv(t, attr1, attr2, permutations, geom_col, id_col, w_type, num_ngbrs)
|
||||||
|
-- $$ LANGUAGE plpythonu;
|
||||||
|
@ -110,7 +110,7 @@ INSERT INTO ppoints2 VALUES
|
|||||||
(24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,'24','07',0.3, 1.0),
|
(24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,'24','07',0.3, 1.0),
|
||||||
(29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,'29','01',0.3, 1.0),
|
(29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,'29','01',0.3, 1.0),
|
||||||
(52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,'52','19',0.0, 1.01)
|
(52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,'52','19',0.0, 1.01)
|
||||||
-- Moral functions perform some nondeterministic computations
|
-- Areas of Interest functions perform some nondeterministic computations
|
||||||
-- (to estimate the significance); we will set the seeds for the RNGs
|
-- (to estimate the significance); we will set the seeds for the RNGs
|
||||||
-- that affect those results to have repeateble results
|
-- that affect those results to have repeateble results
|
||||||
SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
||||||
@ -121,18 +121,64 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
|||||||
|
|
||||||
SELECT ppoints.code, m.quads
|
SELECT ppoints.code, m.quads
|
||||||
FROM ppoints
|
FROM ppoints
|
||||||
JOIN cdb_crankshaft.cdb_moran_local('SELECT * FROM ppoints', 'value') m
|
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local('SELECT * FROM ppoints', 'value') m
|
||||||
ON ppoints.cartodb_id = m.ids
|
ON ppoints.cartodb_id = m.ids
|
||||||
ORDER BY ppoints.code;
|
ORDER BY ppoints.code;
|
||||||
NOTICE: ** Constructing query
|
|
||||||
CONTEXT: PL/Python function "cdb_moran_local"
|
|
||||||
NOTICE: ** Query failed: "SELECT i."cartodb_id" As id, i."value"::numeric As attr1, (SELECT ARRAY(SELECT j."cartodb_id" FROM "(SELECT * FROM ppoints)" As j WHERE j."value" IS NOT NULL ORDER BY j."the_geom" <-> i."the_geom" ASC LIMIT 5 OFFSET 1 ) ) As neighbors FROM "(SELECT * FROM ppoints)" As i WHERE i."value" IS NOT NULL ORDER BY i."cartodb_id" ASC;"
|
|
||||||
CONTEXT: PL/Python function "cdb_moran_local"
|
|
||||||
NOTICE: ** Exiting function
|
|
||||||
CONTEXT: PL/Python function "cdb_moran_local"
|
|
||||||
code | quads
|
code | quads
|
||||||
------+-------
|
------+-------
|
||||||
(0 rows)
|
01 | HH
|
||||||
|
02 | HL
|
||||||
|
03 | LL
|
||||||
|
04 | LL
|
||||||
|
05 | LH
|
||||||
|
06 | LL
|
||||||
|
07 | HH
|
||||||
|
08 | HH
|
||||||
|
09 | HH
|
||||||
|
10 | LL
|
||||||
|
11 | LL
|
||||||
|
12 | LL
|
||||||
|
13 | HL
|
||||||
|
14 | LL
|
||||||
|
15 | LL
|
||||||
|
16 | HH
|
||||||
|
17 | HH
|
||||||
|
18 | LL
|
||||||
|
19 | HH
|
||||||
|
20 | HH
|
||||||
|
21 | LL
|
||||||
|
22 | HH
|
||||||
|
23 | LL
|
||||||
|
24 | LL
|
||||||
|
25 | HH
|
||||||
|
26 | HH
|
||||||
|
27 | LL
|
||||||
|
28 | HH
|
||||||
|
29 | LL
|
||||||
|
30 | LL
|
||||||
|
31 | HH
|
||||||
|
32 | LL
|
||||||
|
33 | HL
|
||||||
|
34 | LH
|
||||||
|
35 | LL
|
||||||
|
36 | LL
|
||||||
|
37 | HL
|
||||||
|
38 | HL
|
||||||
|
39 | HH
|
||||||
|
40 | HH
|
||||||
|
41 | HL
|
||||||
|
42 | LH
|
||||||
|
43 | LH
|
||||||
|
44 | LL
|
||||||
|
45 | LH
|
||||||
|
46 | LL
|
||||||
|
47 | LL
|
||||||
|
48 | HH
|
||||||
|
49 | LH
|
||||||
|
50 | HH
|
||||||
|
51 | LL
|
||||||
|
52 | LL
|
||||||
|
(52 rows)
|
||||||
|
|
||||||
SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
||||||
_cdb_random_seeds
|
_cdb_random_seeds
|
||||||
@ -142,17 +188,61 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
|||||||
|
|
||||||
SELECT ppoints2.code, m.quads
|
SELECT ppoints2.code, m.quads
|
||||||
FROM ppoints2
|
FROM ppoints2
|
||||||
JOIN cdb_crankshaft.cdb_moran_local_rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
|
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local_Rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
|
||||||
ON ppoints2.cartodb_id = m.ids
|
ON ppoints2.cartodb_id = m.ids
|
||||||
ORDER BY ppoints2.code;
|
ORDER BY ppoints2.code;
|
||||||
NOTICE: ** Constructing query
|
code | quads
|
||||||
CONTEXT: PL/Python function "cdb_moran_local_rate"
|
------+-------
|
||||||
NOTICE: ** Query failed: "SELECT i."cartodb_id" As id, i."denominator"::numeric As attr1, i."numerator"::numeric As attr2, (SELECT ARRAY(SELECT j."cartodb_id" FROM "(SELECT * FROM ppoints2)" As j WHERE j."denominator" IS NOT NULL AND j."numerator" IS NOT NULL AND j."numerator" <> 0 ORDER BY j."the_geom" <-> i."the_geom" ASC LIMIT 5 OFFSET 1 ) ) As neighbors FROM "(SELECT * FROM ppoints2)" As i WHERE i."denominator" IS NOT NULL AND i."numerator" IS NOT NULL AND i."numerator" <> 0 ORDER BY i."cartodb_id" ASC;"
|
01 | LL
|
||||||
CONTEXT: PL/Python function "cdb_moran_local_rate"
|
02 | LH
|
||||||
NOTICE: ** Error: <class 'plpy.SPIError'>
|
03 | HH
|
||||||
CONTEXT: PL/Python function "cdb_moran_local_rate"
|
04 | HH
|
||||||
NOTICE: ** Exiting function
|
05 | LL
|
||||||
CONTEXT: PL/Python function "cdb_moran_local_rate"
|
06 | HH
|
||||||
ERROR: length of returned sequence did not match number of columns in row
|
07 | LL
|
||||||
CONTEXT: while creating return value
|
08 | LL
|
||||||
PL/Python function "cdb_moran_local_rate"
|
09 | LL
|
||||||
|
10 | HH
|
||||||
|
11 | HH
|
||||||
|
12 | HL
|
||||||
|
13 | LL
|
||||||
|
14 | HH
|
||||||
|
15 | LL
|
||||||
|
16 | LL
|
||||||
|
17 | LL
|
||||||
|
18 | LH
|
||||||
|
19 | LL
|
||||||
|
