Merge branch 'develop' into add-spatial-markov
This commit is contained in:
commit
dd0ca9a24f
7
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
7
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@ -0,0 +1,7 @@
|
||||
|
||||
- [ ] All declared geometries are `geometry(Geometry, 4326)` for general geoms, or `geometry(Point, 4326)`
|
||||
- [ ] Existing functions in crankshaft python library called from the extension are kept at least from version N to version N+1 (to avoid breakage during upgrades).
|
||||
- [ ] Docs for public-facing functions are written
|
||||
- [ ] New functions follow the naming conventions: `CDB_NameOfFunction`. Where internal functions begin with an underscore `_`.
|
||||
- [ ] If appropriate, new functions accepts an arbitrary query as an input (see [Crankshaft Issue #6](https://github.com/CartoDB/crankshaft/issues/6) for more information)
|
||||
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,3 +1,4 @@
|
||||
envs/
|
||||
*.pyc
|
||||
.DS_Store
|
||||
.idea/
|
||||
|
@ -60,7 +60,6 @@ it can be installed directly with:
|
||||
|
||||
* `CREATE EXTENSION IF NOT EXISTS plpythonu;`
|
||||
`CREATE EXTENSION IF NOT EXISTS postgis;`
|
||||
`CREATE EXTENSION IF NOT EXISTS cartodb;`
|
||||
`CREATE EXTENSION crankshaft WITH VERSION 'dev';`
|
||||
|
||||
Note: the development extension uses the development python virtual
|
||||
|
8
Makefile
8
Makefile
@ -11,7 +11,6 @@ PYP_DIR = src/py
|
||||
# Generate and install developmet versions of the extension
|
||||
# and python package.
|
||||
# The extension is named 'dev' with a 'current' alias for easily upgrading.
|
||||
# The Python package is installed in a virtual environment envs/dev/
|
||||
# Requires sudo.
|
||||
install: ## Generate and install development version of the extension; requires sudo.
|
||||
$(MAKE) -C $(PYP_DIR) install
|
||||
@ -29,7 +28,6 @@ release: ## Generate a new release of the extension. Only for telease manager
|
||||
$(MAKE) -C $(PYP_DIR) release
|
||||
|
||||
# Install the current release.
|
||||
# The Python package is installed in a virtual environment envs/X.Y.Z/
|
||||
# Requires sudo.
|
||||
# Use the RELEASE_VERSION environment variable to deploy a specific version:
|
||||
# sudo make deploy RELEASE_VERSION=1.0.0
|
||||
@ -52,11 +50,7 @@ clean-release: ## clean up current release
|
||||
rm -rf release/python/$(RELEASE_VERSION)
|
||||
rm -f release/$(RELEASE_VERSION)--*.sql
|
||||
|
||||
# Cleanup all virtual environments
|
||||
clean-environments: ## clean up all virtual environments
|
||||
rm -rf envs/*
|
||||
|
||||
clean-all: clean-dev clean-release clean-environments
|
||||
clean-all: clean-dev clean-release
|
||||
|
||||
help:
|
||||
@IFS=$$'\n' ; \
|
||||
|
10
NEWS.md
10
NEWS.md
@ -1,3 +1,13 @@
|
||||
0.0.4 (2016-06-20)
|
||||
------------------
|
||||
* Remove cartodb extension dependency from tests
|
||||
* Declare all correct dependencies with correct versions in setup.py
|
||||
|
||||
0.0.3 (2016-06-16)
|
||||
------------------
|
||||
* Adds new functions: kmeans, weighted centroids.
|
||||
* Replaces moran functions with new areas of interest naming.
|
||||
|
||||
0.0.2 (2016-03-16)
|
||||
------------------
|
||||
* New versioning approach using per-version Python virtual environments
|
||||
|
@ -9,11 +9,10 @@ CartoDB Spatial Analysis extension for PostgreSQL.
|
||||
* - *src/pg* contains the PostgreSQL extension source code
|
||||
* - *src/py* Python module source code
|
||||
* *release* reseleased versions
|
||||
* *env* base directory for Python virtual environments
|
||||
|
||||
## Requirements
|
||||
|
||||
* pip, virtualenv, PostgreSQL
|
||||
* pip, PostgreSQL
|
||||
* python-scipy system package (see [src/py/README.md](https://github.com/CartoDB/crankshaft/blob/master/src/py/README.md))
|
||||
|
||||
# Working Process -- Quickstart Guide
|
||||
|
51
doc/08_interpolation.md
Normal file
51
doc/08_interpolation.md
Normal file
@ -0,0 +1,51 @@
|
||||
## Spacial interpolation
|
||||
|
||||
Function to interpolate a numeric attribute of a point in a scatter dataset of points, using one of three methos:
|
||||
|
||||
* [Nearest neighbor](https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation)
|
||||
* [Barycentric](https://en.wikipedia.org/wiki/Barycentric_coordinate_system)
|
||||
* [IDW](https://en.wikipedia.org/wiki/Inverse_distance_weighting)
|
||||
|
||||
### CDB_SpatialInterpolation (query text, point geometry, method integer DEFAULT 1, p1 integer DEFAULT 0, ps integer DEFAULT 0)
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| query | text | query that returns at least `the_geom` and a numeric value as `attrib` |
|
||||
| point | geometry | The target point to calc the value |
|
||||
| method | integer | 0:nearest neighbor, 1: barycentric, 2: IDW|
|
||||
| p1 | integer | IDW: limit the number of neighbors, 0->no limit|
|
||||
| p2 | integer | IDW: order of distance decay, 0-> order 1|
|
||||
|
||||
### CDB_SpatialInterpolation (geom geometry[], values numeric[], point geometry, method integer DEFAULT 1, p1 integer DEFAULT 0, ps integer DEFAULT 0)
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| geom | geometry[] | Array of points's geometries |
|
||||
| values | numeric[] | Array of points' values for the param under study|
|
||||
| point | geometry | The target point to calc the value |
|
||||
| method | integer | 0:nearest neighbor, 1: barycentric, 2: IDW|
|
||||
| p1 | integer | IDW: limit the number of neighbors, 0->no limit|
|
||||
| p2 | integer | IDW: order of distance decay, 0-> order 1|
|
||||
|
||||
### Returns
|
||||
|
||||
| Column Name | Type | Description |
|
||||
|-------------|------|-------------|
|
||||
| value | numeric | Interpolated value at the given point, `-888.888` if the given point is out of the boundaries of the source points set |
|
||||
|
||||
|
||||
#### Example Usage
|
||||
|
||||
```sql
|
||||
with a as (
|
||||
select
|
||||
array_agg(the_geom) as geomin,
|
||||
array_agg(temp::numeric) as colin
|
||||
from table_4804232032
|
||||
)
|
||||
SELECT CDB_SpatialInterpolation(geomin, colin, CDB_latlng(41.38, 2.15),1) FROM a;
|
||||
```
|
62
doc/11_kmeans.md
Normal file
62
doc/11_kmeans.md
Normal file
@ -0,0 +1,62 @@
|
||||
## K-Means Functions
|
||||
|
||||
### CDB_KMeans(subquery text, no_clusters INTEGER)
|
||||
|
||||
This function attempts to find n clusters within the input data. It will return a table to CartoDB ids and
|
||||
the number of the cluster each point in the input was assigend to.
|
||||
|
||||
|
||||
#### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column name `the_geom` and id column name `cartodb_id` unless otherwise specified in the input arguments |
|
||||
| no\_clusters | INTEGER | The number of clusters to try and find |
|
||||
|
||||
#### Returns
|
||||
|
||||
A table with the following columns.
|
||||
|
||||
| Column Name | Type | Description |
|
||||
|-------------|------|-------------|
|
||||
| cartodb\_id | INTEGER | The CartoDB id of the row in the input table.|
|
||||
| cluster\_no | INTEGER | The cluster that this point belongs to. |
|
||||
|
||||
|
||||
#### Example Usage
|
||||
|
||||
```sql
|
||||
SELECT
|
||||
customers.*,
|
||||
km.cluster_no
|
||||
FROM cdb_crankshaft.CDB_Kmeans('SELECT * from customers' , 6) km, customers_3
|
||||
WHERE customers.cartodb_id = km.cartodb_id
|
||||
```
|
||||
|
||||
### CDB_WeightedMean(subquery text, weight_column text, category_column text)
|
||||
|
||||
Function that computes the weighted centroid of a number of clusters by some weight column.
|
||||
|
||||
### Arguments
|
||||
|
||||
| Name | Type | Description |
|
||||
|------|------|-------------|
|
||||
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column and the columns specified as the weight and category columns|
|
||||
| weight\_column | TEXT | The name of the column to use as a weight |
|
||||
| category\_column | TEXT | The name of the column to use as a category |
|
||||
|
||||
### Returns
|
||||
|
||||
A table with the following columns.
