More python3 warnings
This commit is contained in:
parent
fb0b9d51b1
commit
f5afd7c43f
@ -156,7 +156,7 @@ class GWR(GLM):
|
||||
self.kernel = kernel
|
||||
self.fixed = fixed
|
||||
if offset is None:
|
||||
self.offset = np.ones((self.n, 1))
|
||||
self.offset = np.ones((self.n, 1))
|
||||
else:
|
||||
self.offset = offset * 1.0
|
||||
self.fit_params = {}
|
||||
@ -169,7 +169,7 @@ class GWR(GLM):
|
||||
def _build_W(self, fixed, kernel, coords, bw, points=None):
|
||||
if fixed:
|
||||
try:
|
||||
W = fk[kernel](coords, bw, points)
|
||||
W = fk[kernel](coords, bw, points)
|
||||
except:
|
||||
raise TypeError('Unsupported kernel function ', kernel)
|
||||
else:
|
||||
@ -496,7 +496,7 @@ class GWRResults(GLMResults):
|
||||
|
||||
"""
|
||||
if exog_scale is not None:
|
||||
return cov*exog_scale
|
||||
return cov*exog_scale
|
||||
else:
|
||||
return cov*self.scale
|
||||
|
||||
@ -520,7 +520,7 @@ class GWRResults(GLMResults):
|
||||
weighted mean of y
|
||||
"""
|
||||
if self.model.points is not None:
|
||||
n = len(self.model.points)
|
||||
n = len(self.model.points)
|
||||
else:
|
||||
n = self.n
|
||||
off = self.offset.reshape((-1,1))
|
||||
@ -543,13 +543,13 @@ class GWRResults(GLMResults):
|
||||
|
||||
"""
|
||||
if self.model.points is not None:
|
||||
n = len(self.model.points)
|
||||
n = len(self.model.points)
|
||||
else:
|
||||
n = self.n
|
||||
TSS = np.zeros(shape=(n,1))
|
||||
for i in range(n):
|
||||
TSS[i] = np.sum(np.reshape(np.array(self.W[i]), (-1,1)) *
|
||||
(self.y.reshape((-1,1)) - self.y_bar[i])**2)
|
||||
TSS[i] = np.sum(np.reshape(np.array(self.W[i]), (-1,1)) *
|
||||
(self.y.reshape((-1,1)) - self.y_bar[i])**2)
|
||||
return TSS
|
||||
|
||||
@cache_readonly
|
||||
@ -563,15 +563,15 @@ class GWRResults(GLMResults):
|
||||
relationships.
|
||||
"""
|
||||
if self.model.points is not None:
|
||||
n = len(self.model.points)
|
||||
resid = self.model.exog_resid.reshape((-1,1))
|
||||
n = len(self.model.points)
|
||||
resid = self.model.exog_resid.reshape((-1,1))
|
||||
else:
|
||||
n = self.n
|
||||
resid = self.resid_response.reshape((-1,1))
|
||||
RSS = np.zeros(shape=(n,1))
|
||||
RSS = np.zeros(shape=(n,1))
|
||||
for i in range(n):
|
||||
RSS[i] = np.sum(np.reshape(np.array(self.W[i]), (-1,1))
|
||||
* resid**2)
|
||||
* resid**2)
|
||||
return RSS
|
||||
|
||||
@cache_readonly
|
||||
@ -617,10 +617,10 @@ class GWRResults(GLMResults):
|
||||
"""
|
||||
if isinstance(self.family, (Poisson, Binomial)):
|
||||
return self.resid_ss/(self.n - 2.0*self.tr_S +
|
||||
self.tr_STS) #could be changed to SWSTW - nothing to test against
|
||||
self.tr_STS) #could be changed to SWSTW - nothing to test against
|
||||
else:
|
||||
return self.resid_ss/(self.n - 2.0*self.tr_S +
|
||||
self.tr_STS) #could be changed to SWSTW - nothing to test against
|
||||
self.tr_STS) #could be changed to SWSTW - nothing to test against
|
||||
@cache_readonly
|
||||
def sigma2_ML(self):
|
||||
"""
|
||||
@ -680,7 +680,7 @@ class GWRResults(GLMResults):
|
||||
y = self.y
|
||||
ybar = self.y_bar
|
||||
if isinstance(self.family, Gaussian):
|
||||
raise NotImplementedError('deviance not currently used for Gaussian')
|
||||
raise NotImplementedError('deviance not currently used for Gaussian')
|
||||
elif isinstance(self.family, Poisson):
|
||||
dev = np.sum(2.0*self.W*(y*np.log(y/(ybar*off))-(y-ybar*off)),axis=1)
|
||||
elif isinstance(self.family, Binomial):
|
||||
@ -690,7 +690,7 @@ class GWRResults(GLMResults):
|
||||
@cache_readonly
|
||||
def resid_deviance(self):
|
||||
if isinstance(self.family, Gaussian):
|
||||
raise NotImplementedError('deviance not currently used for Gaussian')
|
||||
raise NotImplementedError('deviance not currently used for Gaussian')
|
||||
else:
|
||||
off = self.offset.reshape((-1,1)).T
|
||||
y = self.y
|
||||
@ -708,7 +708,7 @@ class GWRResults(GLMResults):
|
||||
manual. Equivalent to 1 - (deviance/null deviance)
|
||||
"""
|
||||
if isinstance(self.family, Gaussian):
|
||||
raise NotImplementedError('Not implemented for Gaussian')
|
||||
raise NotImplementedError('Not implemented for Gaussian')
|
||||
else:
|
||||
return 1.0 - (self.resid_deviance/self.deviance)
|
||||
|
||||
@ -831,8 +831,8 @@ class GWRResults(GLMResults):
|
||||
def predictions(self):
|
||||
P = self.model.P
|
||||
if P is None:
|
||||
raise NotImplementedError('predictions only avaialble if predict'
|
||||
'method called on GWR model')
|
||||
raise NotImplementedError('predictions only avaialble if predict'
|
||||
'method called on GWR model')
|
||||
else:
|
||||
predictions = np.sum(P*self.params, axis=1).reshape((-1,1))
|
||||
return predictions
|
||||
@ -985,7 +985,7 @@ class FBGWR(GWR):
|
||||
self.fixed = fixed
|
||||
self.constant = constant
|
||||
if constant:
|
||||
self.X = USER.check_constant(self.X)
|
||||
self.X = USER.check_constant(self.X)
|
||||
|
||||
def fit(self, ini_params=None, tol=1.0e-5, max_iter=20, solve='iwls'):
|
||||
"""
|
||||
|
Loading…
Reference in New Issue
Block a user