Merge pull request #19 from CartoDB/restructure-moran-redux

Restructure moran redux
This commit is contained in:
Andy Eschbacher 2016-03-30 12:10:36 -04:00
commit f6e8524669
10 changed files with 661 additions and 387 deletions

View File

@ -1,37 +1,89 @@
-- Moran's I -- Moran's I (global)
CREATE OR REPLACE FUNCTION CREATE OR REPLACE FUNCTION
cdb_moran_local ( CDB_AreasOfInterest_Global (
t TEXT, subquery TEXT,
attr TEXT, attr_name TEXT,
significance float DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99, permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom', geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id', id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn') w_type TEXT DEFAULT 'knn',
RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT) num_ngbrs INT DEFAULT 5)
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
AS $$ AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary # TODO: use named parameters or a dictionary
return moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type) return moran(subquery, attr, num_ngbrs, permutations, geom_col, id_col, w_type)
$$ LANGUAGE plpythonu; $$ LANGUAGE plpythonu;
-- Moran's I Local
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterest_Local(
subquery TEXT,
attr TEXT,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5)
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, ids INT, y NUMERIC)
AS $$
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_local(subquery, attr, permutations, geom_col, id_col, w_type, num_ngbrs)
$$ LANGUAGE plpythonu;
-- Moran's I Rate (global)
CREATE OR REPLACE FUNCTION
CDB_AreasOfInterest_Global_Rate(
subquery TEXT,
numerator TEXT,
denominator TEXT,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5)
RETURNS TABLE (moran FLOAT, significance FLOAT)
AS $$
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_rate(subquery, numerator, denominator, permutations, geom_col, id_col, w_type, num_ngbrs)
$$ LANGUAGE plpythonu;
-- Moran's I Local Rate -- Moran's I Local Rate
CREATE OR REPLACE FUNCTION CREATE OR REPLACE FUNCTION
cdb_moran_local_rate(t TEXT, CDB_AreasOfInterest_Local_Rate(
subquery TEXT,
numerator TEXT, numerator TEXT,
denominator TEXT, denominator TEXT,
significance FLOAT DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99, permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom', geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id', id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn') w_type TEXT DEFAULT 'knn',
RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric) num_ngbrs INT DEFAULT 5)
RETURNS
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, ids INT, y NUMERIC)
AS $$ AS $$
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
from crankshaft.clustering import moran_local_rate from crankshaft.clustering import moran_local_rate
# TODO: use named parameters or a dictionary # TODO: use named parameters or a dictionary
return moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type) return moran_local_rate(subquery, numerator, denominator, permutations, geom_col, id_col, w_type, num_ngbrs)
$$ LANGUAGE plpythonu; $$ LANGUAGE plpythonu;
-- -- Moran's I Local Bivariate
-- CREATE OR REPLACE FUNCTION
-- cdb_moran_local_bv(
-- subquery TEXT,
-- attr1 TEXT,
-- attr2 TEXT,
-- permutations INT DEFAULT 99,
-- geom_col TEXT DEFAULT 'the_geom',
-- id_col TEXT DEFAULT 'cartodb_id',
-- w_type TEXT DEFAULT 'knn',
-- num_ngbrs INT DEFAULT 5)
-- RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric)
-- AS $$
-- from crankshaft.clustering import moran_local_bv
-- # TODO: use named parameters or a dictionary
-- return moran_local_bv(t, attr1, attr2, permutations, geom_col, id_col, w_type, num_ngbrs)
-- $$ LANGUAGE plpythonu;

