Refactor and new tests

This commit is contained in:
Javier Goizueta 2016-02-18 11:28:26 +01:00
parent 89cda152bd
commit e1951e1ea9
19 changed files with 262 additions and 78 deletions

View File

@ -2,7 +2,8 @@
* [x] Support versioning
* [x] Test use of `plpy` from python Package
* Add `pysal` etc. dependencies
* [x] Add `pysal` etc. dependencies
* Defin documentation practices (general, per extension/package?)
* Add initial function set
* Add integration tests
* Make target to open a new version development (create symlinks, etc.)

2
pg/.gitignore vendored
View File

@ -1,3 +1,3 @@
regression.diffs
regression.out
test/results
results/

View File

@ -0,0 +1,8 @@
-- Set the seeds of the RNGs (Random Number Generators)
-- used internally.
CREATE OR REPLACE FUNCTION
cdb_random_seeds (seed_value INTEGER) RETURNS VOID
AS $$
from crankshaft import random_seeds
random_seeds.set_random_seeds(seed_value)
$$ LANGUAGE plpythonu;

18
pg/sql/0.0.1/02_moran.sql Normal file
View File

@ -0,0 +1,18 @@
CREATE OR REPLACE FUNCTION
cdb_moran_local (
t TEXT,
attr TEXT,
significance float DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn',
random_seed INTEGER DEFAULT NULL
)
RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT)
AS $$
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type, random_seed)
$$ LANGUAGE plpythonu;

View File

@ -0,0 +1,20 @@
-- Function by Stuart Lynn for a simple interpolation of a value
-- from a polygon table over an arbitrary polygon
-- (weighted by the area proportion overlapped)
CREATE OR REPLACE
FUNCTION cdb_overlap_sum(geom geometry, target_table_name text, target_column text)
RETURNS numeric AS
$$
DECLARE
result numeric;
BEGIN
EXECUTE Format('
SELECT sum(%I*ST_Area(St_Intersection($1, a.the_geom))/ST_Area(a.the_geom))
FROM %I AS a
WHERE $1 && a.the_geom
', target_column, target_table_name)
USING geom
INTO result;
RETURN result;
END;
$$ LANGUAGE plpgsql;

View File

@ -1,22 +0,0 @@
CREATE OR REPLACE FUNCTION
cdb_moran_local (
t TEXT,
attr TEXT,
significance float DEFAULT 0.05,
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_column TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id',
w_type TEXT DEFAULT 'knn'
)
RETURNS TABLE (
moran FLOAT,
quads TEXT,
significance FLOAT,
ids INT
)
AS $$
from crankshaft.clustering import moran_local
# TODO: use named parameters or a dictionary
return moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
$$ LANGUAGE plpythonu;

View File

@ -1,5 +0,0 @@
CREATE OR REPLACE FUNCTION cdb_poc_xyz()
RETURNS Text AS $$
from crankshaft.poc import xyz
return xyz()
$$ LANGUAGE plpythonu;