20 | LL
|
||||||
|
21 | HH
|
||||||
|
22 | LL
|
||||||
|
23 | HL
|
||||||
|
24 | LL
|
||||||
|
25 | LL
|
||||||
|
26 | LL
|
||||||
|
27 | LL
|
||||||
|
28 | LL
|
||||||
|
29 | LH
|
||||||
|
30 | HH
|
||||||
|
31 | LL
|
||||||
|
32 | LL
|
||||||
|
33 | LL
|
||||||
|
34 | LL
|
||||||
|
35 | LH
|
||||||
|
36 | HL
|
||||||
|
37 | LH
|
||||||
|
38 | LH
|
||||||
|
39 | LL
|
||||||
|
40 | LL
|
||||||
|
41 | LH
|
||||||
|
42 | HL
|
||||||
|
43 | LL
|
||||||
|
44 | HL
|
||||||
|
45 | LL
|
||||||
|
46 | HL
|
||||||
|
47 | LL
|
||||||
|
48 | LL
|
||||||
|
49 | HL
|
||||||
|
50 | LL
|
||||||
|
51 | HH
|
||||||
|
(51 rows)
|
||||||
|
|
||||||
|
@ -1,14 +1,14 @@
|
|||||||
\i test/fixtures/ppoints.sql
|
\i test/fixtures/ppoints.sql
|
||||||
\i test/fixtures/ppoints2.sql
|
\i test/fixtures/ppoints2.sql
|
||||||
|
|
||||||
-- Moral functions perform some nondeterministic computations
|
-- Areas of Interest functions perform some nondeterministic computations
|
||||||
-- (to estimate the significance); we will set the seeds for the RNGs
|
-- (to estimate the significance); we will set the seeds for the RNGs
|
||||||
-- that affect those results to have repeateble results
|
-- that affect those results to have repeateble results
|
||||||
SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
||||||
|
|
||||||
SELECT ppoints.code, m.quads
|
SELECT ppoints.code, m.quads
|
||||||
FROM ppoints
|
FROM ppoints
|
||||||
JOIN cdb_crankshaft.cdb_moran_local('SELECT * FROM ppoints', 'value') m
|
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local('SELECT * FROM ppoints', 'value') m
|
||||||
ON ppoints.cartodb_id = m.ids
|
ON ppoints.cartodb_id = m.ids
|
||||||
ORDER BY ppoints.code;
|
ORDER BY ppoints.code;
|
||||||
|
|
||||||
@ -16,6 +16,6 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
|||||||
|
|
||||||
SELECT ppoints2.code, m.quads
|
SELECT ppoints2.code, m.quads
|
||||||
FROM ppoints2
|
FROM ppoints2
|
||||||
JOIN cdb_crankshaft.cdb_moran_local_rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
|
JOIN cdb_crankshaft.CDB_AreasOfInterest_Local_Rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
|
||||||
ON ppoints2.cartodb_id = m.ids
|
ON ppoints2.cartodb_id = m.ids
|
||||||
ORDER BY ppoints2.code;
|
ORDER BY ppoints2.code;
|
||||||
|
@ -9,7 +9,7 @@ SET search_path TO public,cartodb,cdb_crankshaft;
|
|||||||
-- Exercise public functions
|
-- Exercise public functions
|
||||||
SELECT ppoints.code, m.quads
|
SELECT ppoints.code, m.quads
|
||||||
FROM ppoints
|
FROM ppoints
|
||||||
JOIN cdb_moran_local('ppoints', 'value') m
|
JOIN CDB_AreasOfInterest_Local('ppoints', 'value') m
|
||||||
ON ppoints.cartodb_id = m.ids
|
ON ppoints.cartodb_id = m.ids
|
||||||
ORDER BY ppoints.code;
|
ORDER BY ppoints.code;
|
||||||
SELECT round(cdb_overlap_sum(
|
SELECT round(cdb_overlap_sum(
|
||||||
|
@ -5,143 +5,226 @@ Moran's I geostatistics (global clustering & outliers presence)
|
|||||||
# TODO: Fill in local neighbors which have null/NoneType values with the
|
# TODO: Fill in local neighbors which have null/NoneType values with the
|
||||||
# average of the their neighborhood
|
# average of the their neighborhood
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import pysal as ps
|
import pysal as ps
|
||||||
import plpy
|
import plpy
|
||||||
|
|
||||||
|
# crankshaft module
|
||||||
|
import crankshaft.pysal_utils as pu
|
||||||
|
|
||||||
# High level interface ---------------------------------------
|
# High level interface ---------------------------------------
|
||||||
|
|
||||||
def moran_local(subquery, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
|
def moran(subquery, attr_name,
|
||||||
|
permutations, geom_col, id_col, w_type, num_ngbrs):
|
||||||
|
"""
|
||||||
|
Moran's I (global)
|
||||||
|
Implementation building neighbors with a PostGIS database and Moran's I
|
||||||
|
core clusters with PySAL.
|
||||||
|
Andy Eschbacher
|
||||||
|
"""
|
||||||
|
qvals = {"id_col": id_col,
|
||||||
|
"attr1": attr_name,
|
||||||
|
"geom_col": geom_col,
|
||||||
|
"subquery": subquery,
|
||||||
|
"num_ngbrs": num_ngbrs}
|
||||||
|
|
||||||
|
query = pu.construct_neighbor_query(w_type, qvals)
|
||||||
|
|
||||||
|
plpy.notice('** Query: %s' % query)
|
||||||
|
|
||||||
|
try:
|
||||||
|
result = plpy.execute(query)
|
||||||
|
# if there are no neighbors, exit
|
||||||
|
if len(result) == 0:
|
||||||
|
return pu.empty_zipped_array(2)
|
||||||
|
plpy.notice('** Query returned with %d rows' % len(result))
|
||||||
|
except plpy.SPIError:
|
||||||
|
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||||
|
plpy.notice('** Query failed: "%s"' % query)
|
||||||
|
plpy.notice('** Error: %s' % plpy.SPIError)
|
||||||
|
return pu.empty_zipped_array(2)
|
||||||
|
|
||||||
|
## collect attributes
|
||||||
|
attr_vals = pu.get_attributes(result)
|
||||||
|
|
||||||
|
## calculate weights
|
||||||
|
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||||
|
|
||||||
|
## calculate moran global
|
||||||
|
moran_global = ps.esda.moran.Moran(attr_vals, weight,
|
||||||
|
permutations=permutations)
|
||||||
|
|
||||||
|
return zip([moran_global.I], [moran_global.EI])
|
||||||
|
|
||||||
|
def moran_local(subquery, attr,
|
||||||
|
permutations, geom_col, id_col, w_type, num_ngbrs):
|
||||||
"""
|
"""
|
||||||
Moran's I implementation for PL/Python
|
Moran's I implementation for PL/Python
|
||||||
Andy Eschbacher
|
Andy Eschbacher
|
||||||
"""
|
"""