View File

@ -110,7 +110,7 @@ INSERT INTO ppoints2 VALUES
(24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,'24','07',0.3, 1.0), (24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,'24','07',0.3, 1.0),
(29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,'29','01',0.3, 1.0), (29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,'29','01',0.3, 1.0),
(52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,'52','19',0.0, 1.01) (52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,'52','19',0.0, 1.01)
-- Moral functions perform some nondeterministic computations -- Areas of Interest functions perform some nondeterministic computations
-- (to estimate the significance); we will set the seeds for the RNGs -- (to estimate the significance); we will set the seeds for the RNGs
-- that affect those results to have repeateble results -- that affect those results to have repeateble results
SELECT cdb_crankshaft._cdb_random_seeds(1234); SELECT cdb_crankshaft._cdb_random_seeds(1234);
@ -121,18 +121,64 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
SELECT ppoints.code, m.quads SELECT ppoints.code, m.quads
FROM ppoints FROM ppoints
JOIN cdb_crankshaft.cdb_moran_local('SELECT * FROM ppoints', 'value') m JOIN cdb_crankshaft.CDB_AreasOfInterest_Local('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.ids ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code; ORDER BY ppoints.code;
NOTICE: ** Constructing query
CONTEXT: PL/Python function "cdb_moran_local"
NOTICE: ** Query failed: "SELECT i."cartodb_id" As id, i."value"::numeric As attr1, (SELECT ARRAY(SELECT j."cartodb_id" FROM "(SELECT * FROM ppoints)" As j WHERE j."value" IS NOT NULL ORDER BY j."the_geom" <-> i."the_geom" ASC LIMIT 5 OFFSET 1 ) ) As neighbors FROM "(SELECT * FROM ppoints)" As i WHERE i."value" IS NOT NULL ORDER BY i."cartodb_id" ASC;"
CONTEXT: PL/Python function "cdb_moran_local"
NOTICE: ** Exiting function
CONTEXT: PL/Python function "cdb_moran_local"
code | quads code | quads
------+------- ------+-------
(0 rows) 01 | HH
02 | HL
03 | LL
04 | LL
05 | LH
06 | LL
07 | HH
08 | HH
09 | HH
10 | LL
11 | LL
12 | LL
13 | HL
14 | LL
15 | LL
16 | HH
17 | HH
18 | LL
19 | HH
20 | HH
21 | LL
22 | HH
23 | LL
24 | LL
25 | HH
26 | HH
27 | LL
28 | HH
29 | LL
30 | LL
31 | HH
32 | LL
33 | HL
34 | LH
35 | LL
36 | LL
37 | HL
38 | HL
39 | HH
40 | HH
41 | HL
42 | LH
43 | LH
44 | LL
45 | LH
46 | LL
47 | LL
48 | HH
49 | LH
50 | HH
51 | LL
52 | LL
(52 rows)
SELECT cdb_crankshaft._cdb_random_seeds(1234); SELECT cdb_crankshaft._cdb_random_seeds(1234);
_cdb_random_seeds _cdb_random_seeds
@ -142,17 +188,61 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
SELECT ppoints2.code, m.quads SELECT ppoints2.code, m.quads
FROM ppoints2 FROM ppoints2
JOIN cdb_crankshaft.cdb_moran_local_rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m JOIN cdb_crankshaft.CDB_AreasOfInterest_Local_Rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.ids ON ppoints2.cartodb_id = m.ids
ORDER BY ppoints2.code; ORDER BY ppoints2.code;
NOTICE: ** Constructing query code | quads
CONTEXT: PL/Python function "cdb_moran_local_rate" ------+-------
NOTICE: ** Query failed: "SELECT i."cartodb_id" As id, i."denominator"::numeric As attr1, i."numerator"::numeric As attr2, (SELECT ARRAY(SELECT j."cartodb_id" FROM "(SELECT * FROM ppoints2)" As j WHERE j."denominator" IS NOT NULL AND j."numerator" IS NOT NULL AND j."numerator" <> 0 ORDER BY j."the_geom" <-> i."the_geom" ASC LIMIT 5 OFFSET 1 ) ) As neighbors FROM "(SELECT * FROM ppoints2)" As i WHERE i."denominator" IS NOT NULL AND i."numerator" IS NOT NULL AND i."numerator" <> 0 ORDER BY i."cartodb_id" ASC;" 01 | LL
CONTEXT: PL/Python function "cdb_moran_local_rate" 02 | LH
NOTICE: ** Error: <class 'plpy.SPIError'> 03 | HH
CONTEXT: PL/Python function "cdb_moran_local_rate" 04 | HH
NOTICE: ** Exiting function 05 | LL
CONTEXT: PL/Python function "cdb_moran_local_rate" 06 | HH
ERROR: length of returned sequence did not match number of columns in row 07 | LL
CONTEXT: while creating return value 08 | LL
PL/Python function "cdb_moran_local_rate" 09 | LL
10 | HH
11 | HH
12 | HL
13 | LL
14 | HH
15 | LL
16 | LL
17 | LL
18 | LH
19 | LL
20 | LL
21 | HH
22 | LL
23 | HL
24 | LL
25 | LL
26 | LL
27 | LL
28 | LL
29 | LH
30 | HH
31 | LL
32 | LL
33 | LL
34 | LL
35 | LH
36 | HL
37 | LH
38 | LH
39 | LL
40 | LL
41 | LH
42 | HL
43 | LL
44 | HL
45 | LL
46 | HL
47 | LL
48 | LL
49 | HL
50 | LL
51 | HH
(51 rows)