View File

@ -0,0 +1,132 @@
\i test/fixtures/ppoints.sql
-- test table (spanish province centroids with some invented values)
CREATE TABLE ppoints (cartodb_id integer, the_geom geometry, the_geom_webmercator geometry, code text, region_code text, value float);
INSERT INTO ppoints VALUES
( 1,'0101000020E6100000A8306DC0CBC305C051D14B6CE56A4540'::geometry,ST_Transform('0101000020E6100000A8306DC0CBC305C051D14B6CE56A4540'::geometry, 3857),'01','16',0.5),
( 4,'0101000020E6100000E220A4362DC202C0FD8AFA5119994240'::geometry,ST_Transform('0101000020E6100000E220A4362DC202C0FD8AFA5119994240'::geometry, 3857),'04','01',0.1),
( 5,'0101000020E610000004377E573AC813C0CB5871BB17494440'::geometry,ST_Transform('0101000020E610000004377E573AC813C0CB5871BB17494440'::geometry, 3857),'05','07',0.3),
( 2,'0101000020E610000000F49BE19BAFFFBF639958FDA6694340'::geometry,ST_Transform('0101000020E610000000F49BE19BAFFFBF639958FDA6694340'::geometry, 3857),'02','08',0.7),
( 3,'0101000020E61000005D0B7E63C832E2BFDB63EB00443D4340'::geometry,ST_Transform('0101000020E61000005D0B7E63C832E2BFDB63EB00443D4340'::geometry, 3857),'03','10',0.2),
( 6,'0101000020E61000006F3742B7FB9018C0DD967DC4D95A4340'::geometry,ST_Transform('0101000020E61000006F3742B7FB9018C0DD967DC4D95A4340'::geometry, 3857),'06','11',0.05),
( 7,'0101000020E6100000E4BB36995F4C0740EAC0E5CA9FC94340'::geometry,ST_Transform('0101000020E6100000E4BB36995F4C0740EAC0E5CA9FC94340'::geometry, 3857),'07','04',0.4),
( 8,'0101000020E61000003D43CC6CAFBEFF3F6B52E66F91DD4440'::geometry,ST_Transform('0101000020E61000003D43CC6CAFBEFF3F6B52E66F91DD4440'::geometry, 3857),'08','09',0.7),
( 9,'0101000020E61000003CC797BD99AF0CC0495A87FA312F4540'::geometry,ST_Transform('0101000020E61000003CC797BD99AF0CC0495A87FA312F4540'::geometry, 3857),'09','07',0.5),
(13,'0101000020E61000001CAA00A9F19F0EC05DF9267B7A764340'::geometry,ST_Transform('0101000020E61000001CAA00A9F19F0EC05DF9267B7A764340'::geometry, 3857),'13','08',0.4),
(16,'0101000020E6100000D8208F3CBC9001C065638DC1B1F24340'::geometry,ST_Transform('0101000020E6100000D8208F3CBC9001C065638DC1B1F24340'::geometry, 3857),'16','08',0.4),
(17,'0101000020E6100000E9E6A94A71630540AD7A0CB062104540'::geometry,ST_Transform('0101000020E6100000E9E6A94A71630540AD7A0CB062104540'::geometry, 3857),'17','09',0.6),
(18,'0101000020E6100000719792D59E240AC098AC548E00A84240'::geometry,ST_Transform('0101000020E6100000719792D59E240AC098AC548E00A84240'::geometry, 3857),'18','01',0.3),
(19,'0101000020E6100000972C878B50FD04C0123C881D1F684440'::geometry,ST_Transform('0101000020E6100000972C878B50FD04C0123C881D1F684440'::geometry, 3857),'19','08',0.7),
(21,'0101000020E6100000F7893E9934511BC0EAA4BF03E1C94240'::geometry,ST_Transform('0101000020E6100000F7893E9934511BC0EAA4BF03E1C94240'::geometry, 3857),'21','01',0.1),
(22,'0101000020E6100000572C2123B2A8B2BF7ED7FABAFD194540'::geometry,ST_Transform('0101000020E6100000572C2123B2A8B2BF7ED7FABAFD194540'::geometry, 3857),'22','02',0.4),
(25,'0101000020E6100000461B67D688C4F03FD990EEC3A0054540'::geometry,ST_Transform('0101000020E6100000461B67D688C4F03FD990EEC3A0054540'::geometry, 3857),'25','09',0.4),
(26,'0101000020E6100000A139FB06E82204C0539D84F62E234540'::geometry,ST_Transform('0101000020E6100000A139FB06E82204C0539D84F62E234540'::geometry, 3857),'26','17',0.6),
(27,'0101000020E6100000A92E54E618C91DC00D3A947B81814540'::geometry,ST_Transform('0101000020E6100000A92E54E618C91DC00D3A947B81814540'::geometry, 3857),'27','12',0.3),