|
||||||
# TODO: ensure that the significance output can be smaller that 1e-3 (0.001)
|
|
||||||
# TODO: make a wishlist of output features (zscores, pvalues, raw local lisa, what else?)
|
|
||||||
|
|
||||||
plpy.notice('** Constructing query')
|
|
||||||
|
|
||||||
# geometries with attributes that are null are ignored
|
# geometries with attributes that are null are ignored
|
||||||
# resulting in a collection of not as near neighbors
|
# resulting in a collection of not as near neighbors
|
||||||
|
|
||||||
qvals = {"id_col": id_col,
|
qvals = {"id_col": id_col,
|
||||||
"attr1": attr,
|
"attr1": attr,
|
||||||
"geom_col": geom_column,
|
"geom_col": geom_col,
|
||||||
"subquery": subquery,
|
"subquery": subquery,
|
||||||
"num_ngbrs": num_ngbrs}
|
"num_ngbrs": num_ngbrs}
|
||||||
|
|
||||||
q = get_query(w_type, qvals)
|
query = pu.construct_neighbor_query(w_type, qvals)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
r = plpy.execute(q)
|
result = plpy.execute(query)
|
||||||
plpy.notice('** Query returned with %d rows' % len(r))
|
# if there are no neighbors, exit
|
||||||
|
if len(result) == 0:
|
||||||
|
return pu.empty_zipped_array(5)
|
||||||
except plpy.SPIError:
|
except plpy.SPIError:
|
||||||
plpy.notice('** Query failed: "%s"' % q)
|
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||||
plpy.notice('** Exiting function')
|
plpy.notice('** Query failed: "%s"' % query)
|
||||||
return zip([None], [None], [None], [None])
|
return pu.empty_zipped_array(5)
|
||||||
|
|
||||||
y = get_attributes(r, 1)
|
attr_vals = pu.get_attributes(result)
|
||||||
w = get_weight(r, w_type)
|
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||||
|
|
||||||
# calculate LISA values
|
# calculate LISA values
|
||||||
lisa = ps.Moran_Local(y, w)
|
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
|
||||||
|
permutations=permutations)
|
||||||
|
|
||||||
# find units of significance
|
# find quadrants for each geometry
|
||||||
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
|
quads = quad_position(lisa.q)
|
||||||
|
|
||||||
plpy.notice('** Finished calculations')
|
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||||
|
|
||||||
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order)
|
def moran_rate(subquery, numerator, denominator,
|
||||||
|
permutations, geom_col, id_col, w_type, num_ngbrs):
|
||||||
|
|
||||||
def moran_local_rate(subquery, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
|
|
||||||
"""
|
"""
|
||||||
Moran's I Local Rate
|
Moran's I Rate (global)
|
||||||
Andy Eschbacher
|
Andy Eschbacher
|
||||||
"""
|
"""
|
||||||
|
|
||||||
plpy.notice('** Constructing query')
|
|
||||||
|
|
||||||
# geometries with attributes that are null are ignored
|
|
||||||
# resulting in a collection of not as near neighbors
|
|
||||||
|
|
||||||
qvals = {"id_col": id_col,
|
qvals = {"id_col": id_col,
|
||||||
"numerator": numerator,
|
"attr1": numerator,
|
||||||
"denominator": denominator,
|
"attr2": denominator,
|
||||||
"geom_col": geom_column,
|
"geom_col": geom_col,
|
||||||
"subquery": subquery,
|
"subquery": subquery,
|
||||||
"num_ngbrs": num_ngbrs}
|
"num_ngbrs": num_ngbrs}
|
||||||
|
|
||||||
q = get_query(w_type, qvals)
|
query = pu.construct_neighbor_query(w_type, qvals)
|
||||||
|
|
||||||
|
plpy.notice('** Query: %s' % query)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
r = plpy.execute(q)
|
result = plpy.execute(query)
|
||||||
plpy.notice('** Query returned with %d rows' % len(r))
|
# if there are no neighbors, exit
|
||||||
|
if len(result) == 0:
|
||||||
|
return pu.empty_zipped_array(2)
|
||||||
|
plpy.notice('** Query returned with %d rows' % len(result))
|
||||||
except plpy.SPIError:
|
except plpy.SPIError:
|
||||||
plpy.notice('** Query failed: "%s"' % q)
|
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||||
|
plpy.notice('** Query failed: "%s"' % query)
|
||||||
plpy.notice('** Error: %s' % plpy.SPIError)
|
plpy.notice('** Error: %s' % plpy.SPIError)
|
||||||
plpy.notice('** Exiting function')
|
return pu.empty_zipped_array(2)
|
||||||
return zip([None], [None], [None], [None])
|
|
||||||
|
|
||||||
plpy.notice('r.nrows() = %d' % r.nrows())
|
|
||||||
|
|
||||||
## collect attributes
|
## collect attributes
|
||||||
numer = get_attributes(r, 1)
|
numer = pu.get_attributes(result, 1)
|
||||||
denom = get_attributes(r, 2)
|
denom = pu.get_attributes(result, 2)
|
||||||
|
|
||||||
w = get_weight(r, w_type, num_ngbrs)
|
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||||
|
|
||||||
|
## calculate moran global rate
|
||||||
|
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
|
||||||
|
permutations=permutations)
|
||||||
|
|
||||||
|
return zip([lisa_rate.I], [lisa_rate.EI])
|
||||||
|
|
||||||
|
def moran_local_rate(subquery, numerator, denominator,
|
||||||
|
permutations, geom_col, id_col, w_type, num_ngbrs):
|
||||||
|
"""
|
||||||
|
Moran's I Local Rate
|
||||||
|
Andy Eschbacher
|
||||||
|
"""
|
||||||
|
# geometries with values that are null are ignored
|
||||||
|
# resulting in a collection of not as near neighbors
|
||||||
|
|
||||||
|
query = pu.construct_neighbor_query(w_type,
|
||||||
|
{"id_col": id_col,
|
||||||
|
"numerator": numerator,
|
||||||
|
"denominator": denominator,
|
||||||
|
"geom_col": geom_col,
|
||||||
|
"subquery": subquery,
|
||||||
|
"num_ngbrs": num_ngbrs})
|
||||||
|
|
||||||
|
try:
|
||||||
|
result = plpy.execute(query)
|
||||||
|
# if there are no neighbors, exit
|
||||||
|
if len(result) == 0:
|
||||||
|
return pu.empty_zipped_array(5)
|
||||||
|
except plpy.SPIError:
|
||||||
|
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||||
|
plpy.notice('** Query failed: "%s"' % query)
|
||||||
|
plpy.notice('** Error: %s' % plpy.SPIError)
|
||||||
|
return pu.empty_zipped_array(5)
|
||||||
|
|
||||||
|
## collect attributes
|
||||||
|
numer = pu.get_attributes(result, 1)
|
||||||
|
denom = pu.get_attributes(result, 2)
|
||||||
|
|
||||||
|
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||||
|
|
||||||
# calculate LISA values
|
# calculate LISA values
|
||||||
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, w, permutations=permutations)
|
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
|
||||||
|
permutations=permutations)
|
||||||
|
|
||||||
# find units of significance
|
# find units of significance
|
||||||
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
|
quads = quad_position(lisa.q)
|
||||||
|
|
||||||
plpy.notice('** Finished calculations')
|
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||||
|
|
||||||
## TODO: Decide on which return values here
|
def moran_local_bv(subquery, attr1, attr2,
|
||||||
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order, lisa.y)
|
permutations, geom_col, id_col, w_type, num_ngbrs):
|
||||||
|
"""
|
||||||
def moran_local_bv(t, attr1, attr2, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