View File

@ -1,14 +1,14 @@
\i test/fixtures/ppoints.sql \i test/fixtures/ppoints.sql
\i test/fixtures/ppoints2.sql \i test/fixtures/ppoints2.sql
-- Moral functions perform some nondeterministic computations -- Areas of Interest functions perform some nondeterministic computations
-- (to estimate the significance); we will set the seeds for the RNGs -- (to estimate the significance); we will set the seeds for the RNGs
-- that affect those results to have repeateble results -- that affect those results to have repeateble results
SELECT cdb_crankshaft._cdb_random_seeds(1234); SELECT cdb_crankshaft._cdb_random_seeds(1234);
SELECT ppoints.code, m.quads SELECT ppoints.code, m.quads
FROM ppoints FROM ppoints
JOIN cdb_crankshaft.cdb_moran_local('SELECT * FROM ppoints', 'value') m JOIN cdb_crankshaft.CDB_AreasOfInterest_Local('SELECT * FROM ppoints', 'value') m
ON ppoints.cartodb_id = m.ids ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code; ORDER BY ppoints.code;
@ -16,6 +16,6 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
SELECT ppoints2.code, m.quads SELECT ppoints2.code, m.quads
FROM ppoints2 FROM ppoints2
JOIN cdb_crankshaft.cdb_moran_local_rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m JOIN cdb_crankshaft.CDB_AreasOfInterest_Local_Rate('SELECT * FROM ppoints2', 'numerator', 'denominator') m
ON ppoints2.cartodb_id = m.ids ON ppoints2.cartodb_id = m.ids
ORDER BY ppoints2.code; ORDER BY ppoints2.code;

View File

@ -9,7 +9,7 @@ SET search_path TO public,cartodb,cdb_crankshaft;
-- Exercise public functions -- Exercise public functions
SELECT ppoints.code, m.quads SELECT ppoints.code, m.quads
FROM ppoints FROM ppoints
JOIN cdb_moran_local('ppoints', 'value') m JOIN CDB_AreasOfInterest_Local('ppoints', 'value') m
ON ppoints.cartodb_id = m.ids ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code; ORDER BY ppoints.code;
SELECT round(cdb_overlap_sum( SELECT round(cdb_overlap_sum(