(28,'0101000020E6100000971DC8B682BC0DC016D0E8055F3F4440'::geometry,ST_Transform('0101000020E6100000971DC8B682BC0DC016D0E8055F3F4440'::geometry, 3857),'28','13',0.8),
(30,'0101000020E6100000A2DC1964A8C5F7BF19299C994D004340'::geometry,ST_Transform('0101000020E6100000A2DC1964A8C5F7BF19299C994D004340'::geometry, 3857),'30','14',0.1),
(31,'0101000020E6100000DCA1FCC87B56FABF9B88E9D866554540'::geometry,ST_Transform('0101000020E6100000DCA1FCC87B56FABF9B88E9D866554540'::geometry, 3857),'31','15',0.9),
(32,'0101000020E6100000E1517AFCD15E1EC0A18D8D4825194540'::geometry,ST_Transform('0101000020E6100000E1517AFCD15E1EC0A18D8D4825194540'::geometry, 3857),'32','12',0.3),
(33,'0101000020E6100000A7FF33825AF917C0FABE7DFB6BA54540'::geometry,ST_Transform('0101000020E6100000A7FF33825AF917C0FABE7DFB6BA54540'::geometry, 3857),'33','03',0.4),
(34,'0101000020E6100000FB4E4EBEB72412C0898E7240982F4540'::geometry,ST_Transform('0101000020E6100000FB4E4EBEB72412C0898E7240982F4540'::geometry, 3857),'34','07',0.3),
(35,'0101000020E6100000224682B01B1A2DC011091656CC5C3C40'::geometry,ST_Transform('0101000020E6100000224682B01B1A2DC011091656CC5C3C40'::geometry, 3857),'35','05',0.3),
(36,'0101000020E6100000F7C9447110EC20C04C5D4823C7374540'::geometry,ST_Transform('0101000020E6100000F7C9447110EC20C04C5D4823C7374540'::geometry, 3857),'36','12',0.2),
(37,'0101000020E610000053D6A26DFB4218C09D58FAE209674440'::geometry,ST_Transform('0101000020E610000053D6A26DFB4218C09D58FAE209674440'::geometry, 3857),'37','07',0.5),
(38,'0101000020E6100000B1D1B5FC910431C03C0C89BA03503C40'::geometry,ST_Transform('0101000020E6100000B1D1B5FC910431C03C0C89BA03503C40'::geometry, 3857),'38','05',0.4),
(39,'0101000020E610000086E6FEE1BD1E10C00417096748994540'::geometry,ST_Transform('0101000020E610000086E6FEE1BD1E10C00417096748994540'::geometry, 3857),'39','06',0.6),
(40,'0101000020E6100000FB51C33F733710C038D01729E4954440'::geometry,ST_Transform('0101000020E6100000FB51C33F733710C038D01729E4954440'::geometry, 3857),'40','07',0.5),
(41,'0101000020E6100000912D6FDA28BB16C031321F08C4B74240'::geometry,ST_Transform('0101000020E6100000912D6FDA28BB16C031321F08C4B74240'::geometry, 3857),'41','01',0.4),
(42,'0101000020E6100000554432EABEB504C069ECD78775CF4440'::geometry,ST_Transform('0101000020E6100000554432EABEB504C069ECD78775CF4440'::geometry, 3857),'42','07',0.2),
(43,'0101000020E6100000157F117C1A2EEA3F027CD1F2368B4440'::geometry,ST_Transform('0101000020E6100000157F117C1A2EEA3F027CD1F2368B4440'::geometry, 3857),'43','09',0.3),
(44,'0101000020E610000051AA5B1BD718EABFEE67613BA4544440'::geometry,ST_Transform('0101000020E610000051AA5B1BD718EABFEE67613BA4544440'::geometry, 3857),'44','02',0.2),
(45,'0101000020E610000022C5C01BB69710C08563BC1499E54340'::geometry,ST_Transform('0101000020E610000022C5C01BB69710C08563BC1499E54340'::geometry, 3857),'45','08',0.3),
(46,'0101000020E6100000D5FCF78A11A0E9BFDEA46F8E64AF4340'::geometry,ST_Transform('0101000020E6100000D5FCF78A11A0E9BFDEA46F8E64AF4340'::geometry, 3857),'46','10',0.2),
(47,'0101000020E61000003AE63525866313C02100050B2BD14440'::geometry,ST_Transform('0101000020E61000003AE63525866313C02100050B2BD14440'::geometry, 3857),'47','07',0.3),
(48,'0101000020E610000030F187FD1FD206C0C767E1496C9E4540'::geometry,ST_Transform('0101000020E610000030F187FD1FD206C0C767E1496C9E4540'::geometry, 3857),'48','16',0.5),
(49,'0101000020E61000009C22867B12EC17C006C5F40C14DD4440'::geometry,ST_Transform('0101000020E61000009C22867B12EC17C006C5F40C14DD4440'::geometry, 3857),'49','07',0.2),