|
Moran's I (local) Bivariate (untested)
|
||||||
|
"""
|
||||||
plpy.notice('** Constructing query')
|
plpy.notice('** Constructing query')
|
||||||
|
|
||||||
qvals = {"num_ngbrs": num_ngbrs,
|
qvals = {"num_ngbrs": num_ngbrs,
|
||||||
"attr1": attr1,
|
"attr1": attr1,
|
||||||
"attr2": attr2,
|
"attr2": attr2,
|
||||||
"table": t,
|
"subquery": subquery,
|
||||||
"geom_col": geom_column,
|
"geom_col": geom_col,
|
||||||
"id_col": id_col}
|
"id_col": id_col}
|
||||||
|
|
||||||
q = get_query(w_type, qvals)
|
query = pu.construct_neighbor_query(w_type, qvals)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
r = plpy.execute(q)
|
result = plpy.execute(query)
|
||||||
plpy.notice('** Query returned with %d rows' % len(r))
|
# if there are no neighbors, exit
|
||||||
|
if len(result) == 0:
|
||||||
|
return pu.empty_zipped_array(4)
|
||||||
except plpy.SPIError:
|
except plpy.SPIError:
|
||||||
plpy.notice('** Query failed: "%s"' % q)
|
plpy.error("Error: areas of interest query failed, " \
|
||||||
plpy.notice('** Error: %s' % plpy.SPIError)
|
"check input parameters")
|
||||||
plpy.notice('** Exiting function')
|
plpy.notice('** Query failed: "%s"' % query)
|
||||||
return zip([None], [None], [None], [None])
|
return pu.empty_zipped_array(4)
|
||||||
|
|
||||||
## collect attributes
|
## collect attributes
|
||||||
attr1_vals = get_attributes(r, 1)
|
attr1_vals = pu.get_attributes(result, 1)
|
||||||
attr2_vals = get_attributes(r, 2)
|
attr2_vals = pu.get_attributes(result, 2)
|
||||||
|
|
||||||
# create weights
|
# create weights
|
||||||
w = get_weight(r, w_type, num_ngbrs)
|
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||||
|
|
||||||
# calculate LISA values
|
# calculate LISA values
|
||||||
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, w)
|
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
|
||||||
|
permutations=permutations)
|
||||||
|
|
||||||
plpy.notice("len of Is: %d" % len(lisa.Is))
|
plpy.notice("len of Is: %d" % len(lisa.Is))
|
||||||
|
|
||||||
# find clustering of significance
|
# find clustering of significance
|
||||||
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance)
|
lisa_sig = quad_position(lisa.q)
|
||||||
|
|
||||||
plpy.notice('** Finished calculations')
|
plpy.notice('** Finished calculations')
|
||||||
|
|
||||||
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order)
|
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
|
||||||
|
|
||||||
|
|
||||||
# Low level functions ----------------------------------------
|
# Low level functions ----------------------------------------
|
||||||
|
|
||||||
@ -150,7 +233,9 @@ def map_quads(coord):
|
|||||||
Map a quadrant number to Moran's I designation
|
Map a quadrant number to Moran's I designation
|
||||||
HH=1, LH=2, LL=3, HL=4
|
HH=1, LH=2, LL=3, HL=4
|
||||||
Input:
|
Input:
|
||||||
:param coord (int): quadrant of a specific measurement
|
@param coord (int): quadrant of a specific measurement
|
||||||
|
Output:
|
||||||
|
classification (one of 'HH', 'LH', 'LL', or 'HL')
|
||||||
"""
|
"""
|
||||||
if coord == 1:
|
if coord == 1:
|
||||||
return 'HH'
|
return 'HH'
|
||||||
@ -163,159 +248,13 @@ def map_quads(coord):
|
|||||||
else:
|
else:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
def query_attr_select(params):
|
|
||||||
"""
|
|
||||||
Create portion of SELECT statement for attributes inolved in query.
|
|
||||||
:param params: dict of information used in query (column names,
|
|
||||||
table name, etc.)
|
|
||||||
"""
|
|
||||||
|
|
||||||
attrs = [k for k in params
|
|
||||||
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs', 'subquery')]
|
|
||||||
|
|
||||||
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
|
|
||||||
|
|
||||||
attr_string = ""
|
|
||||||
|
|
||||||
for idx, val in enumerate(sorted(attrs)):
|
|
||||||
attr_string += template % {"col": val, "alias_num": idx + 1}
|
|
||||||
|
|
||||||
return attr_string
|
|
||||||
|
|
||||||
def query_attr_where(params):
|
|
||||||
"""
|
|
||||||
Create portion of WHERE clauses for weeding out NULL-valued geometries
|
|
||||||
"""
|
|
||||||
attrs = sorted([k for k in params
|
|
||||||
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs', 'subquery')])
|
|
||||||
|
|
||||||
attr_string = []
|
|
||||||
|
|
||||||
for attr in attrs:
|
|
||||||
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
|
|
||||||
|
|
||||||
if len(attrs) == 2:
|
|
||||||
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
|
|
||||||
|
|
||||||
out = " AND ".join(attr_string)
|
|
||||||
|
|
||||||
return out
|
|
||||||
|
|
||||||
def knn(params):
|
|
||||||
"""SQL query for k-nearest neighbors.
|
|
||||||
:param vars: dict of values to fill template
|
|
||||||
"""
|
|
||||||
|
|
||||||
attr_select = query_attr_select(params)
|
|
||||||
attr_where = query_attr_where(params)
|
|
||||||
|
|
||||||
replacements = {"attr_select": attr_select,
|
|
||||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
|
||||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
|
||||||
|
|
||||||
query = "SELECT " \
|
|
||||||
"i.\"{id_col}\" As id, " \
|
|
||||||
"%(attr_select)s" \
|
|
||||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
|
||||||
"FROM \"({subquery})\" As j " \
|
|
||||||
"WHERE %(attr_where_j)s " \
|
|
||||||
"ORDER BY j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
|
|
||||||
"LIMIT {num_ngbrs} OFFSET 1 ) " \
|
|
||||||
") As neighbors " \
|
|
||||||
"FROM \"({subquery})\" As i " \
|
|
||||||
"WHERE " \
|
|
||||||
"%(attr_where_i)s " \
|
|
||||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
|
||||||
|
|
||||||
return query.format(**params)
|
|
||||||
|
|
||||||
## SQL query for finding queens neighbors (all contiguous polygons)
|
|
||||||
def queen(params):
|
|
||||||
"""SQL query for queen neighbors.
|
|
||||||
:param params: dict of information to fill query
|
|
||||||
"""
|
|
||||||
attr_select = query_attr_select(params)
|
|
||||||
attr_where = query_attr_where(params)
|
|
||||||
|
|
||||||
replacements = {"attr_select": attr_select,
|
|
||||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
|
||||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
|
||||||
|
|
||||||
query = "SELECT " \
|
|
||||||
"i.\"{id_col}\" As id, " \
|
|
||||||
"%(attr_select)s" \
|
|
||||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
|
||||||
"FROM \"({subquery})\" As j " \
|
|
||||||
"WHERE ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
|
|
||||||
"%(attr_where_j)s)" \
|
|
||||||
") As neighbors " \
|
|
||||||
"FROM \"({subquery})\" As i " \
|
|
||||||
"WHERE " \
|
|
||||||
"%(attr_where_i)s " \
|
|
||||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
|
||||||
|
|
||||||
return query.format(**params)
|
|
||||||
|
|
||||||
## to add more weight methods open a ticket or pull request
|
|
||||||
|
|
||||||
def get_query(w_type, query_vals):
|
|
||||||
"""Return requested query.