View File

@ -5,143 +5,226 @@ Moran's I geostatistics (global clustering & outliers presence)
# TODO: Fill in local neighbors which have null/NoneType values with the # TODO: Fill in local neighbors which have null/NoneType values with the
# average of the their neighborhood # average of the their neighborhood
import numpy as np
import pysal as ps import pysal as ps
import plpy import plpy
# crankshaft module
import crankshaft.pysal_utils as pu
# High level interface --------------------------------------- # High level interface ---------------------------------------
def moran_local(subquery, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type): def moran(subquery, attr_name,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I (global)
Implementation building neighbors with a PostGIS database and Moran's I
core clusters with PySAL.
Andy Eschbacher
"""
qvals = {"id_col": id_col,
"attr1": attr_name,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
query = pu.construct_neighbor_query(w_type, qvals)
plpy.notice('** Query: %s' % query)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
plpy.notice('** Query returned with %d rows' % len(result))
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(2)
## collect attributes
attr_vals = pu.get_attributes(result)
## calculate weights
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global
moran_global = ps.esda.moran.Moran(attr_vals, weight,
permutations=permutations)
return zip([moran_global.I], [moran_global.EI])
def moran_local(subquery, attr,
permutations, geom_col, id_col, w_type, num_ngbrs):
""" """
Moran's I implementation for PL/Python Moran's I implementation for PL/Python
Andy Eschbacher Andy Eschbacher
""" """
# TODO: ensure that the significance output can be smaller that 1e-3 (0.001)
# TODO: make a wishlist of output features (zscores, pvalues, raw local lisa, what else?)
plpy.notice('** Constructing query')
# geometries with attributes that are null are ignored # geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors # resulting in a collection of not as near neighbors
qvals = {"id_col": id_col, qvals = {"id_col": id_col,
"attr1": attr, "attr1": attr,
"geom_col": geom_column, "geom_col": geom_col,
"subquery": subquery, "subquery": subquery,
"num_ngbrs": num_ngbrs} "num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals) query = pu.construct_neighbor_query(w_type, qvals)
try: try:
r = plpy.execute(q) result = plpy.execute(query)
plpy.notice('** Query returned with %d rows' % len(r)) # if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError: except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q) plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Exiting function') plpy.notice('** Query failed: "%s"' % query)
return zip([None], [None], [None], [None]) return pu.empty_zipped_array(5)
y = get_attributes(r, 1) attr_vals = pu.get_attributes(result)
w = get_weight(r, w_type) weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values # calculate LISA values
lisa = ps.Moran_Local(y, w) lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
permutations=permutations)
# find units of significance # find quadrants for each geometry
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance) quads = quad_position(lisa.q)
plpy.notice('** Finished calculations') return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order) def moran_rate(subquery, numerator, denominator,
permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I Rate (global)
Andy Eschbacher
"""
qvals = {"id_col": id_col,
"attr1": numerator,
"attr2": denominator,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
query = pu.construct_neighbor_query(w_type, qvals)
def moran_local_rate(subquery, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type): plpy.notice('** Query: %s' % query)
try:
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(2)
plpy.notice('** Query returned with %d rows' % len(result))
except plpy.SPIError:
plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError)
return pu.empty_zipped_array(2)
## collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
## calculate moran global rate
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
permutations=permutations)
return zip([lisa_rate.I], [lisa_rate.EI])
def moran_local_rate(subquery, numerator, denominator,
permutations, geom_col, id_col, w_type, num_ngbrs):
""" """
Moran's I Local Rate Moran's I Local Rate
Andy Eschbacher Andy Eschbacher
""" """
# geometries with values that are null are ignored
plpy.notice('** Constructing query')
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors # resulting in a collection of not as near neighbors
qvals = {"id_col": id_col, query = pu.construct_neighbor_query(w_type,
{"id_col": id_col,
"numerator": numerator, "numerator": numerator,
"denominator": denominator, "denominator": denominator,
"geom_col": geom_column, "geom_col": geom_col,
"subquery": subquery, "subquery": subquery,
"num_ngbrs": num_ngbrs} "num_ngbrs": num_ngbrs})
q = get_query(w_type, qvals)
try: try:
r = plpy.execute(q) result = plpy.execute(query)
plpy.notice('** Query returned with %d rows' % len(r)) # if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(5)
except plpy.SPIError: except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q) plpy.error('Error: areas of interest query failed, check input parameters')
plpy.notice('** Query failed: "%s"' % query)
plpy.notice('** Error: %s' % plpy.SPIError) plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function') return pu.empty_zipped_array(5)
return zip([None], [None], [None], [None])
plpy.notice('r.nrows() = %d' % r.nrows())
## collect attributes ## collect attributes
numer = get_attributes(r, 1) numer = pu.get_attributes(result, 1)
denom = get_attributes(r, 2) denom = pu.get_attributes(result, 2)
w = get_weight(r, w_type, num_ngbrs) weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values # calculate LISA values
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, w, permutations=permutations) lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
