adding function to predict the importance of different features to a dataset.

This commit is contained in:
Stuart Lynn 2016-03-31 11:25:30 -04:00
parent d140b4249e
commit e73862a6e1
2 changed files with 39 additions and 21 deletions

View File

@ -13,6 +13,18 @@ AS $$
return segmentation.create_segment(segment_name,table_name,column_name,geoid_column,census_table,'random_forest')
$$ LANGUAGE plpythonu;
CREATE OR REPLACE FUNCTION
cdb_correlated_variables(
query text,
geoid_column text DEFAULT 'geoid',
census_table text DEFAULT 'ml_learning_block_groups_clipped'
)
RETURNS TABLE(feature text, importance NUMERIC, std NUMERIC)
AS $$
from crankshaft.segmentation import correlated_variables
return correlated_variables(query,geoid_column,census_table)
$$ LANGUAGE plpythonu;
CREATE OR REPLACE FUNCTION
cdb_predict_segment (
segment_name TEXT,

View File

@ -30,6 +30,20 @@ def create_segment(segment_name,table_name,column_name,geoid_column,census_table
# predict_segment
return accuracy
def correlated_variables(query,geoid_column,census_table):
"""
returns the columns which are importaint for the random forrest model
"""
data = pd.DataFrame(join_with_census(query,geoid_column, census_table))
features = data[data.columns.difference(['target', 'the_geom_webmercator', 'geoid','the_geom'])]
target, mean, std = normalize(data['target'])
model, accuracy, used_features = train_model(target,features, test_split=0.2)
std = np.std([tree.feature_importances_ for tree in model.estimators_],
axis=0)
importances = model.feature_importances_
return zip(features,importances,std)
def create_and_predict_segment(segment_name,query,geoid_column,census_table,target_table,method):
"""
generate a segment with machine learning
@ -98,15 +112,6 @@ def join_with_census(query, geoid_column, census_table):
def query_to_dictionary(result):
return [ dict(zip(r.keys(), r.values())) for r in result ]
def query_in_batches(query,batch_size):
cursor = plpy.cursor(query)
while True:
rows = cursor.fetch(batch_size)
if not rows:
break
else:
yield query_to_dictionary(rows)
def predict_segment(model,features,geoid_column,census_table):
"""
predict a segment with machine learning
@ -117,21 +122,22 @@ def predict_segment(model,features,geoid_column,census_table):
# features = ",".join(features)
joined_features = ','.join(['\"'+a+'\"::numeric' for a in features])
targets = pd.DataFrame(query_to_dictionary(plpy.execute('select {joined_features} from {census_table}'.format(**locals()))))
= plpy.execute()
cursor = plpy.cursor('select {joined_features} from {census_table}'.format(**locals()))
results = []
while True:
rows = cursor.fetch(batch_size)
predition = []
for batch in query_in_batches('select {joined_features} from {census_table}'.format(**locals()),2000):
targets = pd.DataFrame(batch)
plpy.notice('predicting:' + str(len(features)) + ' '+str(np.shape(targets)))
plpy.notice(joined_features)
targets = targets.dropna(axis =1, how='all').fillna(0)
plpy.notice('predicting:' + str(len(features)) + ' '+str(np.shape(targets)))
batch_prediction = model.predict(targets)
prediciton.append(batch_prediction.to_maxtrix)
if not rows:
break
geo_ids = plpy.execute('select geoid from {census_table}'.format(**locals()))
batch = pd.DataFrame(query_to_dictionary(rows))
batch_features = batch.dropna(axis =1, how='all').fillna(0)
prediction = model.predict(batch_features)
results.append(prediction)
plpy.notice('predicting: predicted')
return [[a['geoid'] for a in geo_ids],prediction]
return [a['the_geom'] for a in geoms], [a['geoid'] for a in geo_ids],prediction
def fetch_model(model_name):