|
||||
|
||||
| Column Name | Type | Description |
|
||||
|-------------|------|-------------|
|
||||
| the\_geom | GEOMETRY | A point for the weighted cluster center |
|
||||
| class | INTEGER | The cluster class |
|
||||
|
||||
### Example Usage
|
||||
|
||||
```sql
|
||||
SELECT ST_TRANSFORM(the_geom, 3857) as the_geom_webmercator, class
|
||||
FROM cdb_weighted_mean('SELECT *, customer_value FROM customers','customer_value','cluster_no')
|
||||
```
|
413
release/crankshaft--0.0.2--0.0.3.sql
Normal file
413
release/crankshaft--0.0.2--0.0.3.sql
Normal file
@ -0,0 +1,413 @@
|
||||
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
|
||||
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
|
||||
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
|
||||
|
||||
-- [MANUALLY] DROP FUNCTIONS REMOVED SINCE 0.0.2 version
|
||||
|
||||
DROP FUNCTION IF EXISTS cdb_moran_local(TEXT, TEXT, float, INT, INT, TEXT, TEXT, TEXT);
|
||||
DROP FUNCTION IF EXISTS cdb_moran_local_rate(TEXT, TEXT, TEXT, FLOAT, INT, INT, TEXT, TEXT, TEXT);
|
||||
DROP FUNCTION IF EXISTS _cdb_crankshaft_virtualenvs_path();
|
||||
DROP FUNCTION IF EXISTS _cdb_crankshaft_activate_py();
|
||||
|
||||
-- [END MANUALLY] DROP FUNCTIONS REMOVED SINCE 0.0.2 version
|
||||
|
||||
-- Version number of the extension release
|
||||
CREATE OR REPLACE FUNCTION cdb_crankshaft_version()
|
||||
RETURNS text AS $$
|
||||
SELECT '0.0.3'::text;
|
||||
$$ language 'sql' STABLE STRICT;
|
||||
|
||||
-- Internal identifier of the installed extension instence
|
||||
-- e.g. 'dev' for current development version
|
||||
CREATE OR REPLACE FUNCTION _cdb_crankshaft_internal_version()
|
||||
RETURNS text AS $$
|
||||
SELECT installed_version FROM pg_available_extensions where name='crankshaft' and pg_available_extensions IS NOT NULL;
|
||||
$$ language 'sql' STABLE STRICT;
|
||||
-- Internal function.
|
||||
-- Set the seeds of the RNGs (Random Number Generators)
|
||||
-- used internally.
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_cdb_random_seeds (seed_value INTEGER) RETURNS VOID
|
||||
AS $$
|
||||
from crankshaft import random_seeds
|
||||
random_seeds.set_random_seeds(seed_value)
|
||||
$$ LANGUAGE plpythonu;
|
||||
-- Moran's I Global Measure (public-facing)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestGlobal(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local (internal function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_CDB_AreasOfInterestLocal(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT,
|
||||
num_ngbrs INT,
|
||||
permutations INT,
|
||||
geom_col TEXT,
|
||||
id_col TEXT)
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestLocal(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col);
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I only for HH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialHotspots(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HH', 'HL');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I only for LL and LH (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialColdspots(
|
||||
subquery TEXT,
|
||||
attr TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('LL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I only for LH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialOutliers(
|
||||
subquery TEXT,
|
||||
attr TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Global Rate (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestGlobalRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran FLOAT, significance FLOAT)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
|
||||
-- Moran's I Local Rate (internal function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_CDB_AreasOfInterestLocalRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT,
|
||||
num_ngbrs INT,
|
||||
permutations INT,
|
||||
geom_col TEXT,
|
||||
id_col TEXT)
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local_rate
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local Rate (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestLocalRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col);
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Local Rate only for HH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialHotspotsRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HH', 'HL');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Local Rate only for LL and LH (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialColdspotsRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('LL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Local Rate only for LH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialOutliersRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer,no_init integer default 20)
|
||||
RETURNS table (cartodb_id integer, cluster_no integer) as $$
|
||||
|
||||
from crankshaft.clustering import kmeans
|
||||
return kmeans(query,no_clusters,no_init)
|
||||
|
||||
$$ language plpythonu;
|
||||
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC)
|
||||
RETURNS Numeric[] AS
|
||||
$$
|
||||
DECLARE
|
||||
newX NUMERIC;
|
||||
newY NUMERIC;
|
||||
newW NUMERIC;
|
||||
BEGIN
|
||||
IF weight IS NULL OR the_geom IS NULL THEN
|
||||
newX = state[1];
|
||||
newY = state[2];
|
||||
newW = state[3];
|
||||
ELSE
|
||||
newX = state[1] + ST_X(the_geom)*weight;
|
||||
newY = state[2] + ST_Y(the_geom)*weight;
|
||||
newW = state[3] + weight;
|
||||
END IF;
|
||||
RETURN Array[newX,newY,newW];
|
||||
|
||||
END
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanF(state Numeric[])
|
||||
RETURNS GEOMETRY AS
|
||||
$$
|
||||
BEGIN
|
||||
IF state[3] = 0 THEN
|
||||
RETURN ST_SetSRID(ST_MakePoint(state[1],state[2]), 4326);
|
||||
ELSE
|
||||
RETURN ST_SETSRID(ST_MakePoint(state[1]/state[3], state[2]/state[3]),4326);
|
||||
END IF;
|
||||
END
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
CREATE AGGREGATE CDB_WeightedMean(geometry(Point, 4326), NUMERIC)(
|
||||
SFUNC = CDB_WeightedMeanS,
|
||||
FINALFUNC = CDB_WeightedMeanF,
|
||||
STYPE = Numeric[],
|
||||
INITCOND = "{0.0,0.0,0.0}"
|
||||
);
|
||||
-- Function by Stuart Lynn for a simple interpolation of a value
|
||||
-- from a polygon table over an arbitrary polygon
|
||||
-- (weighted by the area proportion overlapped)
|
||||
-- Aereal weighting is a very simple form of aereal interpolation.
|
||||
--
|
||||
-- Parameters:
|
||||
-- * geom a Polygon geometry which defines the area where a value will be
|
||||
-- estimated as the area-weighted sum of a given table/column
|
||||
-- * target_table_name table name of the table that provides the values
|
||||
-- * target_column column name of the column that provides the values
|
||||
-- * schema_name optional parameter to defina the schema the target table
|
||||
-- belongs to, which is necessary if its not in the search_path.
|
||||
-- Note that target_table_name should never include the schema in it.
|
||||
-- Return value:
|
||||
-- Aereal-weighted interpolation of the column values over the geometry
|
||||
CREATE OR REPLACE
|
||||
FUNCTION cdb_overlap_sum(geom geometry, target_table_name text, target_column text, schema_name text DEFAULT NULL)
|
||||
RETURNS numeric AS
|
||||
$$
|
||||
DECLARE
|
||||
result numeric;
|
||||
qualified_name text;
|
||||
BEGIN
|
||||
IF schema_name IS NULL THEN
|
||||
qualified_name := Format('%I', target_table_name);
|
||||
ELSE
|
||||
qualified_name := Format('%I.%s', schema_name, target_table_name);
|
||||
END IF;
|
||||
EXECUTE Format('
|
||||
SELECT sum(%I*ST_Area(St_Intersection($1, a.the_geom))/ST_Area(a.the_geom))
|
||||
FROM %s AS a
|
||||
WHERE $1 && a.the_geom
|
||||
', target_column, qualified_name)
|
||||
USING geom
|
||||
INTO result;
|
||||
RETURN result;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
--
|
||||
-- Creates N points randomly distributed arround the polygon
|
||||
--
|
||||
-- @param g - the geometry to be turned in to points
|
||||
--
|
||||
-- @param no_points - the number of points to generate
|
||||
--
|
||||
-- @params max_iter_per_point - the function generates points in the polygon's bounding box
|
||||
-- and discards points which don't lie in the polygon. max_iter_per_point specifies how many
|
||||
-- misses per point the funciton accepts before giving up.