(50,'0101000020E6100000F7D5EFC62D08F1BF69D1231D68CF4440'::geometry,ST_Transform('0101000020E6100000F7D5EFC62D08F1BF69D1231D68CF4440'::geometry, 3857),'50','02',0.6),
(51,'0101000020E61000005B0E1F8DAA5F15C0530BFE285BF24140'::geometry,ST_Transform('0101000020E61000005B0E1F8DAA5F15C0530BFE285BF24140'::geometry, 3857),'51','18',0.01),
(10,'0101000020E61000000FD65D82AEA418C06192D1351FDB4340'::geometry,ST_Transform('0101000020E61000000FD65D82AEA418C06192D1351FDB4340'::geometry, 3857),'10','11',0.04),
(11,'0101000020E6100000B305531DAB0A17C0DEAFCD4EE5464240'::geometry,ST_Transform('0101000020E6100000B305531DAB0A17C0DEAFCD4EE5464240'::geometry, 3857),'11','01',0.08),
(12,'0101000020E610000059721A7297C9C2BF9EBE383BE51E4440'::geometry,ST_Transform('0101000020E610000059721A7297C9C2BF9EBE383BE51E4440'::geometry, 3857),'12','10',0.2),
(14,'0101000020E610000000C86313AF3C13C0E530879C10FF4240'::geometry,ST_Transform('0101000020E610000000C86313AF3C13C0E530879C10FF4240'::geometry, 3857),'14','01',0.2),
(15,'0101000020E61000002A475497B6ED20C06643D4131A904540'::geometry,ST_Transform('0101000020E61000002A475497B6ED20C06643D4131A904540'::geometry, 3857),'15','12',0.3),
(20,'0101000020E6100000F975566FAD8D01C0E840C33F67924540'::geometry,ST_Transform('0101000020E6100000F975566FAD8D01C0E840C33F67924540'::geometry, 3857),'20','16',0.8),
(23,'0101000020E610000025FA13E595880BC022BB07131D024340'::geometry,ST_Transform('0101000020E610000025FA13E595880BC022BB07131D024340'::geometry, 3857),'23','01',0.1),
(24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,ST_Transform('0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry, 3857),'24','07',0.3),
(29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,ST_Transform('0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry, 3857),'29','01',0.3),
(52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,ST_Transform('0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry, 3857),'52','19',0.01)
-- Moral functions perform some nondeterministic computations
-- (to estimate the significance); we will set the seeds for the RNGs
-- that affect those results to have repeateble results
SELECT cdb_crankshaft.cdb_random_seeds(1234);
cdb_random_seeds
------------------
(1 row)
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.cdb_moran_local('ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code;
NOTICE: ** Constructing query
CONTEXT: PL/Python function "cdb_moran_local"
NOTICE: ** Query returned with 52 rows
CONTEXT: PL/Python function "cdb_moran_local"
NOTICE: ** Finished calculations
CONTEXT: PL/Python function "cdb_moran_local"
code | quads
------+-----------------
01 | HH
02 | HL
03 | Not significant
04 | Not significant
05 | Not significant
06 | Not significant
07 | Not significant
08 | Not significant
09 | Not significant
10 | Not significant
11 | LL
12 | Not significant
13 | Not significant
14 | Not significant
15 | Not significant
16 | HH
17 | Not significant
18 | Not significant
19 | Not significant
20 | HH
21 | LL
22 | Not significant
23 | Not significant
24 | Not significant
25 | HH
26 | HH
27 | Not significant
28 | Not significant
29 | LL
30 | Not significant
31 | HH
32 | Not significant
33 | Not significant
34 | Not significant
35 | LL
36 | Not significant
37 | Not significant
38 | HL
39 | Not significant
40 | Not significant
41 | HL
42 | LH
43 | Not significant
44 | Not significant
45 | LH
46 | Not significant
47 | Not significant
48 | HH
49 | Not significant
50 | Not significant
51 | LL
52 | LL
(52 rows)