permutations=permutations)
# find units of significance # find units of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance) quads = quad_position(lisa.q)
plpy.notice('** Finished calculations') return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
## TODO: Decide on which return values here def moran_local_bv(subquery, attr1, attr2,
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order, lisa.y) permutations, geom_col, id_col, w_type, num_ngbrs):
"""
def moran_local_bv(t, attr1, attr2, significance, num_ngbrs, permutations, geom_column, id_col, w_type): Moran's I (local) Bivariate (untested)
"""
plpy.notice('** Constructing query') plpy.notice('** Constructing query')
qvals = {"num_ngbrs": num_ngbrs, qvals = {"num_ngbrs": num_ngbrs,
"attr1": attr1, "attr1": attr1,
"attr2": attr2, "attr2": attr2,
"table": t, "subquery": subquery,
"geom_col": geom_column, "geom_col": geom_col,
"id_col": id_col} "id_col": id_col}
q = get_query(w_type, qvals) query = pu.construct_neighbor_query(w_type, qvals)
try: try:
r = plpy.execute(q) result = plpy.execute(query)
plpy.notice('** Query returned with %d rows' % len(r)) # if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(4)
except plpy.SPIError: except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q) plpy.error("Error: areas of interest query failed, " \
plpy.notice('** Error: %s' % plpy.SPIError) "check input parameters")
plpy.notice('** Exiting function') plpy.notice('** Query failed: "%s"' % query)
return zip([None], [None], [None], [None]) return pu.empty_zipped_array(4)
## collect attributes ## collect attributes
attr1_vals = get_attributes(r, 1) attr1_vals = pu.get_attributes(result, 1)
attr2_vals = get_attributes(r, 2) attr2_vals = pu.get_attributes(result, 2)
# create weights # create weights
w = get_weight(r, w_type, num_ngbrs) weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values # calculate LISA values
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, w) lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
permutations=permutations)
plpy.notice("len of Is: %d" % len(lisa.Is)) plpy.notice("len of Is: %d" % len(lisa.Is))
# find clustering of significance # find clustering of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance) lisa_sig = quad_position(lisa.q)
plpy.notice('** Finished calculations') plpy.notice('** Finished calculations')
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order) return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
# Low level functions ---------------------------------------- # Low level functions ----------------------------------------
@ -150,7 +233,9 @@ def map_quads(coord):
Map a quadrant number to Moran's I designation Map a quadrant number to Moran's I designation
HH=1, LH=2, LL=3, HL=4 HH=1, LH=2, LL=3, HL=4
Input: Input:
:param coord (int): quadrant of a specific measurement @param coord (int): quadrant of a specific measurement
Output:
classification (one of 'HH', 'LH', 'LL', or 'HL')
""" """
if coord == 1: if coord == 1:
return 'HH' return 'HH'
@ -163,159 +248,13 @@ def map_quads(coord):
else: else:
return None return None
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
:param params: dict of information used in query (column names,
table name, etc.)
"""
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs', 'subquery')]
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
attr_string = ""
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": val, "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Create portion of WHERE clauses for weeding out NULL-valued geometries
"""
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs', 'subquery')])
attr_string = []
for attr in attrs:
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
if len(attrs) == 2:
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
:param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"({subquery})\" As j " \
"WHERE %(attr_where_j)s " \
"ORDER BY j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs} OFFSET 1 ) " \
") As neighbors " \
"FROM \"({subquery})\" As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
:param params: dict of information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"({subquery})\" As j " \
"WHERE ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM \"({subquery})\" As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_query(w_type, query_vals):
"""Return requested query.
:param w_type: type of neighbors to calculate (knn or queen)
:param query_vals: values used to construct the query
"""
if w_type == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
def get_attributes(query_res, attr_num):
"""
:param query_res: query results with attributes and neighbors
:param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
## Build weight object
def get_weight(query_res, w_type='queen', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
:param query_res: query results with attributes and neighbors
"""
if w_type == 'knn':
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
weights = {x['id']: row_normed_weights for x in query_res}
elif w_type == 'queen':
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
if len(x['neighbors']) > 0
else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
return ps.W(neighbors, weights)
def quad_position(quads): def quad_position(quads):
""" """
Produce Moran's I classification based of n Produce Moran's I classification based of n
Input:
@param quads ndarray: an array of quads classified by
1-4 (PySAL default)
Output:
@param list: an array of quads classied by 'HH', 'LL', etc.
""" """
return [map_quads(q) for q in quads]
lisa_sig = np.array([map_quads(q) for q in quads])
return lisa_sig
def lisa_sig_vals(pvals, quads, threshold):
"""
Produce Moran's I classification based of n
"""
sig = (pvals <= threshold)
lisa_sig = np.empty(len(sig), np.chararray)
for idx, val in enumerate(sig):
if val:
lisa_sig[idx] = map_quads(quads[idx])
else:
lisa_sig[idx] = 'Not significant'
return lisa_sig