|
|
||||||
:param w_type: type of neighbors to calculate (knn or queen)
|
|
||||||
:param query_vals: values used to construct the query
|
|
||||||
"""
|
|
||||||
|
|
||||||
if w_type == 'knn':
|
|
||||||
return knn(query_vals)
|
|
||||||
else:
|
|
||||||
return queen(query_vals)
|
|
||||||
|
|
||||||
def get_attributes(query_res, attr_num):
|
|
||||||
"""
|
|
||||||
:param query_res: query results with attributes and neighbors
|
|
||||||
:param attr_num: attribute number (1, 2, ...)
|
|
||||||
"""
|
|
||||||
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
|
|
||||||
|
|
||||||
## Build weight object
|
|
||||||
def get_weight(query_res, w_type='queen', num_ngbrs=5):
|
|
||||||
"""
|
|
||||||
Construct PySAL weight from return value of query
|
|
||||||
:param query_res: query results with attributes and neighbors
|
|
||||||
"""
|
|
||||||
if w_type == 'knn':
|
|
||||||
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
|
|
||||||
weights = {x['id']: row_normed_weights for x in query_res}
|
|
||||||
elif w_type == 'queen':
|
|
||||||
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
|
|
||||||
if len(x['neighbors']) > 0
|
|
||||||
else [] for x in query_res}
|
|
||||||
|
|
||||||
neighbors = {x['id']: x['neighbors'] for x in query_res}
|
|
||||||
|
|
||||||
return ps.W(neighbors, weights)
|
|
||||||
|
|
||||||
def quad_position(quads):
|
def quad_position(quads):
|
||||||
"""
|
"""
|
||||||
Produce Moran's I classification based of n
|
Produce Moran's I classification based of n
|
||||||
|
Input:
|
||||||
|
@param quads ndarray: an array of quads classified by
|
||||||
|
1-4 (PySAL default)
|
||||||
|
Output:
|
||||||
|
@param list: an array of quads classied by 'HH', 'LL', etc.
|
||||||
"""
|
"""
|
||||||
|
return [map_quads(q) for q in quads]
|
||||||
lisa_sig = np.array([map_quads(q) for q in quads])
|
|
||||||
|
|
||||||
return lisa_sig
|
|
||||||
|
|
||||||
def lisa_sig_vals(pvals, quads, threshold):
|
|
||||||
"""
|
|
||||||
Produce Moran's I classification based of n
|
|
||||||
"""
|
|
||||||
|
|
||||||
sig = (pvals <= threshold)
|
|
||||||
|
|
||||||
lisa_sig = np.empty(len(sig), np.chararray)
|
|
||||||
|
|
||||||
for idx, val in enumerate(sig):
|
|
||||||
if val:
|
|
||||||
lisa_sig[idx] = map_quads(quads[idx])
|
|
||||||
else:
|
|
||||||
lisa_sig[idx] = 'Not significant'
|
|
||||||
|
|
||||||
return lisa_sig
|
|
||||||
|
1
src/py/crankshaft/crankshaft/pysal_utils/__init__.py
Normal file
1
src/py/crankshaft/crankshaft/pysal_utils/__init__.py
Normal file
@ -0,0 +1 @@
|
|||||||
|
from pysal_utils import *
|
149
src/py/crankshaft/crankshaft/pysal_utils/pysal_utils.py
Normal file
149
src/py/crankshaft/crankshaft/pysal_utils/pysal_utils.py
Normal file
@ -0,0 +1,149 @@
|
|||||||
|
"""
|
||||||
|
Utilities module for generic PySAL functionality, mainly centered on translating queries into numpy arrays or PySAL weights objects
|
||||||
|
"""
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import pysal as ps
|
||||||
|
|
||||||
|
def construct_neighbor_query(w_type, query_vals):
|
||||||
|
"""Return query (a string) used for finding neighbors
|
||||||
|
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
|
||||||
|
@param query_vals dict: values used to construct the query
|
||||||
|
"""
|
||||||
|
|
||||||
|
if w_type == 'knn':
|
||||||
|
return knn(query_vals)
|
||||||
|
else:
|
||||||
|
return queen(query_vals)
|
||||||
|
|
||||||
|
## Build weight object
|
||||||
|
def get_weight(query_res, w_type='knn', num_ngbrs=5):
|
||||||
|
"""
|
||||||
|
Construct PySAL weight from return value of query
|
||||||
|
@param query_res: query results with attributes and neighbors
|
||||||
|
"""
|
||||||
|
if w_type == 'knn':
|
||||||
|
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
|
||||||
|
weights = {x['id']: row_normed_weights for x in query_res}
|
||||||
|
else:
|
||||||
|
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
|
||||||
|
if len(x['neighbors']) > 0
|
||||||
|
else [] for x in query_res}
|
||||||
|
|
||||||
|
neighbors = {x['id']: x['neighbors'] for x in query_res}
|
||||||
|
|
||||||
|
return ps.W(neighbors, weights)
|
||||||
|
|
||||||
|
def query_attr_select(params):
|
||||||
|
"""
|
||||||
|
Create portion of SELECT statement for attributes inolved in query.
|
||||||
|
@param params: dict of information used in query (column names,
|
||||||
|
table name, etc.)
|
||||||
|
"""
|
||||||
|
|
||||||
|
attrs = [k for k in params
|
||||||
|
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')]
|
||||||
|
|
||||||
|
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
|
||||||
|
|
||||||
|
attr_string = ""
|
||||||
|
|
||||||
|
for idx, val in enumerate(sorted(attrs)):
|
||||||
|
attr_string += template % {"col": val, "alias_num": idx + 1}
|
||||||
|
|
||||||
|
return attr_string
|
||||||
|
|
||||||
|
def query_attr_where(params):
|
||||||
|
"""
|
||||||
|
Create portion of WHERE clauses for weeding out NULL-valued geometries
|
||||||
|
"""
|
||||||
|
attrs = sorted([k for k in params
|
||||||
|
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')])
|
||||||
|
|
||||||
|
attr_string = []
|
||||||
|
|
||||||
|
for attr in attrs:
|
||||||
|
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
|
||||||
|
|
||||||
|
if len(attrs) == 2:
|
||||||
|
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
|
||||||
|
|
||||||
|
out = " AND ".join(attr_string)
|
||||||
|
|
||||||
|
return out
|
||||||
|
|
||||||
|
def knn(params):
|
||||||
|
"""SQL query for k-nearest neighbors.
|
||||||
|
@param vars: dict of values to fill template
|
||||||
|
"""
|
||||||
|
|
||||||
|
attr_select = query_attr_select(params)
|
||||||
|
attr_where = query_attr_where(params)
|
||||||
|
|
||||||
|
replacements = {"attr_select": attr_select,
|
||||||
|
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||||
|
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||||
|
|
||||||
|
query = "SELECT " \
|
||||||
|
"i.\"{id_col}\" As id, " \
|
||||||
|
"%(attr_select)s" \
|
||||||
|
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||||
|
"FROM ({subquery}) As j " \
|
||||||
|
"WHERE %(attr_where_j)s AND " \
|
||||||
|
"i.\"{id_col}\" <> j.\"{id_col}\" " \
|
||||||
|
"ORDER BY j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
|
||||||
|
"LIMIT {num_ngbrs})" \
|
||||||
|
") As neighbors " \
|
||||||
|
"FROM ({subquery}) As i " \
|
||||||
|
"WHERE " \
|
||||||
|
"%(attr_where_i)s " \
|
||||||
|
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||||
|
|
||||||
|
return query.format(**params)
|
||||||
|
|
||||||
|
## SQL query for finding queens neighbors (all contiguous polygons)
|
||||||
|
def queen(params):
|
||||||
|
"""SQL query for queen neighbors.