|
||||
--
|
||||
-- Returns: Multipoint with the requested points
|
||||
CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry , no_points Integer, max_iter_per_point Integer DEFAULT 1000)
|
||||
RETURNS GEOMETRY AS $$
|
||||
DECLARE
|
||||
extent GEOMETRY;
|
||||
test_point Geometry;
|
||||
width NUMERIC;
|
||||
height NUMERIC;
|
||||
x0 NUMERIC;
|
||||
y0 NUMERIC;
|
||||
xp NUMERIC;
|
||||
yp NUMERIC;
|
||||
no_left INTEGER;
|
||||
remaining_iterations INTEGER;
|
||||
points GEOMETRY[];
|
||||
bbox_line GEOMETRY;
|
||||
intersection_line GEOMETRY;
|
||||
BEGIN
|
||||
extent := ST_Envelope(geom);
|
||||
width := ST_XMax(extent) - ST_XMIN(extent);
|
||||
height := ST_YMax(extent) - ST_YMIN(extent);
|
||||
x0 := ST_XMin(extent);
|
||||
y0 := ST_YMin(extent);
|
||||
no_left := no_points;
|
||||
|
||||
LOOP
|
||||
if(no_left=0) THEN
|
||||
EXIT;
|
||||
END IF;
|
||||
yp = y0 + height*random();
|
||||
bbox_line = ST_MakeLine(
|
||||
ST_SetSRID(ST_MakePoint(yp, x0),4326),
|
||||
ST_SetSRID(ST_MakePoint(yp, x0+width),4326)
|
||||
);
|
||||
intersection_line = ST_Intersection(bbox_line,geom);
|
||||
test_point = ST_LineInterpolatePoint(st_makeline(st_linemerge(intersection_line)),random());
|
||||
points := points || test_point;
|
||||
no_left = no_left - 1 ;
|
||||
END LOOP;
|
||||
RETURN ST_Collect(points);
|
||||
END;
|
||||
$$
|
||||
LANGUAGE plpgsql VOLATILE;
|
||||
-- Make sure by default there are no permissions for publicuser
|
||||
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
|
||||
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
|
||||
|
||||
-- Grant permissions on the schema to publicuser (but just the schema)
|
||||
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
|
||||
|
||||
-- Revoke execute permissions on all functions in the schema by default
|
||||
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;
|
209
release/crankshaft--0.0.3--0.0.2.sql
Normal file
209
release/crankshaft--0.0.3--0.0.2.sql
Normal file
@ -0,0 +1,209 @@
|
||||
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
|
||||
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
|
||||
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
|
||||
|
||||
-- [MANUALLY] DROP FUNCTIONS INTRODUCED IN 0.0.3 version
|
||||
|
||||
DROP FUNCTION IF EXISTS CDB_AreasOfInterestGlobal(TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS _CDB_AreasOfInterestLocal(TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS CDB_AreasOfInterestLocal(TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS CDB_GetSpatialHotspots(TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS CDB_GetSpatialColdspots(TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS CDB_GetSpatialOutliers(TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS CDB_AreasOfInterestGlobalRate(TEXT,TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS CDB_AreasOfInterestLocalRate(TEXT,TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS _CDB_AreasOfInterestLocalRate(TEXT,TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS CDB_GetSpatialHotspotsRate(TEXT,TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS CDB_GetSpatialColdspotsRate(TEXT,TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS CDB_GetSpatialOutliersRate(TEXT,TEXT,TEXT,TEXT,INT,INT,TEXT,TEXT);
|
||||
DROP FUNCTION IF EXISTS CDB_KMeans(text,integer,integer);
|
||||
DROP AGGREGATE IF EXISTS CDB_WeightedMean(geometry(Point, 4326), NUMERIC);
|
||||
DROP FUNCTION IF EXISTS CDB_WeightedMeanS(Numeric[], GEOMETRY(Point, 4326), NUMERIC);
|
||||
DROP FUNCTION IF EXISTS CDB_WeightedMeanF(Numeric[]);
|
||||
|
||||
|
||||
-- [END MANUALLY] DROP FUNCTIONS INTRODUCED IN 0.0.3 version
|
||||
|
||||
-- Version number of the extension release
|
||||
CREATE OR REPLACE FUNCTION cdb_crankshaft_version()
|
||||
RETURNS text AS $$
|
||||
SELECT '0.0.2'::text;
|
||||
$$ language 'sql' STABLE STRICT;
|
||||
|
||||
-- Internal identifier of the installed extension instence
|
||||
-- e.g. 'dev' for current development version
|
||||
CREATE OR REPLACE FUNCTION _cdb_crankshaft_internal_version()
|
||||
RETURNS text AS $$
|
||||
SELECT installed_version FROM pg_available_extensions where name='crankshaft' and pg_available_extensions IS NOT NULL;
|
||||
$$ language 'sql' STABLE STRICT;
|
||||
CREATE OR REPLACE FUNCTION _cdb_crankshaft_virtualenvs_path()
|
||||
RETURNS text
|
||||
AS $$
|
||||
BEGIN
|
||||
-- RETURN '/opt/virtualenvs/crankshaft';
|
||||
RETURN '/home/ubuntu/crankshaft/envs';
|
||||
END;
|
||||
$$ language plpgsql IMMUTABLE STRICT;
|
||||
|
||||
-- Use the crankshaft python module
|
||||
CREATE OR REPLACE FUNCTION _cdb_crankshaft_activate_py()
|
||||
RETURNS VOID
|
||||
AS $$
|
||||
import os
|
||||
# plpy.notice('%',str(os.environ))
|
||||
# activate virtualenv
|
||||
crankshaft_version = plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_internal_version()')[0]['_cdb_crankshaft_internal_version']
|
||||
base_path = plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_virtualenvs_path()')[0]['_cdb_crankshaft_virtualenvs_path']
|
||||
default_venv_path = os.path.join(base_path, crankshaft_version)
|
||||
venv_path = os.environ.get('CRANKSHAFT_VENV', default_venv_path)
|
||||
activate_path = venv_path + '/bin/activate_this.py'
|
||||
exec(open(activate_path).read(), dict(__file__=activate_path))
|
||||
$$ LANGUAGE plpythonu;
|
||||
-- Internal function.
|
||||
-- Set the seeds of the RNGs (Random Number Generators)
|
||||
-- used internally.
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_cdb_random_seeds (seed_value INTEGER) RETURNS VOID
|
||||
AS $$
|
||||
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
||||
from crankshaft import random_seeds
|
||||
random_seeds.set_random_seeds(seed_value)
|
||||
$$ LANGUAGE plpythonu;
|
||||
-- Moran's I
|
||||
CREATE OR REPLACE FUNCTION
|
||||
cdb_moran_local (
|
||||
t TEXT,
|
||||
attr TEXT,
|
||||
significance float DEFAULT 0.05,
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_column TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id',
|
||||
w_type TEXT DEFAULT 'knn')
|
||||
RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT)
|
||||
AS $$
|
||||
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local(t, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local Rate
|
||||
CREATE OR REPLACE FUNCTION
|
||||
cdb_moran_local_rate(t TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
significance FLOAT DEFAULT 0.05,
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_column TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id',
|
||||
w_type TEXT DEFAULT 'knn')
|
||||
RETURNS TABLE(moran FLOAT, quads TEXT, significance FLOAT, ids INT, y numeric)
|
||||
AS $$
|
||||
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
||||
from crankshaft.clustering import moran_local_rate
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local_rate(t, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type)
|
||||
$$ LANGUAGE plpythonu;
|
||||
-- Function by Stuart Lynn for a simple interpolation of a value
|
||||
-- from a polygon table over an arbitrary polygon
|
||||
-- (weighted by the area proportion overlapped)
|
||||
-- Aereal weighting is a very simple form of aereal interpolation.
|
||||
--
|
||||
-- Parameters:
|
||||
-- * geom a Polygon geometry which defines the area where a value will be
|
||||
-- estimated as the area-weighted sum of a given table/column
|
||||
-- * target_table_name table name of the table that provides the values
|
||||
-- * target_column column name of the column that provides the values
|
||||
-- * schema_name optional parameter to defina the schema the target table
|
||||
-- belongs to, which is necessary if its not in the search_path.
|
||||
-- Note that target_table_name should never include the schema in it.
|
||||
-- Return value:
|
||||
-- Aereal-weighted interpolation of the column values over the geometry
|
||||
CREATE OR REPLACE
|
||||
FUNCTION cdb_overlap_sum(geom geometry, target_table_name text, target_column text, schema_name text DEFAULT NULL)
|
||||
RETURNS numeric AS
|
||||
$$
|
||||
DECLARE
|
||||
result numeric;
|
||||
qualified_name text;
|
||||
BEGIN
|
||||
IF schema_name IS NULL THEN
|
||||
qualified_name := Format('%I', target_table_name);
|
||||
ELSE
|
||||
qualified_name := Format('%I.%s', schema_name, target_table_name);
|
||||
END IF;
|
||||
EXECUTE Format('
|
||||
SELECT sum(%I*ST_Area(St_Intersection($1, a.the_geom))/ST_Area(a.the_geom))
|
||||
FROM %s AS a
|
||||
WHERE $1 && a.the_geom
|
||||
', target_column, qualified_name)
|
||||
USING geom
|
||||
INTO result;
|
||||
RETURN result;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
--
|
||||
-- Creates N points randomly distributed arround the polygon
|
||||
--
|
||||
-- @param g - the geometry to be turned in to points
|
||||
--
|
||||
-- @param no_points - the number of points to generate
|
||||
--
|
||||
-- @params max_iter_per_point - the function generates points in the polygon's bounding box
|
||||
-- and discards points which don't lie in the polygon. max_iter_per_point specifies how many
|
||||
-- misses per point the funciton accepts before giving up.