View File

@ -0,0 +1 @@
from pysal_utils import *

View File

@ -0,0 +1,149 @@
"""
Utilities module for generic PySAL functionality, mainly centered on translating queries into numpy arrays or PySAL weights objects
"""
import numpy as np
import pysal as ps
def construct_neighbor_query(w_type, query_vals):
"""Return query (a string) used for finding neighbors
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
@param query_vals dict: values used to construct the query
"""
if w_type == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
## Build weight object
def get_weight(query_res, w_type='knn', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
@param query_res: query results with attributes and neighbors
"""
if w_type == 'knn':
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
weights = {x['id']: row_normed_weights for x in query_res}
else:
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
if len(x['neighbors']) > 0
else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
return ps.W(neighbors, weights)
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
@param params: dict of information used in query (column names,
table name, etc.)
"""
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')]
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
attr_string = ""
for idx, val in enumerate(sorted(attrs)):
attr_string += template % {"col": val, "alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Create portion of WHERE clauses for weeding out NULL-valued geometries
"""
attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')])
attr_string = []
for attr in attrs:
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
if len(attrs) == 2:
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
@param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE %(attr_where_j)s AND " \
"i.\"{id_col}\" <> j.\"{id_col}\" " \
"ORDER BY j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs})" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
@param params dict: information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
## to add more weight methods open a ticket or pull request
def get_attributes(query_res, attr_num=1):
"""
@param query_res: query results with attributes and neighbors
@param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
def empty_zipped_array(num_nones):
"""
prepare return values for cases of empty weights objects (no neighbors)
Input:
@param num_nones int: number of columns (e.g., 4)
Output:
[(None, None, None, None)]
"""
return [tuple([None] * num_nones)]

View File

@ -1,52 +1,52 @@
[[0.9319096128346788, "HH"], [[0.9319096128346788, "HH"],
[-1.135787401862846, "HL"], [-1.135787401862846, "HL"],
[0.11732030672508517, "Not significant"], [0.11732030672508517, "LL"],
[0.6152779669180425, "Not significant"], [0.6152779669180425, "LL"],
[-0.14657336660125297, "Not significant"], [-0.14657336660125297, "LH"],
[0.6967858120189607, "Not significant"], [0.6967858120189607, "LL"],
[0.07949310115714454, "Not significant"], [0.07949310115714454, "HH"],
[0.4703198759258987, "Not significant"], [0.4703198759258987, "HH"],
[0.4421125200498064, "Not significant"], [0.4421125200498064, "HH"],
[0.5724288737143592, "Not significant"], [0.5724288737143592, "LL"],
[0.8970743435692062, "LL"], [0.8970743435692062, "LL"],
[0.18327334401918674, "Not significant"], [0.18327334401918674, "LL"],
[-0.01466729201304962, "Not significant"], [-0.01466729201304962, "HL"],
[0.3481559372544409, "Not significant"], [0.3481559372544409, "LL"],
[0.06547094736902978, "Not significant"], [0.06547094736902978, "LL"],
[0.15482141569329988, "HH"], [0.15482141569329988, "HH"],
[0.4373841193538136, "Not significant"], [0.4373841193538136, "HH"],
[0.15971286468915544, "Not significant"], [0.15971286468915544, "LL"],
[1.0543588860308968, "Not significant"], [1.0543588860308968, "HH"],
[1.7372866900020818, "HH"], [1.7372866900020818, "HH"],
[1.091998586053999, "LL"], [1.091998586053999, "LL"],
[0.1171572584252222, "Not significant"], [0.1171572584252222, "HH"],
[0.08438455015300014, "Not significant"], [0.08438455015300014, "LL"],
[0.06547094736902978, "Not significant"], [0.06547094736902978, "LL"],
[0.15482141569329985, "HH"], [0.15482141569329985, "HH"],
[1.1627044812890683, "HH"], [1.1627044812890683, "HH"],
[0.06547094736902978, "Not significant"], [0.06547094736902978, "LL"],
[0.795275137550483, "Not significant"], [0.795275137550483, "HH"],
[0.18562939195219, "LL"], [0.18562939195219, "LL"],
[0.3010757406693439, "Not significant"], [0.3010757406693439, "LL"],
[2.8205795942839376, "HH"], [2.8205795942839376, "HH"],
[0.11259190602909264, "Not significant"], [0.11259190602909264, "LL"],
[-0.07116352791516614, "Not significant"], [-0.07116352791516614, "HL"],
[-0.09945240794119009, "Not significant"], [-0.09945240794119009, "LH"],
[0.18562939195219, "LL"], [0.18562939195219, "LL"],
[0.1832733440191868, "Not significant"], [0.1832733440191868, "LL"],
[-0.39054253768447705, "Not significant"], [-0.39054253768447705, "HL"],
[-0.1672071289487642, "HL"], [-0.1672071289487642, "HL"],
[0.3337669247916343, "Not significant"], [0.3337669247916343, "HH"],
[0.2584386102554792, "Not significant"], [0.2584386102554792, "HH"],
[-0.19733845476322634, "HL"], [-0.19733845476322634, "HL"],
[-0.9379282899805409, "LH"], [-0.9379282899805409, "LH"],
[-0.028770969951095866, "Not significant"], [-0.028770969951095866, "LH"],
[0.051367269430983485, "Not significant"], [0.051367269430983485, "LL"],
[-0.2172548045913472, "LH"], [-0.2172548045913472, "LH"],
[0.05136726943098351, "Not significant"], [0.05136726943098351, "LL"],
[0.04191046803899837, "Not significant"], [0.04191046803899837, "LL"],
[0.7482357030403517, "HH"], [0.7482357030403517, "HH"],
[-0.014585767863118111, "Not significant"], [-0.014585767863118111, "LH"],
[0.5410013139159929, "Not significant"], [0.5410013139159929, "HH"],
[1.0223932668429925, "LL"], [1.0223932668429925, "LL"],
[1.4179402898927476, "LL"]] [1.4179402898927476, "LL"]]