|
||||||
|
@param params dict: information to fill query
|
||||||
|
"""
|
||||||
|
attr_select = query_attr_select(params)
|
||||||
|
attr_where = query_attr_where(params)
|
||||||
|
|
||||||
|
replacements = {"attr_select": attr_select,
|
||||||
|
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||||
|
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||||
|
|
||||||
|
query = "SELECT " \
|
||||||
|
"i.\"{id_col}\" As id, " \
|
||||||
|
"%(attr_select)s" \
|
||||||
|
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||||
|
"FROM ({subquery}) As j " \
|
||||||
|
"WHERE ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
|
||||||
|
"%(attr_where_j)s)" \
|
||||||
|
") As neighbors " \
|
||||||
|
"FROM ({subquery}) As i " \
|
||||||
|
"WHERE " \
|
||||||
|
"%(attr_where_i)s " \
|
||||||
|
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||||
|
|
||||||
|
return query.format(**params)
|
||||||
|
|
||||||
|
## to add more weight methods open a ticket or pull request
|
||||||
|
|
||||||
|
def get_attributes(query_res, attr_num=1):
|
||||||
|
"""
|
||||||
|
@param query_res: query results with attributes and neighbors
|
||||||
|
@param attr_num: attribute number (1, 2, ...)
|
||||||
|
"""
|
||||||
|
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
|
||||||
|
|
||||||
|
def empty_zipped_array(num_nones):
|
||||||
|
"""
|
||||||
|
prepare return values for cases of empty weights objects (no neighbors)
|
||||||
|
Input:
|
||||||
|
@param num_nones int: number of columns (e.g., 4)
|
||||||
|
Output:
|
||||||
|
[(None, None, None, None)]
|
||||||
|
"""
|
||||||
|
|
||||||
|
return [tuple([None] * num_nones)]
|
70
src/py/crankshaft/test/fixtures/moran.json
vendored
70
src/py/crankshaft/test/fixtures/moran.json
vendored
@ -1,52 +1,52 @@
|
|||||||
[[0.9319096128346788, "HH"],
|
[[0.9319096128346788, "HH"],
|
||||||
[-1.135787401862846, "HL"],
|
[-1.135787401862846, "HL"],
|
||||||
[0.11732030672508517, "Not significant"],
|
[0.11732030672508517, "LL"],
|
||||||
[0.6152779669180425, "Not significant"],
|
[0.6152779669180425, "LL"],
|
||||||
[-0.14657336660125297, "Not significant"],
|
[-0.14657336660125297, "LH"],
|
||||||
[0.6967858120189607, "Not significant"],
|
[0.6967858120189607, "LL"],
|
||||||
[0.07949310115714454, "Not significant"],
|
[0.07949310115714454, "HH"],
|
||||||
[0.4703198759258987, "Not significant"],
|
[0.4703198759258987, "HH"],
|
||||||
[0.4421125200498064, "Not significant"],
|
[0.4421125200498064, "HH"],
|
||||||
[0.5724288737143592, "Not significant"],
|
[0.5724288737143592, "LL"],
|
||||||
[0.8970743435692062, "LL"],
|
[0.8970743435692062, "LL"],
|
||||||
[0.18327334401918674, "Not significant"],
|
[0.18327334401918674, "LL"],
|
||||||
[-0.01466729201304962, "Not significant"],
|
[-0.01466729201304962, "HL"],
|
||||||
[0.3481559372544409, "Not significant"],
|
[0.3481559372544409, "LL"],
|
||||||
[0.06547094736902978, "Not significant"],
|
[0.06547094736902978, "LL"],
|
||||||
[0.15482141569329988, "HH"],
|
[0.15482141569329988, "HH"],
|
||||||
[0.4373841193538136, "Not significant"],
|
[0.4373841193538136, "HH"],
|
||||||
[0.15971286468915544, "Not significant"],
|
[0.15971286468915544, "LL"],
|
||||||
[1.0543588860308968, "Not significant"],
|
[1.0543588860308968, "HH"],
|
||||||
[1.7372866900020818, "HH"],
|
[1.7372866900020818, "HH"],
|
||||||
[1.091998586053999, "LL"],
|
[1.091998586053999, "LL"],
|
||||||
[0.1171572584252222, "Not significant"],
|
[0.1171572584252222, "HH"],
|
||||||
[0.08438455015300014, "Not significant"],
|
[0.08438455015300014, "LL"],
|
||||||
[0.06547094736902978, "Not significant"],
|
[0.06547094736902978, "LL"],
|
||||||
[0.15482141569329985, "HH"],
|
[0.15482141569329985, "HH"],
|
||||||
[1.1627044812890683, "HH"],
|
[1.1627044812890683, "HH"],
|
||||||
[0.06547094736902978, "Not significant"],
|
[0.06547094736902978, "LL"],
|
||||||
[0.795275137550483, "Not significant"],
|
[0.795275137550483, "HH"],
|
||||||
[0.18562939195219, "LL"],
|
[0.18562939195219, "LL"],
|
||||||
[0.3010757406693439, "Not significant"],
|
[0.3010757406693439, "LL"],
|
||||||
[2.8205795942839376, "HH"],
|
[2.8205795942839376, "HH"],
|
||||||
[0.11259190602909264, "Not significant"],
|
[0.11259190602909264, "LL"],
|
||||||
[-0.07116352791516614, "Not significant"],
|
[-0.07116352791516614, "HL"],
|
||||||
[-0.09945240794119009, "Not significant"],
|
[-0.09945240794119009, "LH"],
|
||||||
[0.18562939195219, "LL"],
|
[0.18562939195219, "LL"],
|
||||||
[0.1832733440191868, "Not significant"],
|
[0.1832733440191868, "LL"],
|
||||||
[-0.39054253768447705, "Not significant"],
|
[-0.39054253768447705, "HL"],
|
||||||
[-0.1672071289487642, "HL"],
|
[-0.1672071289487642, "HL"],
|
||||||
[0.3337669247916343, "Not significant"],
|
[0.3337669247916343, "HH"],
|
||||||
[0.2584386102554792, "Not significant"],
|
[0.2584386102554792, "HH"],
|
||||||
[-0.19733845476322634, "HL"],
|
[-0.19733845476322634, "HL"],
|
||||||
[-0.9379282899805409, "LH"],
|
[-0.9379282899805409, "LH"],
|
||||||
[-0.028770969951095866, "Not significant"],
|
[-0.028770969951095866, "LH"],
|
||||||
[0.051367269430983485, "Not significant"],
|
[0.051367269430983485, "LL"],
|
||||||
[-0.2172548045913472, "LH"],
|
[-0.2172548045913472, "LH"],
|
||||||
[0.05136726943098351, "Not significant"],
|
[0.05136726943098351, "LL"],
|
||||||
[0.04191046803899837, "Not significant"],
|
[0.04191046803899837, "LL"],
|
||||||
[0.7482357030403517, "HH"],
|
[0.7482357030403517, "HH"],
|
||||||
[-0.014585767863118111, "Not significant"],
|
[-0.014585767863118111, "LH"],
|
||||||
[0.5410013139159929, "Not significant"],
|
[0.5410013139159929, "HH"],
|
||||||
[1.0223932668429925, "LL"],
|
[1.0223932668429925, "LL"],
|
||||||
[1.4179402898927476, "LL"]]
|
[1.4179402898927476, "LL"]]
|
@ -1,8 +1,6 @@
|
|||||||
import unittest
|
import unittest
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
import unittest
|
|
||||||
|
|
||||||
|
|
||||||
# from mock_plpy import MockPlPy
|
# from mock_plpy import MockPlPy
|
||||||
# plpy = MockPlPy()
|
# plpy = MockPlPy()
|
||||||
@ -12,11 +10,12 @@ import unittest
|
|||||||
from helper import plpy, fixture_file
|
from helper import plpy, fixture_file
|
||||||
|
|
||||||
import crankshaft.clustering as cc
|
import crankshaft.clustering as cc
|
||||||
|
import crankshaft.pysal_utils as pu
|
||||||
from crankshaft import random_seeds
|
from crankshaft import random_seeds
|
||||||
import json
|
import json
|
||||||
|
|
||||||
class MoranTest(unittest.TestCase):
|
class MoranTest(unittest.TestCase):
|
||||||
"""Testing class for Moran's I functions."""