|
||||
--
|
||||
-- Returns: Multipoint with the requested points
|
||||
CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry , no_points Integer, max_iter_per_point Integer DEFAULT 1000)
|
||||
RETURNS GEOMETRY AS $$
|
||||
DECLARE
|
||||
extent GEOMETRY;
|
||||
test_point Geometry;
|
||||
width NUMERIC;
|
||||
height NUMERIC;
|
||||
x0 NUMERIC;
|
||||
y0 NUMERIC;
|
||||
xp NUMERIC;
|
||||
yp NUMERIC;
|
||||
no_left INTEGER;
|
||||
remaining_iterations INTEGER;
|
||||
points GEOMETRY[];
|
||||
bbox_line GEOMETRY;
|
||||
intersection_line GEOMETRY;
|
||||
BEGIN
|
||||
extent := ST_Envelope(geom);
|
||||
width := ST_XMax(extent) - ST_XMIN(extent);
|
||||
height := ST_YMax(extent) - ST_YMIN(extent);
|
||||
x0 := ST_XMin(extent);
|
||||
y0 := ST_YMin(extent);
|
||||
no_left := no_points;
|
||||
|
||||
LOOP
|
||||
if(no_left=0) THEN
|
||||
EXIT;
|
||||
END IF;
|
||||
yp = y0 + height*random();
|
||||
bbox_line = ST_MakeLine(
|
||||
ST_SetSRID(ST_MakePoint(yp, x0),4326),
|
||||
ST_SetSRID(ST_MakePoint(yp, x0+width),4326)
|
||||
);
|
||||
intersection_line = ST_Intersection(bbox_line,geom);
|
||||
test_point = ST_LineInterpolatePoint(st_makeline(st_linemerge(intersection_line)),random());
|
||||
points := points || test_point;
|
||||
no_left = no_left - 1 ;
|
||||
END LOOP;
|
||||
RETURN ST_Collect(points);
|
||||
END;
|
||||
$$
|
||||
LANGUAGE plpgsql VOLATILE;
|
||||
-- Make sure by default there are no permissions for publicuser
|
||||
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
|
||||
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
|
||||
|
||||
-- Grant permissions on the schema to publicuser (but just the schema)
|
||||
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
|
||||
|
||||
-- Revoke execute permissions on all functions in the schema by default
|
||||
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;
|
8
release/crankshaft--0.0.3--0.0.4.sql
Normal file
8
release/crankshaft--0.0.3--0.0.4.sql
Normal file
@ -0,0 +1,8 @@
|
||||
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
|
||||
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
|
||||
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
|
||||
-- Version number of the extension release
|
||||
CREATE OR REPLACE FUNCTION cdb_crankshaft_version()
|
||||
RETURNS text AS $$
|
||||
SELECT '0.0.4'::text;
|
||||
$$ language 'sql' STABLE STRICT;
|
403
release/crankshaft--0.0.3.sql
Normal file
403
release/crankshaft--0.0.3.sql
Normal file
@ -0,0 +1,403 @@
|
||||
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
|
||||
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
|
||||
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
|
||||
-- Version number of the extension release
|
||||
CREATE OR REPLACE FUNCTION cdb_crankshaft_version()
|
||||
RETURNS text AS $$
|
||||
SELECT '0.0.3'::text;
|
||||
$$ language 'sql' STABLE STRICT;
|
||||
|
||||
-- Internal identifier of the installed extension instence
|
||||
-- e.g. 'dev' for current development version
|
||||
CREATE OR REPLACE FUNCTION _cdb_crankshaft_internal_version()
|
||||
RETURNS text AS $$
|
||||
SELECT installed_version FROM pg_available_extensions where name='crankshaft' and pg_available_extensions IS NOT NULL;
|
||||
$$ language 'sql' STABLE STRICT;
|
||||
-- Internal function.
|
||||
-- Set the seeds of the RNGs (Random Number Generators)
|
||||
-- used internally.
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_cdb_random_seeds (seed_value INTEGER) RETURNS VOID
|
||||
AS $$
|
||||
from crankshaft import random_seeds
|
||||
random_seeds.set_random_seeds(seed_value)
|
||||
$$ LANGUAGE plpythonu;
|
||||
-- Moran's I Global Measure (public-facing)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestGlobal(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local (internal function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_CDB_AreasOfInterestLocal(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT,
|
||||
num_ngbrs INT,
|
||||
permutations INT,
|
||||
geom_col TEXT,
|
||||
id_col TEXT)
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestLocal(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col);
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I only for HH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialHotspots(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HH', 'HL');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I only for LL and LH (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialColdspots(
|
||||
subquery TEXT,
|
||||
attr TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('LL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I only for LH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialOutliers(
|
||||
subquery TEXT,
|
||||
attr TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Global Rate (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestGlobalRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran FLOAT, significance FLOAT)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
|
||||
-- Moran's I Local Rate (internal function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_CDB_AreasOfInterestLocalRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT,
|
||||
num_ngbrs INT,
|
||||
permutations INT,
|
||||
geom_col TEXT,
|
||||
id_col TEXT)
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local_rate
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local Rate (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestLocalRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col);
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Local Rate only for HH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialHotspotsRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HH', 'HL');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Local Rate only for LL and LH (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialColdspotsRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('LL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Local Rate only for LH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialOutliersRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer,no_init integer default 20)
|
||||
RETURNS table (cartodb_id integer, cluster_no integer) as $$
|
||||
|
||||
from crankshaft.clustering import kmeans
|
||||
return kmeans(query,no_clusters,no_init)
|
||||
|
||||
$$ language plpythonu;
|
||||
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC)
|
||||
RETURNS Numeric[] AS
|
||||
$$
|
||||
DECLARE
|
||||
newX NUMERIC;
|
||||
newY NUMERIC;
|
||||
newW NUMERIC;
|
||||
BEGIN
|
||||
IF weight IS NULL OR the_geom IS NULL THEN
|
||||
newX = state[1];
|
||||
newY = state[2];
|
||||
newW = state[3];
|
||||
ELSE
|
||||
newX = state[1] + ST_X(the_geom)*weight;
|
||||
newY = state[2] + ST_Y(the_geom)*weight;
|
||||
newW = state[3] + weight;
|
||||
END IF;
|
||||
RETURN Array[newX,newY,newW];
|
||||
|
||||
END
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanF(state Numeric[])
|
||||
RETURNS GEOMETRY AS
|
||||
$$
|
||||
BEGIN
|
||||
IF state[3] = 0 THEN
|
||||
RETURN ST_SetSRID(ST_MakePoint(state[1],state[2]), 4326);
|
||||
ELSE
|
||||
RETURN ST_SETSRID(ST_MakePoint(state[1]/state[3], state[2]/state[3]),4326);
|
||||
END IF;
|
||||
END
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
CREATE AGGREGATE CDB_WeightedMean(geometry(Point, 4326), NUMERIC)(
|
||||
SFUNC = CDB_WeightedMeanS,
|
||||
FINALFUNC = CDB_WeightedMeanF,
|
||||
STYPE = Numeric[],
|
||||
INITCOND = "{0.0,0.0,0.0}"
|
||||
);
|
||||
-- Function by Stuart Lynn for a simple interpolation of a value
|
||||
-- from a polygon table over an arbitrary polygon
|
||||
-- (weighted by the area proportion overlapped)
|
||||
-- Aereal weighting is a very simple form of aereal interpolation.
|
||||
--
|
||||
-- Parameters:
|
||||
-- * geom a Polygon geometry which defines the area where a value will be
|
||||
-- estimated as the area-weighted sum of a given table/column
|
||||
-- * target_table_name table name of the table that provides the values
|
||||
-- * target_column column name of the column that provides the values
|
||||
-- * schema_name optional parameter to defina the schema the target table
|
||||
-- belongs to, which is necessary if its not in the search_path.
|
||||
-- Note that target_table_name should never include the schema in it.
|
||||
-- Return value:
|
||||
-- Aereal-weighted interpolation of the column values over the geometry
|
||||
CREATE OR REPLACE
|
||||
FUNCTION cdb_overlap_sum(geom geometry, target_table_name text, target_column text, schema_name text DEFAULT NULL)
|
||||
RETURNS numeric AS
|
||||
$$
|
||||
DECLARE
|
||||
result numeric;
|
||||
qualified_name text;
|
||||
BEGIN
|
||||
IF schema_name IS NULL THEN
|
||||
qualified_name := Format('%I', target_table_name);
|
||||
ELSE
|
||||
qualified_name := Format('%I.%s', schema_name, target_table_name);
|
||||
END IF;
|
||||
EXECUTE Format('
|
||||
SELECT sum(%I*ST_Area(St_Intersection($1, a.the_geom))/ST_Area(a.the_geom))
|
||||
FROM %s AS a
|
||||
WHERE $1 && a.the_geom
|
||||
', target_column, qualified_name)
|
||||
USING geom
|
||||
INTO result;
|
||||
RETURN result;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
--
|
||||
-- Creates N points randomly distributed arround the polygon
|
||||
--
|
||||
-- @param g - the geometry to be turned in to points
|
||||
--
|
||||
-- @param no_points - the number of points to generate
|
||||
--
|
||||
-- @params max_iter_per_point - the function generates points in the polygon's bounding box
|
||||
-- and discards points which don't lie in the polygon. max_iter_per_point specifies how many
|
||||
-- misses per point the funciton accepts before giving up.