View File

@ -1,8 +0,0 @@
SELECT cdb_crankshaft.cdb_poc_xyz();
NOTICE: XYZ...
CONTEXT: PL/Python function "cdb_poc_xyz"
cdb_poc_xyz
-------------
83
(1 row)

View File

@ -1,8 +0,0 @@
SELECT cdb_crankshaft.cdb_poc_xyz();
NOTICE: XYZ...
CONTEXT: PL/Python function "cdb_poc_xyz"
cdb_poc_xyz
-------------
83
(1 row)

View File

@ -0,0 +1,12 @@
\i test/fixtures/ppoints.sql
-- Moral functions perform some nondeterministic computations
-- (to estimate the significance); we will set the seeds for the RNGs
-- that affect those results to have repeateble results
SELECT cdb_crankshaft.cdb_random_seeds(1234);
SELECT ppoints.code, m.quads
FROM ppoints
JOIN cdb_crankshaft.cdb_moran_local('ppoints', 'value') m
ON ppoints.cartodb_id = m.ids
ORDER BY ppoints.code;

View File

@ -1 +0,0 @@
SELECT cdb_crankshaft.cdb_poc_xyz();

55
pg/test/fixtures/ppoints.sql vendored Normal file
View File

@ -0,0 +1,55 @@
-- test table (spanish province centroids with some invented values)
CREATE TABLE ppoints (cartodb_id integer, the_geom geometry, the_geom_webmercator geometry, code text, region_code text, value float);
INSERT INTO ppoints VALUES
( 1,'0101000020E6100000A8306DC0CBC305C051D14B6CE56A4540'::geometry,ST_Transform('0101000020E6100000A8306DC0CBC305C051D14B6CE56A4540'::geometry, 3857),'01','16',0.5),
( 4,'0101000020E6100000E220A4362DC202C0FD8AFA5119994240'::geometry,ST_Transform('0101000020E6100000E220A4362DC202C0FD8AFA5119994240'::geometry, 3857),'04','01',0.1),
( 5,'0101000020E610000004377E573AC813C0CB5871BB17494440'::geometry,ST_Transform('0101000020E610000004377E573AC813C0CB5871BB17494440'::geometry, 3857),'05','07',0.3),
( 2,'0101000020E610000000F49BE19BAFFFBF639958FDA6694340'::geometry,ST_Transform('0101000020E610000000F49BE19BAFFFBF639958FDA6694340'::geometry, 3857),'02','08',0.7),
( 3,'0101000020E61000005D0B7E63C832E2BFDB63EB00443D4340'::geometry,ST_Transform('0101000020E61000005D0B7E63C832E2BFDB63EB00443D4340'::geometry, 3857),'03','10',0.2),
( 6,'0101000020E61000006F3742B7FB9018C0DD967DC4D95A4340'::geometry,ST_Transform('0101000020E61000006F3742B7FB9018C0DD967DC4D95A4340'::geometry, 3857),'06','11',0.05),
( 7,'0101000020E6100000E4BB36995F4C0740EAC0E5CA9FC94340'::geometry,ST_Transform('0101000020E6100000E4BB36995F4C0740EAC0E5CA9FC94340'::geometry, 3857),'07','04',0.4),
( 8,'0101000020E61000003D43CC6CAFBEFF3F6B52E66F91DD4440'::geometry,ST_Transform('0101000020E61000003D43CC6CAFBEFF3F6B52E66F91DD4440'::geometry, 3857),'08','09',0.7),
( 9,'0101000020E61000003CC797BD99AF0CC0495A87FA312F4540'::geometry,ST_Transform('0101000020E61000003CC797BD99AF0CC0495A87FA312F4540'::geometry, 3857),'09','07',0.5),
(13,'0101000020E61000001CAA00A9F19F0EC05DF9267B7A764340'::geometry,ST_Transform('0101000020E61000001CAA00A9F19F0EC05DF9267B7A764340'::geometry, 3857),'13','08',0.4),
(16,'0101000020E6100000D8208F3CBC9001C065638DC1B1F24340'::geometry,ST_Transform('0101000020E6100000D8208F3CBC9001C065638DC1B1F24340'::geometry, 3857),'16','08',0.4),
(17,'0101000020E6100000E9E6A94A71630540AD7A0CB062104540'::geometry,ST_Transform('0101000020E6100000E9E6A94A71630540AD7A0CB062104540'::geometry, 3857),'17','09',0.6),
(18,'0101000020E6100000719792D59E240AC098AC548E00A84240'::geometry,ST_Transform('0101000020E6100000719792D59E240AC098AC548E00A84240'::geometry, 3857),'18','01',0.3),