|
"""Testing class for Moran's I functions"""
|
||||||
|
|
||||||
def setUp(self):
|
def setUp(self):
|
||||||
plpy._reset()
|
plpy._reset()
|
||||||
@ -30,7 +29,7 @@ class MoranTest(unittest.TestCase):
|
|||||||
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
|
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
|
||||||
|
|
||||||
def test_map_quads(self):
|
def test_map_quads(self):
|
||||||
"""Test map_quads."""
|
"""Test map_quads"""
|
||||||
self.assertEqual(cc.map_quads(1), 'HH')
|
self.assertEqual(cc.map_quads(1), 'HH')
|
||||||
self.assertEqual(cc.map_quads(2), 'LH')
|
self.assertEqual(cc.map_quads(2), 'LH')
|
||||||
self.assertEqual(cc.map_quads(3), 'LL')
|
self.assertEqual(cc.map_quads(3), 'LL')
|
||||||
@ -38,80 +37,8 @@ class MoranTest(unittest.TestCase):
|
|||||||
self.assertEqual(cc.map_quads(33), None)
|
self.assertEqual(cc.map_quads(33), None)
|
||||||
self.assertEqual(cc.map_quads('andy'), None)
|
self.assertEqual(cc.map_quads('andy'), None)
|
||||||
|
|
||||||
def test_query_attr_select(self):
|
|
||||||
"""Test query_attr_select."""
|
|
||||||
|
|
||||||
ans = "i.\"{attr1}\"::numeric As attr1, " \
|
|
||||||
"i.\"{attr2}\"::numeric As attr2, "
|
|
||||||
|
|
||||||
self.assertEqual(cc.query_attr_select(self.params), ans)
|
|
||||||
|
|
||||||
def test_query_attr_where(self):
|
|
||||||
"""Test query_attr_where."""
|
|
||||||
|
|
||||||
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND "\
|
|
||||||
"idx_replace.\"{attr2}\" IS NOT NULL AND "\
|
|
||||||
"idx_replace.\"{attr2}\" <> 0"
|
|
||||||
|
|
||||||
self.assertEqual(cc.query_attr_where(self.params), ans)
|
|
||||||
|
|
||||||
def test_knn(self):
|
|
||||||
"""Test knn function."""
|
|
||||||
|
|
||||||
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
|
|
||||||
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
|
||||||
"FROM \"(SELECT * FROM a_list)\" As j WHERE j.\"andy\" IS NOT NULL AND " \
|
|
||||||
"j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 ORDER BY " \
|
|
||||||
"j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 OFFSET 1 ) ) " \
|
|
||||||
"As neighbors FROM \"(SELECT * FROM a_list)\" As i WHERE i.\"andy\" IS NOT " \
|
|
||||||
"NULL AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER " \
|
|
||||||
"BY i.\"cartodb_id\" ASC;"
|
|
||||||
|
|
||||||
self.assertEqual(cc.knn(self.params), ans)
|
|
||||||
|
|
||||||
def test_queen(self):
|
|
||||||
"""Test queen neighbors function."""
|
|
||||||
|
|
||||||
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
|
|
||||||
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
|
|
||||||
"j.\"cartodb_id\" FROM \"(SELECT * FROM a_list)\" As j WHERE ST_Touches(" \
|
|
||||||
"i.\"the_geom\", j.\"the_geom\") AND j.\"andy\" IS NOT NULL " \
|
|
||||||
"AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0)) As " \
|
|
||||||
"neighbors FROM \"(SELECT * FROM a_list)\" As i WHERE i.\"andy\" IS NOT NULL " \
|
|
||||||
"AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER BY " \
|
|
||||||
"i.\"cartodb_id\" ASC;"
|
|
||||||
|
|
||||||
self.assertEqual(cc.queen(self.params), ans)
|
|
||||||
|
|
||||||
def test_get_query(self):
|
|
||||||
"""Test get_query."""
|
|
||||||
|
|
||||||
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
|
|
||||||
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
|
|
||||||
"j.\"cartodb_id\" FROM \"(SELECT * FROM a_list)\" As j WHERE j.\"andy\" IS " \
|
|
||||||
"NOT NULL AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 " \
|
|
||||||
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 " \
|
|
||||||
"OFFSET 1 ) ) As neighbors FROM \"(SELECT * FROM a_list)\" As i WHERE " \
|
|
||||||
"i.\"andy\" IS NOT NULL AND i.\"jay_z\" IS NOT NULL AND " \
|
|
||||||
"i.\"jay_z\" <> 0 ORDER BY i.\"cartodb_id\" ASC;"
|
|
||||||
|
|
||||||
self.assertEqual(cc.get_query('knn', self.params), ans)
|
|
||||||
|
|
||||||
def test_get_attributes(self):
|
|
||||||
"""Test get_attributes."""
|
|
||||||
|
|
||||||
## need to add tests
|
|
||||||
|
|
||||||
self.assertEqual(True, True)
|
|
||||||
|
|
||||||
def test_get_weight(self):
|
|
||||||
"""Test get_weight."""
|
|
||||||
|
|
||||||
self.assertEqual(True, True)
|
|
||||||
|
|
||||||
|
|
||||||
def test_quad_position(self):
|
def test_quad_position(self):
|
||||||
"""Test lisa_sig_vals."""