|
||||
--
|
||||
-- Returns: Multipoint with the requested points
|
||||
CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry , no_points Integer, max_iter_per_point Integer DEFAULT 1000)
|
||||
RETURNS GEOMETRY AS $$
|
||||
DECLARE
|
||||
extent GEOMETRY;
|
||||
test_point Geometry;
|
||||
width NUMERIC;
|
||||
height NUMERIC;
|
||||
x0 NUMERIC;
|
||||
y0 NUMERIC;
|
||||
xp NUMERIC;
|
||||
yp NUMERIC;
|
||||
no_left INTEGER;
|
||||
remaining_iterations INTEGER;
|
||||
points GEOMETRY[];
|
||||
bbox_line GEOMETRY;
|
||||
intersection_line GEOMETRY;
|
||||
BEGIN
|
||||
extent := ST_Envelope(geom);
|
||||
width := ST_XMax(extent) - ST_XMIN(extent);
|
||||
height := ST_YMax(extent) - ST_YMIN(extent);
|
||||
x0 := ST_XMin(extent);
|
||||
y0 := ST_YMin(extent);
|
||||
no_left := no_points;
|
||||
|
||||
LOOP
|
||||
if(no_left=0) THEN
|
||||
EXIT;
|
||||
END IF;
|
||||
yp = y0 + height*random();
|
||||
bbox_line = ST_MakeLine(
|
||||
ST_SetSRID(ST_MakePoint(yp, x0),4326),
|
||||
ST_SetSRID(ST_MakePoint(yp, x0+width),4326)
|
||||
);
|
||||
intersection_line = ST_Intersection(bbox_line,geom);
|
||||
test_point = ST_LineInterpolatePoint(st_makeline(st_linemerge(intersection_line)),random());
|
||||
points := points || test_point;
|
||||
no_left = no_left - 1 ;
|
||||
END LOOP;
|
||||
RETURN ST_Collect(points);
|
||||
END;
|
||||
$$
|
||||
LANGUAGE plpgsql VOLATILE;
|
||||
-- Make sure by default there are no permissions for publicuser
|
||||
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
|
||||
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
|
||||
|
||||
-- Grant permissions on the schema to publicuser (but just the schema)
|
||||
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
|
||||
|
||||
-- Revoke execute permissions on all functions in the schema by default
|
||||
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;
|
8
release/crankshaft--0.0.4--0.0.3.sql
Normal file
8
release/crankshaft--0.0.4--0.0.3.sql
Normal file
@ -0,0 +1,8 @@
|
||||
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
|
||||
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
|
||||
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
|
||||
-- Version number of the extension release
|
||||
CREATE OR REPLACE FUNCTION cdb_crankshaft_version()
|
||||
RETURNS text AS $$
|
||||
SELECT '0.0.3'::text;
|
||||
$$ language 'sql' STABLE STRICT;
|
403
release/crankshaft--0.0.4.sql
Normal file
403
release/crankshaft--0.0.4.sql
Normal file
@ -0,0 +1,403 @@
|
||||
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
|
||||
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
|
||||
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
|
||||
-- Version number of the extension release
|
||||
CREATE OR REPLACE FUNCTION cdb_crankshaft_version()
|
||||
RETURNS text AS $$
|
||||
SELECT '0.0.4'::text;
|
||||
$$ language 'sql' STABLE STRICT;
|
||||
|
||||
-- Internal identifier of the installed extension instence
|
||||
-- e.g. 'dev' for current development version
|
||||
CREATE OR REPLACE FUNCTION _cdb_crankshaft_internal_version()
|
||||
RETURNS text AS $$
|
||||
SELECT installed_version FROM pg_available_extensions where name='crankshaft' and pg_available_extensions IS NOT NULL;
|
||||
$$ language 'sql' STABLE STRICT;
|
||||
-- Internal function.
|
||||
-- Set the seeds of the RNGs (Random Number Generators)
|
||||
-- used internally.
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_cdb_random_seeds (seed_value INTEGER) RETURNS VOID
|
||||
AS $$
|
||||
from crankshaft import random_seeds
|
||||
random_seeds.set_random_seeds(seed_value)
|
||||
$$ LANGUAGE plpythonu;
|
||||
-- Moran's I Global Measure (public-facing)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestGlobal(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local (internal function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_CDB_AreasOfInterestLocal(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT,
|
||||
num_ngbrs INT,
|
||||
permutations INT,
|
||||
geom_col TEXT,
|
||||
id_col TEXT)
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestLocal(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col);
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I only for HH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialHotspots(
|
||||
subquery TEXT,
|
||||
column_name TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HH', 'HL');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I only for LL and LH (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialColdspots(
|
||||
subquery TEXT,
|
||||
attr TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('LL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I only for LH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialOutliers(
|
||||
subquery TEXT,
|
||||
attr TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Global Rate (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestGlobalRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran FLOAT, significance FLOAT)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
|
||||
-- Moran's I Local Rate (internal function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_CDB_AreasOfInterestLocalRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT,
|
||||
num_ngbrs INT,
|
||||
permutations INT,
|
||||
geom_col TEXT,
|
||||
id_col TEXT)
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
from crankshaft.clustering import moran_local_rate
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
-- Moran's I Local Rate (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_AreasOfInterestLocalRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col);
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Local Rate only for HH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialHotspotsRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HH', 'HL');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Local Rate only for LL and LH (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialColdspotsRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('LL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
|
||||
-- Moran's I Local Rate only for LH and HL (public-facing function)
|
||||
CREATE OR REPLACE FUNCTION
|
||||
CDB_GetSpatialOutliersRate(
|
||||
subquery TEXT,
|
||||
numerator TEXT,
|
||||
denominator TEXT,
|
||||
w_type TEXT DEFAULT 'knn',
|
||||
num_ngbrs INT DEFAULT 5,
|
||||
permutations INT DEFAULT 99,
|
||||
geom_col TEXT DEFAULT 'the_geom',
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
|
||||
SELECT moran, quads, significance, rowid, vals
|
||||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
WHERE quads IN ('HL', 'LH');
|
||||
|
||||
$$ LANGUAGE SQL;
|
||||
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer,no_init integer default 20)
|
||||
RETURNS table (cartodb_id integer, cluster_no integer) as $$
|
||||
|
||||
from crankshaft.clustering import kmeans
|
||||
return kmeans(query,no_clusters,no_init)
|
||||
|
||||
$$ language plpythonu;
|
||||
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC)
|
||||
RETURNS Numeric[] AS
|
||||
$$
|
||||
DECLARE
|
||||
newX NUMERIC;
|
||||
newY NUMERIC;
|
||||
newW NUMERIC;
|
||||
BEGIN
|
||||
IF weight IS NULL OR the_geom IS NULL THEN
|
||||
newX = state[1];
|
||||
newY = state[2];
|
||||
newW = state[3];
|
||||
ELSE
|
||||
newX = state[1] + ST_X(the_geom)*weight;
|
||||
newY = state[2] + ST_Y(the_geom)*weight;
|
||||
newW = state[3] + weight;
|
||||
END IF;
|
||||
RETURN Array[newX,newY,newW];
|
||||
|
||||
END
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanF(state Numeric[])
|
||||
RETURNS GEOMETRY AS
|
||||
$$
|
||||
BEGIN
|
||||
IF state[3] = 0 THEN
|
||||
RETURN ST_SetSRID(ST_MakePoint(state[1],state[2]), 4326);
|
||||
ELSE
|
||||
RETURN ST_SETSRID(ST_MakePoint(state[1]/state[3], state[2]/state[3]),4326);
|
||||
END IF;
|
||||
END
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
CREATE AGGREGATE CDB_WeightedMean(geometry(Point, 4326), NUMERIC)(
|
||||
SFUNC = CDB_WeightedMeanS,
|
||||
FINALFUNC = CDB_WeightedMeanF,
|
||||
STYPE = Numeric[],
|
||||
INITCOND = "{0.0,0.0,0.0}"
|
||||
);
|
||||
-- Function by Stuart Lynn for a simple interpolation of a value
|
||||
-- from a polygon table over an arbitrary polygon
|
||||
-- (weighted by the area proportion overlapped)
|
||||
-- Aereal weighting is a very simple form of aereal interpolation.
|
||||
--
|
||||
-- Parameters:
|
||||
-- * geom a Polygon geometry which defines the area where a value will be
|
||||
-- estimated as the area-weighted sum of a given table/column
|
||||
-- * target_table_name table name of the table that provides the values
|
||||
-- * target_column column name of the column that provides the values
|
||||
-- * schema_name optional parameter to defina the schema the target table
|
||||
-- belongs to, which is necessary if its not in the search_path.
|
||||
-- Note that target_table_name should never include the schema in it.