View File

@ -1,8 +1,6 @@
import unittest import unittest
import numpy as np import numpy as np
import unittest
# from mock_plpy import MockPlPy # from mock_plpy import MockPlPy
# plpy = MockPlPy() # plpy = MockPlPy()
@ -12,11 +10,12 @@ import unittest
from helper import plpy, fixture_file from helper import plpy, fixture_file
import crankshaft.clustering as cc import crankshaft.clustering as cc
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds from crankshaft import random_seeds
import json import json
class MoranTest(unittest.TestCase): class MoranTest(unittest.TestCase):
"""Testing class for Moran's I functions.""" """Testing class for Moran's I functions"""
def setUp(self): def setUp(self):
plpy._reset() plpy._reset()
@ -30,7 +29,7 @@ class MoranTest(unittest.TestCase):
self.moran_data = json.loads(open(fixture_file('moran.json')).read()) self.moran_data = json.loads(open(fixture_file('moran.json')).read())
def test_map_quads(self): def test_map_quads(self):
"""Test map_quads.""" """Test map_quads"""
self.assertEqual(cc.map_quads(1), 'HH') self.assertEqual(cc.map_quads(1), 'HH')
self.assertEqual(cc.map_quads(2), 'LH') self.assertEqual(cc.map_quads(2), 'LH')
self.assertEqual(cc.map_quads(3), 'LL') self.assertEqual(cc.map_quads(3), 'LL')
@ -38,80 +37,8 @@ class MoranTest(unittest.TestCase):
self.assertEqual(cc.map_quads(33), None) self.assertEqual(cc.map_quads(33), None)
self.assertEqual(cc.map_quads('andy'), None) self.assertEqual(cc.map_quads('andy'), None)
def test_query_attr_select(self):
"""Test query_attr_select."""
ans = "i.\"{attr1}\"::numeric As attr1, " \
"i.\"{attr2}\"::numeric As attr2, "
self.assertEqual(cc.query_attr_select(self.params), ans)
def test_query_attr_where(self):
"""Test query_attr_where."""
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND "\
"idx_replace.\"{attr2}\" IS NOT NULL AND "\
"idx_replace.\"{attr2}\" <> 0"
self.assertEqual(cc.query_attr_where(self.params), ans)
def test_knn(self):
"""Test knn function."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM \"(SELECT * FROM a_list)\" As j WHERE j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 OFFSET 1 ) ) " \
"As neighbors FROM \"(SELECT * FROM a_list)\" As i WHERE i.\"andy\" IS NOT " \
"NULL AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER " \
"BY i.\"cartodb_id\" ASC;"
self.assertEqual(cc.knn(self.params), ans)
def test_queen(self):
"""Test queen neighbors function."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
"j.\"cartodb_id\" FROM \"(SELECT * FROM a_list)\" As j WHERE ST_Touches(" \
"i.\"the_geom\", j.\"the_geom\") AND j.\"andy\" IS NOT NULL " \
"AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0)) As " \
"neighbors FROM \"(SELECT * FROM a_list)\" As i WHERE i.\"andy\" IS NOT NULL " \
"AND i.\"jay_z\" IS NOT NULL AND i.\"jay_z\" <> 0 ORDER BY " \
"i.\"cartodb_id\" ASC;"
self.assertEqual(cc.queen(self.params), ans)
def test_get_query(self):
"""Test get_query."""
ans = "SELECT i.\"cartodb_id\" As id, i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, (SELECT ARRAY(SELECT " \
"j.\"cartodb_id\" FROM \"(SELECT * FROM a_list)\" As j WHERE j.\"andy\" IS " \
"NOT NULL AND j.\"jay_z\" IS NOT NULL AND j.\"jay_z\" <> 0 " \
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC LIMIT 321 " \
"OFFSET 1 ) ) As neighbors FROM \"(SELECT * FROM a_list)\" As i WHERE " \
"i.\"andy\" IS NOT NULL AND i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(cc.get_query('knn', self.params), ans)
def test_get_attributes(self):
"""Test get_attributes."""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight."""
self.assertEqual(True, True)
def test_quad_position(self): def test_quad_position(self):
"""Test lisa_sig_vals.""" """Test lisa_sig_vals"""
quads = np.array([1, 2, 3, 4], np.int) quads = np.array([1, 2, 3, 4], np.int)
@ -125,7 +52,7 @@ class MoranTest(unittest.TestCase):
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data] data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data) plpy._define_result('select', data)
random_seeds.set_random_seeds(1234) random_seeds.set_random_seeds(1234)
result = cc.moran_local('table', 'value', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn') result = cc.moran_local('subquery', 'value', 99, 'the_geom', 'cartodb_id', 'knn', 5)
result = [(row[0], row[1]) for row in result] result = [(row[0], row[1]) for row in result]
expected = self.moran_data expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected): for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
@ -137,8 +64,20 @@ class MoranTest(unittest.TestCase):
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data] data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data) plpy._define_result('select', data)
random_seeds.set_random_seeds(1234) random_seeds.set_random_seeds(1234)
result = cc.moran_local_rate('table', 'numerator', 'denominator', 0.05, 5, 99, 'the_geom', 'cartodb_id', 'knn') result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 99, 'the_geom', 'cartodb_id', 'knn', 5)
print 'result == None? ', result == None
result = [(row[0], row[1]) for row in result] result = [(row[0], row[1]) for row in result]
expected = self.moran_data expected = self.moran_data
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected): for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
self.assertAlmostEqual(res_val, exp_val) self.assertAlmostEqual(res_val, exp_val)
def test_moran(self):
"""Test Moran's I global"""
data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
plpy._define_result('select', data)
random_seeds.set_random_seeds(1235)
result = cc.moran('table', 'value', 99, 'the_geom', 'cartodb_id', 'knn', 5)
print 'result == None?', result == None
result_moran = result[0][0]
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)