(19,'0101000020E6100000972C878B50FD04C0123C881D1F684440'::geometry,ST_Transform('0101000020E6100000972C878B50FD04C0123C881D1F684440'::geometry, 3857),'19','08',0.7),
(21,'0101000020E6100000F7893E9934511BC0EAA4BF03E1C94240'::geometry,ST_Transform('0101000020E6100000F7893E9934511BC0EAA4BF03E1C94240'::geometry, 3857),'21','01',0.1),
(22,'0101000020E6100000572C2123B2A8B2BF7ED7FABAFD194540'::geometry,ST_Transform('0101000020E6100000572C2123B2A8B2BF7ED7FABAFD194540'::geometry, 3857),'22','02',0.4),
(25,'0101000020E6100000461B67D688C4F03FD990EEC3A0054540'::geometry,ST_Transform('0101000020E6100000461B67D688C4F03FD990EEC3A0054540'::geometry, 3857),'25','09',0.4),
(26,'0101000020E6100000A139FB06E82204C0539D84F62E234540'::geometry,ST_Transform('0101000020E6100000A139FB06E82204C0539D84F62E234540'::geometry, 3857),'26','17',0.6),
(27,'0101000020E6100000A92E54E618C91DC00D3A947B81814540'::geometry,ST_Transform('0101000020E6100000A92E54E618C91DC00D3A947B81814540'::geometry, 3857),'27','12',0.3),
(28,'0101000020E6100000971DC8B682BC0DC016D0E8055F3F4440'::geometry,ST_Transform('0101000020E6100000971DC8B682BC0DC016D0E8055F3F4440'::geometry, 3857),'28','13',0.8),
(30,'0101000020E6100000A2DC1964A8C5F7BF19299C994D004340'::geometry,ST_Transform('0101000020E6100000A2DC1964A8C5F7BF19299C994D004340'::geometry, 3857),'30','14',0.1),
(31,'0101000020E6100000DCA1FCC87B56FABF9B88E9D866554540'::geometry,ST_Transform('0101000020E6100000DCA1FCC87B56FABF9B88E9D866554540'::geometry, 3857),'31','15',0.9),
(32,'0101000020E6100000E1517AFCD15E1EC0A18D8D4825194540'::geometry,ST_Transform('0101000020E6100000E1517AFCD15E1EC0A18D8D4825194540'::geometry, 3857),'32','12',0.3),
(33,'0101000020E6100000A7FF33825AF917C0FABE7DFB6BA54540'::geometry,ST_Transform('0101000020E6100000A7FF33825AF917C0FABE7DFB6BA54540'::geometry, 3857),'33','03',0.4),
(34,'0101000020E6100000FB4E4EBEB72412C0898E7240982F4540'::geometry,ST_Transform('0101000020E6100000FB4E4EBEB72412C0898E7240982F4540'::geometry, 3857),'34','07',0.3),
(35,'0101000020E6100000224682B01B1A2DC011091656CC5C3C40'::geometry,ST_Transform('0101000020E6100000224682B01B1A2DC011091656CC5C3C40'::geometry, 3857),'35','05',0.3),
(36,'0101000020E6100000F7C9447110EC20C04C5D4823C7374540'::geometry,ST_Transform('0101000020E6100000F7C9447110EC20C04C5D4823C7374540'::geometry, 3857),'36','12',0.2),
(37,'0101000020E610000053D6A26DFB4218C09D58FAE209674440'::geometry,ST_Transform('0101000020E610000053D6A26DFB4218C09D58FAE209674440'::geometry, 3857),'37','07',0.5),
(38,'0101000020E6100000B1D1B5FC910431C03C0C89BA03503C40'::geometry,ST_Transform('0101000020E6100000B1D1B5FC910431C03C0C89BA03503C40'::geometry, 3857),'38','05',0.4),
(39,'0101000020E610000086E6FEE1BD1E10C00417096748994540'::geometry,ST_Transform('0101000020E610000086E6FEE1BD1E10C00417096748994540'::geometry, 3857),'39','06',0.6),
(40,'0101000020E6100000FB51C33F733710C038D01729E4954440'::geometry,ST_Transform('0101000020E6100000FB51C33F733710C038D01729E4954440'::geometry, 3857),'40','07',0.5),
(41,'0101000020E6100000912D6FDA28BB16C031321F08C4B74240'::geometry,ST_Transform('0101000020E6100000912D6FDA28BB16C031321F08C4B74240'::geometry, 3857),'41','01',0.4),