|
||||
-- Return value:
|
||||
-- Aereal-weighted interpolation of the column values over the geometry
|
||||
CREATE OR REPLACE
|
||||
FUNCTION cdb_overlap_sum(geom geometry, target_table_name text, target_column text, schema_name text DEFAULT NULL)
|
||||
RETURNS numeric AS
|
||||
$$
|
||||
DECLARE
|
||||
result numeric;
|
||||
qualified_name text;
|
||||
BEGIN
|
||||
IF schema_name IS NULL THEN
|
||||
qualified_name := Format('%I', target_table_name);
|
||||
ELSE
|
||||
qualified_name := Format('%I.%s', schema_name, target_table_name);
|
||||
END IF;
|
||||
EXECUTE Format('
|
||||
SELECT sum(%I*ST_Area(St_Intersection($1, a.the_geom))/ST_Area(a.the_geom))
|
||||
FROM %s AS a
|
||||
WHERE $1 && a.the_geom
|
||||
', target_column, qualified_name)
|
||||
USING geom
|
||||
INTO result;
|
||||
RETURN result;
|
||||
END;
|
||||
$$ LANGUAGE plpgsql;
|
||||
--
|
||||
-- Creates N points randomly distributed arround the polygon
|
||||
--
|
||||
-- @param g - the geometry to be turned in to points
|
||||
--
|
||||
-- @param no_points - the number of points to generate
|
||||
--
|
||||
-- @params max_iter_per_point - the function generates points in the polygon's bounding box
|
||||
-- and discards points which don't lie in the polygon. max_iter_per_point specifies how many
|
||||
-- misses per point the funciton accepts before giving up.
|
||||
--
|
||||
-- Returns: Multipoint with the requested points
|
||||
CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry , no_points Integer, max_iter_per_point Integer DEFAULT 1000)
|
||||
RETURNS GEOMETRY AS $$
|
||||
DECLARE
|
||||
extent GEOMETRY;
|
||||
test_point Geometry;
|
||||
width NUMERIC;
|
||||
height NUMERIC;
|
||||
x0 NUMERIC;
|
||||
y0 NUMERIC;
|
||||
xp NUMERIC;
|
||||
yp NUMERIC;
|
||||
no_left INTEGER;
|
||||
remaining_iterations INTEGER;
|
||||
points GEOMETRY[];
|
||||
bbox_line GEOMETRY;
|
||||
intersection_line GEOMETRY;
|
||||
BEGIN
|
||||
extent := ST_Envelope(geom);
|
||||
width := ST_XMax(extent) - ST_XMIN(extent);
|
||||
height := ST_YMax(extent) - ST_YMIN(extent);
|
||||
x0 := ST_XMin(extent);
|
||||
y0 := ST_YMin(extent);
|
||||
no_left := no_points;
|
||||
|
||||
LOOP
|
||||
if(no_left=0) THEN
|
||||
EXIT;
|
||||
END IF;
|
||||
yp = y0 + height*random();
|
||||
bbox_line = ST_MakeLine(
|
||||
ST_SetSRID(ST_MakePoint(yp, x0),4326),
|
||||
ST_SetSRID(ST_MakePoint(yp, x0+width),4326)
|
||||
);
|
||||
intersection_line = ST_Intersection(bbox_line,geom);
|
||||
test_point = ST_LineInterpolatePoint(st_makeline(st_linemerge(intersection_line)),random());
|
||||
points := points || test_point;
|
||||
no_left = no_left - 1 ;
|
||||
END LOOP;
|
||||
RETURN ST_Collect(points);
|
||||
END;
|
||||
$$
|
||||
LANGUAGE plpgsql VOLATILE;
|
||||
-- Make sure by default there are no permissions for publicuser
|
||||
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
|
||||
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
|
||||
|
||||
-- Grant permissions on the schema to publicuser (but just the schema)
|
||||
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
|
||||
|
||||
-- Revoke execute permissions on all functions in the schema by default
|
||||
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;
|
@ -1,5 +1,5 @@
|
||||
comment = 'CartoDB Spatial Analysis extension'
|
||||
default_version = '0.0.2'
|
||||
requires = 'plpythonu, postgis, cartodb'
|
||||
default_version = '0.0.4'
|
||||
requires = 'plpythonu, postgis'
|
||||
superuser = true
|
||||
schema = cdb_crankshaft
|
||||
|
2
release/python/0.0.3/crankshaft/crankshaft/__init__.py
Normal file
2
release/python/0.0.3/crankshaft/crankshaft/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
import random_seeds
|
||||
import clustering
|
@ -0,0 +1,2 @@
|
||||
from moran import *
|
||||
from kmeans import *
|
@ -0,0 +1,18 @@
|
||||
from sklearn.cluster import KMeans
|
||||
import plpy
|
||||
|
||||
def kmeans(query, no_clusters, no_init=20):
|
||||
data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids,
|
||||
array_agg(ST_X(the_geom) order by cartodb_id) xs,
|
||||
array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a
|
||||
where the_geom is not null
|
||||
'''.format(query=query))
|
||||
|
||||
xs = data[0]['xs']
|
||||
ys = data[0]['ys']
|
||||
ids = data[0]['ids']
|
||||
|
||||
km = KMeans(n_clusters= no_clusters, n_init=no_init)
|
||||
labels = km.fit_predict(zip(xs,ys))
|
||||
return zip(ids,labels)
|
||||
|
260
release/python/0.0.3/crankshaft/crankshaft/clustering/moran.py
Normal file
260
release/python/0.0.3/crankshaft/crankshaft/clustering/moran.py
Normal file
@ -0,0 +1,260 @@
|
||||
"""
|
||||
Moran's I geostatistics (global clustering & outliers presence)
|
||||
"""
|
||||
|
||||
# TODO: Fill in local neighbors which have null/NoneType values with the
|
||||
# average of the their neighborhood
|
||||
|
||||
import pysal as ps
|
||||
import plpy
|
||||
|
||||
# crankshaft module
|
||||
import crankshaft.pysal_utils as pu
|
||||
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
def moran(subquery, attr_name,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I (global)
|
||||
Implementation building neighbors with a PostGIS database and Moran's I
|
||||
core clusters with PySAL.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
qvals = {"id_col": id_col,
|
||||
"attr1": attr_name,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
plpy.notice('** Query: %s' % query)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
plpy.notice('** Query returned with %d rows' % len(result))
|
||||
except plpy.SPIError:
|
||||
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||
plpy.notice('** Query failed: "%s"' % query)
|
||||
plpy.notice('** Error: %s' % plpy.SPIError)
|
||||
return pu.empty_zipped_array(2)
|
||||
|
||||
## collect attributes
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
## calculate weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
## calculate moran global
|
||||
moran_global = ps.esda.moran.Moran(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([moran_global.I], [moran_global.EI])
|
||||
|
||||
def moran_local(subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I implementation for PL/Python
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
qvals = {"id_col": id_col,
|
||||
"attr1": attr,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(5)
|
||||
except plpy.SPIError:
|
||||
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||
plpy.notice('** Query failed: "%s"' % query)
|
||||
return pu.empty_zipped_array(5)
|
||||
|
||||
attr_vals = pu.get_attributes(result)
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def moran_rate(subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Rate (global)
|
||||
Andy Eschbacher
|
||||
"""
|
||||
qvals = {"id_col": id_col,
|
||||
"attr1": numerator,
|
||||
"attr2": denominator,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
plpy.notice('** Query: %s' % query)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
plpy.notice('** Query returned with %d rows' % len(result))
|
||||
except plpy.SPIError:
|
||||
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||
plpy.notice('** Query failed: "%s"' % query)
|
||||
plpy.notice('** Error: %s' % plpy.SPIError)
|
||||
return pu.empty_zipped_array(2)
|
||||
|
||||
## collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
## calculate moran global rate
|
||||
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([lisa_rate.I], [lisa_rate.EI])
|
||||
|
||||
def moran_local_rate(subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Local Rate
|
||||
Andy Eschbacher
|
||||
"""
|
||||
# geometries with values that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
query = pu.construct_neighbor_query(w_type,
|
||||
{"id_col": id_col,
|
||||
"numerator": numerator,
|
||||
"denominator": denominator,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs})
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(5)
|
||||
except plpy.SPIError:
|
||||
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||
plpy.notice('** Query failed: "%s"' % query)
|
||||
plpy.notice('** Error: %s' % plpy.SPIError)
|
||||
return pu.empty_zipped_array(5)
|
||||
|
||||
## collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find units of significance
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def moran_local_bv(subquery, attr1, attr2,
|
||||
permutations, geom_col, id_col, w_type, num_ngbrs):
|
||||
"""
|
||||
Moran's I (local) Bivariate (untested)
|
||||
"""
|
||||
plpy.notice('** Constructing query')
|
||||
|
||||
qvals = {"num_ngbrs": num_ngbrs,
|
||||
"attr1": attr1,
|
||||
"attr2": attr2,
|
||||
"subquery": subquery,
|
||||
"geom_col": geom_col,
|
||||
"id_col": id_col}
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
except plpy.SPIError:
|
||||
plpy.error("Error: areas of interest query failed, " \
|
||||
"check input parameters")
|
||||
plpy.notice('** Query failed: "%s"' % query)
|
||||
return pu.empty_zipped_array(4)
|
||||
|
||||
## collect attributes
|
||||
attr1_vals = pu.get_attributes(result, 1)
|
||||
attr2_vals = pu.get_attributes(result, 2)
|
||||
|
||||
# create weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
plpy.notice("len of Is: %d" % len(lisa.Is))
|
||||
|
||||
# find clustering of significance
|
||||
lisa_sig = quad_position(lisa.q)
|
||||
|
||||
plpy.notice('** Finished calculations')
|
||||
|
||||
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
|
||||
|
||||
# Low level functions ----------------------------------------
|
||||
|
||||
def map_quads(coord):
|
||||
"""
|
||||
Map a quadrant number to Moran's I designation
|
||||
HH=1, LH=2, LL=3, HL=4
|
||||
Input:
|
||||
@param coord (int): quadrant of a specific measurement
|
||||
Output:
|
||||
classification (one of 'HH', 'LH', 'LL', or 'HL')
|
||||
"""
|
||||
if coord == 1:
|
||||
return 'HH'
|
||||
elif coord == 2:
|
||||
return 'LH'
|
||||
elif coord == 3:
|
||||
return 'LL'
|
||||
elif coord == 4:
|
||||
return 'HL'
|
||||
else:
|
||||
return None
|
||||
|
||||
def quad_position(quads):
|
||||
"""
|
||||
Produce Moran's I classification based of n
|
||||
Input:
|
||||
@param quads ndarray: an array of quads classified by
|
||||
1-4 (PySAL default)
|
||||
Output:
|
||||
@param list: an array of quads classied by 'HH', 'LL', etc.