|
"""Test lisa_sig_vals"""
|
||||||
|
|
||||||
quads = np.array([1, 2, 3, 4], np.int)
|
quads = np.array([1, 2, 3, 4], np.int)
|
||||||
|
|
||||||
@ -125,7 +52,7 @@ class MoranTest(unittest.TestCase):
|
|||||||
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
||||||
plpy._define_result('select', data)
|
plpy._define_result('select', data)
|
||||||
random_seeds.set_random_seeds(1234)
|
random_seeds.set_random_seeds(1234)
|
||||||
result = cc.moran_local('table', 'value', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn')
|
result = cc.moran_local('subquery', 'value', 99, 'the_geom', 'cartodb_id', 'knn', 5)
|
||||||
result = [(row[0], row[1]) for row in result]
|
result = [(row[0], row[1]) for row in result]
|
||||||
expected = self.moran_data
|
expected = self.moran_data
|
||||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
|
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
|
||||||
@ -137,8 +64,20 @@ class MoranTest(unittest.TestCase):
|
|||||||
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
||||||
plpy._define_result('select', data)
|
plpy._define_result('select', data)
|
||||||
random_seeds.set_random_seeds(1234)
|
random_seeds.set_random_seeds(1234)
|
||||||
result = cc.moran_local_rate('table', 'numerator', 'denominator', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn')
|
result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 99, 'the_geom', 'cartodb_id', 'knn', 5)
|
||||||
|
print 'result == None? ', result == None
|
||||||
result = [(row[0], row[1]) for row in result]
|
result = [(row[0], row[1]) for row in result]
|
||||||
expected = self.moran_data
|
expected = self.moran_data
|
||||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
|
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
|
||||||
self.assertAlmostEqual(res_val, exp_val)
|
self.assertAlmostEqual(res_val, exp_val)
|
||||||
|
|
||||||
|
def test_moran(self):
|
||||||
|
"""Test Moran's I global"""
|
||||||
|
data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
||||||
|
plpy._define_result('select', data)
|
||||||
|
random_seeds.set_random_seeds(1235)
|
||||||
|
result = cc.moran('table', 'value', 99, 'the_geom', 'cartodb_id', 'knn', 5)
|
||||||
|
print 'result == None?', result == None
|
||||||
|
result_moran = result[0][0]
|
||||||
|
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
|
||||||
|
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)
|
||||||
|
104
src/py/crankshaft/test/test_pysal_utils.py
Normal file
104
src/py/crankshaft/test/test_pysal_utils.py
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
import unittest
|
||||||
|
|
||||||
|
import crankshaft.pysal_utils as pu
|
||||||
|
from crankshaft import random_seeds
|
||||||
|
|
||||||
|
|
||||||
|
class PysalUtilsTest(unittest.TestCase):
|
||||||
|
"""Testing class for utility functions related to PySAL integrations"""
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.params = {"id_col": "cartodb_id",
|
||||||
|
"attr1": "andy",
|
||||||
|
"attr2": "jay_z",
|
||||||
|
"subquery": "SELECT * FROM a_list",
|
||||||
|
"geom_col": "the_geom",
|
||||||
|
"num_ngbrs": 321}
|
||||||
|
|
||||||
|
def test_query_attr_select(self):
|
||||||
|
"""Test query_attr_select"""
|
||||||
|
|
||||||
|
ans = "i.\"{attr1}\"::numeric As attr1, " \
|
||||||
|
"i.\"{attr2}\"::numeric As attr2, "
|
||||||
|
|
||||||
|
self.assertEqual(pu.query_attr_select(self.params), ans)
|
||||||
|
|
||||||
|
def test_query_attr_where(self):
|
||||||
|
"""Test pu.query_attr_where"""
|
||||||
|
|
||||||
|
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND " \
|
||||||
|
"idx_replace.\"{attr2}\" IS NOT NULL AND " \
|
||||||
|
"idx_replace.\"{attr2}\" <> 0"
|
||||||
|
|
||||||
|
self.assertEqual(pu.query_attr_where(self.params), ans)
|
||||||
|
|
||||||
|
def test_knn(self):
|
||||||
|
"""Test knn neighbors constructor"""
|
||||||
|
|
||||||
|
ans = "SELECT i.\"cartodb_id\" As id, " \
|
||||||
|
"i.\"andy\"::numeric As attr1, " \
|
||||||
|
"i.\"jay_z\"::numeric As attr2, " \
|
||||||
|
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||||
|
"FROM (SELECT * FROM a_list) As j " \
|
||||||
|
"WHERE j.\"andy\" IS NOT NULL AND " \
|
||||||
|
"j.\"jay_z\" IS NOT NULL AND " \
|
||||||
|
"j.\"jay_z\" <> 0 AND " \
|
||||||
|
"i.\"cartodb_id\" <> j.\"cartodb_id\" " \
|
||||||
|
"ORDER BY " \
|
||||||
|
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
|
||||||
|
"LIMIT 321)) As neighbors " \
|
||||||
|
"FROM (SELECT * FROM a_list) As i " \
|
||||||
|
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||||
|
"i.\"jay_z\" IS NOT NULL AND " \
|
||||||
|
"i.\"jay_z\" <> 0 " \
|
||||||
|
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||||
|
|
||||||
|
self.assertEqual(pu.knn(self.params), ans)
|
||||||
|
|
||||||
|
def test_queen(self):
|
||||||
|
"""Test queen neighbors constructor"""
|
||||||
|
|
||||||
|
ans = "SELECT i.\"cartodb_id\" As id, " \
|
||||||
|
"i.\"andy\"::numeric As attr1, " \
|
||||||
|
"i.\"jay_z\"::numeric As attr2, " \
|
||||||
|
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||||
|
"FROM (SELECT * FROM a_list) As j " \
|
||||||
|
"WHERE ST_Touches(i.\"the_geom\", " \
|
||||||
|
"j.\"the_geom\") AND " \
|
||||||
|
"j.\"andy\" IS NOT NULL AND " \
|
||||||
|
"j.\"jay_z\" IS NOT NULL AND " \
|
||||||
|
"j.\"jay_z\" <> 0)" \
|
||||||
|
") As neighbors " \
|
||||||
|
"FROM (SELECT * FROM a_list) As i " \
|
||||||
|
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||||
|
"i.\"jay_z\" IS NOT NULL AND " \
|
||||||
|
"i.\"jay_z\" <> 0 " \
|
||||||
|
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||||
|
|
||||||
|
self.assertEqual(pu.queen(self.params), ans)
|
||||||
|
|
||||||
|
def test_construct_neighbor_query(self):
|
||||||
|
"""Test construct_neighbor_query"""
|
||||||
|
|
||||||
|
# Compare to raw knn query
|
||||||
|
self.assertEqual(pu.construct_neighbor_query('knn', self.params),
|
||||||
|
pu.knn(self.params))
|
||||||
|
|
||||||
|
def test_get_attributes(self):
|
||||||
|
"""Test get_attributes"""
|
||||||
|
|
||||||
|
## need to add tests
|
||||||
|
|
||||||
|
self.assertEqual(True, True)
|
||||||
|
|
||||||
|
def test_get_weight(self):
|
||||||
|
"""Test get_weight"""
|
||||||
|
|
||||||
|
self.assertEqual(True, True)
|
||||||
|
|
||||||
|
def test_empty_zipped_array(self):
|
||||||
|
"""Test empty_zipped_array"""
|
||||||
|
ans2 = [(None, None)]
|
||||||
|
ans4 = [(None, None, None, None)]
|
||||||
|
self.assertEqual(pu.empty_zipped_array(2), ans2)
|
||||||
|
self.assertEqual(pu.empty_zipped_array(4), ans4)
|
Loading…
Reference in New Issue
Block a user