testing array outputs

This commit is contained in:
Andy Eschbacher 2016-04-01 08:23:10 -04:00
parent 3294eb35ab
commit ef475adc26

View File

@ -62,6 +62,11 @@ def spatial_markov_trend(subquery, time_cols, num_time_per_bin,
## rebin ## rebin
t_data = rebin_data(t_data, int(num_time_per_bin)) t_data = rebin_data(t_data, int(num_time_per_bin))
print 'shape of t_data %d, %d' % t_data.shape
print 'number of weight objects: %d, %d' % (weights.sparse).shape
print 'first num elements: %f' % t_data[0, 0]
# ls = ps.lag_spatial(weights, t_data)
sp_markov_result = ps.Spatial_Markov(t_data, sp_markov_result = ps.Spatial_Markov(t_data,
weights, weights,
k=7, k=7,
@ -88,7 +93,7 @@ def get_time_data(markov_data, time_cols):
""" """
num_attrs = len(time_cols) num_attrs = len(time_cols)
return np.array([[x['attr' + str(i)] for x in markov_data] return np.array([[x['attr' + str(i)] for x in markov_data]
for i in range(1, num_attrs+1)], dtype=float).T for i in range(1, num_attrs+1)], dtype=float).transpose()
def rebin_data(time_data, num_time_per_bin): def rebin_data(time_data, num_time_per_bin):
""" """