|
||||
"""
|
||||
return [map_quads(q) for q in quads]
|
@ -0,0 +1 @@
|
||||
from pysal_utils import *
|
@ -0,0 +1,152 @@
|
||||
"""
|
||||
Utilities module for generic PySAL functionality, mainly centered on translating queries into numpy arrays or PySAL weights objects
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pysal as ps
|
||||
|
||||
def construct_neighbor_query(w_type, query_vals):
|
||||
"""Return query (a string) used for finding neighbors
|
||||
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
|
||||
@param query_vals dict: values used to construct the query
|
||||
"""
|
||||
|
||||
if w_type.lower() == 'knn':
|
||||
return knn(query_vals)
|
||||
else:
|
||||
return queen(query_vals)
|
||||
|
||||
## Build weight object
|
||||
def get_weight(query_res, w_type='knn', num_ngbrs=5):
|
||||
"""
|
||||
Construct PySAL weight from return value of query
|
||||
@param query_res: query results with attributes and neighbors
|
||||
"""
|
||||
if w_type.lower() == 'knn':
|
||||
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
|
||||
weights = {x['id']: row_normed_weights for x in query_res}
|
||||
else:
|
||||
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
|
||||
if len(x['neighbors']) > 0
|
||||
else [] for x in query_res}
|
||||
|
||||
neighbors = {x['id']: x['neighbors'] for x in query_res}
|
||||
|
||||
return ps.W(neighbors, weights)
|
||||
|
||||
def query_attr_select(params):
|
||||
"""
|
||||
Create portion of SELECT statement for attributes inolved in query.
|
||||
@param params: dict of information used in query (column names,
|
||||
table name, etc.)
|
||||
"""
|
||||
|
||||
attrs = [k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')]
|
||||
|
||||
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
|
||||
|
||||
attr_string = ""
|
||||
|
||||
for idx, val in enumerate(sorted(attrs)):
|
||||
attr_string += template % {"col": val, "alias_num": idx + 1}
|
||||
|
||||
return attr_string
|
||||
|
||||
def query_attr_where(params):
|
||||
"""
|
||||
Create portion of WHERE clauses for weeding out NULL-valued geometries
|
||||
"""
|
||||
attrs = sorted([k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')])
|
||||
|
||||
attr_string = []
|
||||
|
||||
for attr in attrs:
|
||||
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
|
||||
|
||||
if len(attrs) == 2:
|
||||
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
|
||||
|
||||
out = " AND ".join(attr_string)
|
||||
|
||||
return out
|
||||
|
||||
def knn(params):
|
||||
"""SQL query for k-nearest neighbors.
|
||||
@param vars: dict of values to fill template
|
||||
"""
|
||||
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||
|
||||
query = "SELECT " \
|
||||
"i.\"{id_col}\" As id, " \
|
||||
"%(attr_select)s" \
|
||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||
"FROM ({subquery}) As j " \
|
||||
"WHERE " \
|
||||
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
|
||||
"%(attr_where_j)s " \
|
||||
"ORDER BY " \
|
||||
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
|
||||
"LIMIT {num_ngbrs})" \
|
||||
") As neighbors " \
|
||||
"FROM ({subquery}) As i " \
|
||||
"WHERE " \
|
||||
"%(attr_where_i)s " \
|
||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
## SQL query for finding queens neighbors (all contiguous polygons)
|
||||
def queen(params):
|
||||
"""SQL query for queen neighbors.
|
||||
@param params dict: information to fill query
|
||||
"""
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||
|
||||
query = "SELECT " \
|
||||
"i.\"{id_col}\" As id, " \
|
||||
"%(attr_select)s" \
|
||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||
"FROM ({subquery}) As j " \
|
||||
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
|
||||
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
|
||||
"%(attr_where_j)s)" \
|
||||
") As neighbors " \
|
||||
"FROM ({subquery}) As i " \
|
||||
"WHERE " \
|
||||
"%(attr_where_i)s " \
|
||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
## to add more weight methods open a ticket or pull request
|
||||
|
||||
def get_attributes(query_res, attr_num=1):
|
||||
"""
|
||||
@param query_res: query results with attributes and neighbors
|
||||
@param attr_num: attribute number (1, 2, ...)
|
||||
"""
|
||||
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
|
||||
|
||||
def empty_zipped_array(num_nones):
|
||||
"""
|
||||
prepare return values for cases of empty weights objects (no neighbors)
|
||||
Input:
|
||||
@param num_nones int: number of columns (e.g., 4)
|
||||
Output:
|
||||
[(None, None, None, None)]
|
||||
"""
|
||||
|
||||
return [tuple([None] * num_nones)]
|
10
release/python/0.0.3/crankshaft/crankshaft/random_seeds.py
Normal file
10
release/python/0.0.3/crankshaft/crankshaft/random_seeds.py
Normal file
@ -0,0 +1,10 @@
|
||||
import random
|
||||
import numpy
|
||||
|
||||
def set_random_seeds(value):
|
||||
"""
|
||||
Set the seeds of the RNGs (Random Number Generators)
|
||||
used internally.
|
||||
"""
|
||||
random.seed(value)
|
||||
numpy.random.seed(value)
|
48
release/python/0.0.3/crankshaft/setup.py
Normal file
48
release/python/0.0.3/crankshaft/setup.py
Normal file
@ -0,0 +1,48 @@
|
||||
|
||||
"""
|
||||
CartoDB Spatial Analysis Python Library
|
||||
See:
|
||||
https://github.com/CartoDB/crankshaft
|
||||
"""