(42,'0101000020E6100000554432EABEB504C069ECD78775CF4440'::geometry,ST_Transform('0101000020E6100000554432EABEB504C069ECD78775CF4440'::geometry, 3857),'42','07',0.2),
(43,'0101000020E6100000157F117C1A2EEA3F027CD1F2368B4440'::geometry,ST_Transform('0101000020E6100000157F117C1A2EEA3F027CD1F2368B4440'::geometry, 3857),'43','09',0.3),
(44,'0101000020E610000051AA5B1BD718EABFEE67613BA4544440'::geometry,ST_Transform('0101000020E610000051AA5B1BD718EABFEE67613BA4544440'::geometry, 3857),'44','02',0.2),
(45,'0101000020E610000022C5C01BB69710C08563BC1499E54340'::geometry,ST_Transform('0101000020E610000022C5C01BB69710C08563BC1499E54340'::geometry, 3857),'45','08',0.3),
(46,'0101000020E6100000D5FCF78A11A0E9BFDEA46F8E64AF4340'::geometry,ST_Transform('0101000020E6100000D5FCF78A11A0E9BFDEA46F8E64AF4340'::geometry, 3857),'46','10',0.2),
(47,'0101000020E61000003AE63525866313C02100050B2BD14440'::geometry,ST_Transform('0101000020E61000003AE63525866313C02100050B2BD14440'::geometry, 3857),'47','07',0.3),
(48,'0101000020E610000030F187FD1FD206C0C767E1496C9E4540'::geometry,ST_Transform('0101000020E610000030F187FD1FD206C0C767E1496C9E4540'::geometry, 3857),'48','16',0.5),
(49,'0101000020E61000009C22867B12EC17C006C5F40C14DD4440'::geometry,ST_Transform('0101000020E61000009C22867B12EC17C006C5F40C14DD4440'::geometry, 3857),'49','07',0.2),
(50,'0101000020E6100000F7D5EFC62D08F1BF69D1231D68CF4440'::geometry,ST_Transform('0101000020E6100000F7D5EFC62D08F1BF69D1231D68CF4440'::geometry, 3857),'50','02',0.6),
(51,'0101000020E61000005B0E1F8DAA5F15C0530BFE285BF24140'::geometry,ST_Transform('0101000020E61000005B0E1F8DAA5F15C0530BFE285BF24140'::geometry, 3857),'51','18',0.01),
(10,'0101000020E61000000FD65D82AEA418C06192D1351FDB4340'::geometry,ST_Transform('0101000020E61000000FD65D82AEA418C06192D1351FDB4340'::geometry, 3857),'10','11',0.04),
(11,'0101000020E6100000B305531DAB0A17C0DEAFCD4EE5464240'::geometry,ST_Transform('0101000020E6100000B305531DAB0A17C0DEAFCD4EE5464240'::geometry, 3857),'11','01',0.08),
(12,'0101000020E610000059721A7297C9C2BF9EBE383BE51E4440'::geometry,ST_Transform('0101000020E610000059721A7297C9C2BF9EBE383BE51E4440'::geometry, 3857),'12','10',0.2),
(14,'0101000020E610000000C86313AF3C13C0E530879C10FF4240'::geometry,ST_Transform('0101000020E610000000C86313AF3C13C0E530879C10FF4240'::geometry, 3857),'14','01',0.2),
(15,'0101000020E61000002A475497B6ED20C06643D4131A904540'::geometry,ST_Transform('0101000020E61000002A475497B6ED20C06643D4131A904540'::geometry, 3857),'15','12',0.3),
(20,'0101000020E6100000F975566FAD8D01C0E840C33F67924540'::geometry,ST_Transform('0101000020E6100000F975566FAD8D01C0E840C33F67924540'::geometry, 3857),'20','16',0.8),
(23,'0101000020E610000025FA13E595880BC022BB07131D024340'::geometry,ST_Transform('0101000020E610000025FA13E595880BC022BB07131D024340'::geometry, 3857),'23','01',0.1),
(24,'0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry,ST_Transform('0101000020E61000009C5F91C5095C17C0C78784B15A4F4540'::geometry, 3857),'24','07',0.3),
(29,'0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry,ST_Transform('0101000020E6100000C34D4A5B48E712C092E680892C684240'::geometry, 3857),'29','01',0.3),
(52,'0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry,ST_Transform('0101000020E6100000406A545EB29A07C04E5F0BDA39A54140'::geometry, 3857),'52','19',0.01)