View File

@ -0,0 +1,104 @@
import unittest
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
class PysalUtilsTest(unittest.TestCase):
"""Testing class for utility functions related to PySAL integrations"""
def setUp(self):
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
def test_query_attr_select(self):
"""Test query_attr_select"""
ans = "i.\"{attr1}\"::numeric As attr1, " \
"i.\"{attr2}\"::numeric As attr2, "
self.assertEqual(pu.query_attr_select(self.params), ans)
def test_query_attr_where(self):
"""Test pu.query_attr_where"""
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND " \
"idx_replace.\"{attr2}\" IS NOT NULL AND " \
"idx_replace.\"{attr2}\" <> 0"
self.assertEqual(pu.query_attr_where(self.params), ans)
def test_knn(self):
"""Test knn neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0 AND " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" " \
"ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.knn(self.params), ans)
def test_queen(self):
"""Test queen neighbors constructor"""
ans = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE ST_Touches(i.\"the_geom\", " \
"j.\"the_geom\") AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL AND " \
"j.\"jay_z\" <> 0)" \
") As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL AND " \
"i.\"jay_z\" <> 0 " \
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.queen(self.params), ans)
def test_construct_neighbor_query(self):
"""Test construct_neighbor_query"""
# Compare to raw knn query
self.assertEqual(pu.construct_neighbor_query('knn', self.params),
pu.knn(self.params))
def test_get_attributes(self):
"""Test get_attributes"""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight"""
self.assertEqual(True, True)
def test_empty_zipped_array(self):
"""Test empty_zipped_array"""
ans2 = [(None, None)]
ans4 = [(None, None, None, None)]
self.assertEqual(pu.empty_zipped_array(2), ans2)
self.assertEqual(pu.empty_zipped_array(4), ans4)