View File

@ -1,2 +1,2 @@
import poc
import random_seeds
import clustering

View File

@ -1 +0,0 @@
from xyz import *

View File

@ -1,6 +0,0 @@
import plpy
def xyz():
plpy.notice('XYZ...')
r = plpy.execute("select * from pg_class where relname='pg_class'")
return r[0]['reltype']

View File

@ -0,0 +1,10 @@
import random
import numpy
def set_random_seeds(value):
"""
Set the seeds of the RNGs (Random Number Generators)
used internally.
"""
random.seed(value)
numpy.random.seed(value)

View File

@ -22,7 +22,7 @@ setup(
license='MIT',
classifiers=[
'Development Status :: 1 - Planning',
'Development Status :: 3 - Alpha',
'Intended Audience :: Mapping comunity',
'Topic :: Maps :: Mapping Tools',
'License :: OSI Approved :: MIT License',
@ -38,6 +38,8 @@ setup(
'test': ['unittest', 'nose', 'mock'],
},
# The choice of component versions is dictated by what's
# provisioned in the production servers.
install_requires=['pysal==1.11.0','numpy==1.6.1'],
requires=['pysal', 'numpy'],

View File

@ -1,23 +0,0 @@
#!/usr/local/bin/python
# -*- coding: utf-8 -*-
import unittest
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import plpy
import crankshaft
class TestPoc(unittest.TestCase):
def setUp(self):
plpy._reset()
def test_should_have_xyz(self):
plpy._define_result('select.*from\s+pg_class', [{'reltype': 111}])
assert crankshaft.poc.xyz() == 111
assert plpy.notices[0] == 'XYZ...'