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='crankshaft',
|
||||
|
||||
version='0.0.3',
|
||||
|
||||
description='CartoDB Spatial Analysis Python Library',
|
||||
|
||||
url='https://github.com/CartoDB/crankshaft',
|
||||
|
||||
author='Data Services Team - CartoDB',
|
||||
author_email='dataservices@cartodb.com',
|
||||
|
||||
license='MIT',
|
||||
|
||||
classifiers=[
|
||||
'Development Status :: 3 - Alpha',
|
||||
'Intended Audience :: Mapping comunity',
|
||||
'Topic :: Maps :: Mapping Tools',
|
||||
'License :: OSI Approved :: MIT License',
|
||||
'Programming Language :: Python :: 2.7',
|
||||
],
|
||||
|
||||
keywords='maps mapping tools spatial analysis geostatistics',
|
||||
|
||||
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
|
||||
|
||||
extras_require={
|
||||
'dev': ['unittest'],
|
||||
'test': ['unittest', 'nose', 'mock'],
|
||||
},
|
||||
|
||||
# The choice of component versions is dictated by what's
|
||||
# provisioned in the production servers.
|
||||
install_requires=['pysal==1.9.1', 'scikit-learn==0.17.1'],
|
||||
|
||||
requires=['pysal', 'numpy', 'sklearn'],
|
||||
|
||||
test_suite='test'
|
||||
)
|
1
release/python/0.0.3/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
1
release/python/0.0.3/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
@ -0,0 +1 @@
|
||||
[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}]
|
52
release/python/0.0.3/crankshaft/test/fixtures/moran.json
vendored
Normal file
52
release/python/0.0.3/crankshaft/test/fixtures/moran.json
vendored
Normal file
@ -0,0 +1,52 @@
|
||||
[[0.9319096128346788, "HH"],
|
||||
[-1.135787401862846, "HL"],
|
||||
[0.11732030672508517, "LL"],
|
||||
[0.6152779669180425, "LL"],
|
||||
[-0.14657336660125297, "LH"],
|
||||
[0.6967858120189607, "LL"],
|
||||
[0.07949310115714454, "HH"],
|
||||
[0.4703198759258987, "HH"],
|
||||
[0.4421125200498064, "HH"],
|
||||
[0.5724288737143592, "LL"],
|
||||
[0.8970743435692062, "LL"],
|
||||
[0.18327334401918674, "LL"],
|
||||
[-0.01466729201304962, "HL"],
|
||||
[0.3481559372544409, "LL"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.15482141569329988, "HH"],
|
||||
[0.4373841193538136, "HH"],
|
||||
[0.15971286468915544, "LL"],
|
||||
[1.0543588860308968, "HH"],
|
||||
[1.7372866900020818, "HH"],
|
||||
[1.091998586053999, "LL"],
|
||||
[0.1171572584252222, "HH"],
|
||||
[0.08438455015300014, "LL"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.15482141569329985, "HH"],
|
||||
[1.1627044812890683, "HH"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.795275137550483, "HH"],
|
||||
[0.18562939195219, "LL"],
|
||||
[0.3010757406693439, "LL"],
|
||||
[2.8205795942839376, "HH"],
|
||||
[0.11259190602909264, "LL"],
|
||||
[-0.07116352791516614, "HL"],
|
||||
[-0.09945240794119009, "LH"],
|
||||
[0.18562939195219, "LL"],
|
||||
[0.1832733440191868, "LL"],
|
||||
[-0.39054253768447705, "HL"],
|
||||
[-0.1672071289487642, "HL"],
|
||||
[0.3337669247916343, "HH"],
|
||||
[0.2584386102554792, "HH"],
|
||||
[-0.19733845476322634, "HL"],
|
||||
[-0.9379282899805409, "LH"],
|
||||
[-0.028770969951095866, "LH"],
|
||||
[0.051367269430983485, "LL"],
|
||||
[-0.2172548045913472, "LH"],
|
||||
[0.05136726943098351, "LL"],
|
||||
[0.04191046803899837, "LL"],
|
||||
[0.7482357030403517, "HH"],
|
||||
[-0.014585767863118111, "LH"],
|
||||
[0.5410013139159929, "HH"],
|
||||
[1.0223932668429925, "LL"],
|
||||
[1.4179402898927476, "LL"]]
|
54
release/python/0.0.3/crankshaft/test/fixtures/neighbors.json
vendored
Normal file
54
release/python/0.0.3/crankshaft/test/fixtures/neighbors.json
vendored
Normal file
@ -0,0 +1,54 @@
|
||||
[
|
||||
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
|
||||
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
|
||||
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
|
||||
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
|
||||
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
|
||||
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
|
||||
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
|
||||
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
|
||||
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
|
||||
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
|
||||
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
|
||||
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
|
||||
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
|
||||
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
|
||||
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
|
||||
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
|
||||
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
|
||||
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
|
||||
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
|
||||
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
|
||||
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
|
||||
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
|
||||
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
|
||||
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
|
||||
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
|
||||
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
|
||||
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
|
||||
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
|
||||
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
|
||||
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
|
||||
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
|
||||
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
|
||||
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
|
||||
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
|
||||
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
|
||||
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
|
||||
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
|
||||
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
|
||||
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
|
||||
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
|
||||
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
|
||||
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
|
||||
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
|
||||
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
|
||||
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
|
||||
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
|
||||
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
|
||||
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
|
||||
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
|
||||
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
|
||||
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
|
||||
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
|
||||
]
|
13
release/python/0.0.3/crankshaft/test/helper.py
Normal file
13
release/python/0.0.3/crankshaft/test/helper.py
Normal file
@ -0,0 +1,13 @@
|
||||
import unittest
|
||||
|
||||
from mock_plpy import MockPlPy
|
||||
plpy = MockPlPy()
|
||||
|
||||
import sys
|
||||
sys.modules['plpy'] = plpy
|
||||
|
||||
import os
|
||||
|
||||
def fixture_file(name):
|
||||
dir = os.path.dirname(os.path.realpath(__file__))
|
||||
return os.path.join(dir, 'fixtures', name)
|
34
release/python/0.0.3/crankshaft/test/mock_plpy.py
Normal file
34
release/python/0.0.3/crankshaft/test/mock_plpy.py
Normal file
@ -0,0 +1,34 @@
|
||||
import re
|
||||
|
||||
class MockPlPy:
|
||||
def __init__(self):
|
||||
self._reset()
|
||||
|
||||
def _reset(self):
|
||||
self.infos = []
|
||||
self.notices = []
|
||||
self.debugs = []
|
||||
self.logs = []
|
||||
self.warnings = []
|
||||
self.errors = []
|
||||
self.fatals = []
|
||||
self.executes = []
|
||||
self.results = []
|
||||
self.prepares = []
|
||||
self.results = []
|
||||
|
||||
def _define_result(self, query, result):
|
||||
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
|
||||
self.results.append([pattern, result])
|
||||
|
||||
def notice(self, msg):
|
||||
self.notices.append(msg)
|
||||
|
||||
def info(self, msg):
|
||||
self.infos.append(msg)
|
||||
|
||||
def execute(self, query): # TODO: additional arguments
|
||||
for result in self.results:
|
||||
if result[0].match(query):
|
||||
return result[1]
|
||||
return []
|
38
release/python/0.0.3/crankshaft/test/test_cluster_kmeans.py
Normal file
38
release/python/0.0.3/crankshaft/test/test_cluster_kmeans.py
Normal file
@ -0,0 +1,38 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
# from mock_plpy import MockPlPy
|
||||
# plpy = MockPlPy()
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import plpy, fixture_file
|
||||
import numpy as np
|
||||
import crankshaft.clustering as cc
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
|
||||
class KMeansTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
self.cluster_data = json.loads(open(fixture_file('kmeans.json')).read())
|
||||
self.params = {"subquery": "select * from table",
|
||||
"no_clusters": "10"
|
||||
}
|
||||
|
||||
def test_kmeans(self):
|
||||
data = self.cluster_data
|
||||
plpy._define_result('select' ,data)
|
||||
clusters = cc.kmeans('subquery', 2)
|
||||
labels = [a[1] for a in clusters]
|
||||
c1 = [a for a in clusters if a[1]==0]
|
||||
c2 = [a for a in clusters if a[1]==1]
|
||||
|
||||
self.assertEqual(len(np.unique(labels)),2)
|
||||
self.assertEqual(len(c1),20)
|
||||
self.assertEqual(len(c2),20)
|
||||
|
@ -0,0 +1,83 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
# from mock_plpy import MockPlPy
|
||||
# plpy = MockPlPy()
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import plpy, fixture_file
|
||||
|
||||
import crankshaft.clustering as cc
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
|
||||
class MoranTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"attr1": "andy",
|
||||
"attr2": "jay_z",
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read())
|
||||
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
|
||||
|
||||
def test_map_quads(self):
|
||||
"""Test map_quads"""
|
||||
self.assertEqual(cc.map_quads(1), 'HH')
|
||||
self.assertEqual(cc.map_quads(2), 'LH')
|
||||
self.assertEqual(cc.map_quads(3), 'LL')
|
||||
self.assertEqual(cc.map_quads(4), 'HL')
|
||||
self.assertEqual(cc.map_quads(33), None)
|
||||
self.assertEqual(cc.map_quads('andy'), None)
|
||||
|
||||
def test_quad_position(self):
|
||||
"""Test lisa_sig_vals"""
|
||||
|
||||
quads = np.array([1, 2, 3, 4], np.int)
|
||||
|
||||
ans = np.array(['HH', 'LH', 'LL', 'HL'])
|
||||
test_ans = cc.quad_position(quads)
|
||||
|
||||
self.assertTrue((test_ans == ans).all())
|
||||
|
||||
def test_moran_local(self):
|
||||
"""Test Moran's I local"""
|
||||
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
||||
plpy._define_result('select', data)
|
||||
random_seeds.set_random_seeds(1234)
|
||||
result = cc.moran_local('subquery', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
expected = self.moran_data
|
||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_val, exp_val)
|
||||
self.assertEqual(res_quad, exp_quad)
|
||||
|
||||
def test_moran_local_rate(self):
|
||||
"""Test Moran's I rate"""
|
||||
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
||||
plpy._define_result('select', data)
|
||||
random_seeds.set_random_seeds(1234)
|
||||
result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
print 'result == None? ', result == None
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
expected = self.moran_data
|
||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_val, exp_val)
|
||||
|
||||
def test_moran(self):
|
||||
"""Test Moran's I global"""
|
||||
data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
||||
plpy._define_result('select', data)
|
||||
random_seeds.set_random_seeds(1235)
|
||||
result = cc.moran('table', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
print 'result == None?', result == None
|
||||
result_moran = result[0][0]
|
||||
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
|
||||
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)
|
107
release/python/0.0.3/crankshaft/test/test_pysal_utils.py
Normal file
107
release/python/0.0.3/crankshaft/test/test_pysal_utils.py
Normal file
@ -0,0 +1,107 @@
|
||||
import unittest
|
||||
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
|
||||
|
||||
class PysalUtilsTest(unittest.TestCase):
|
||||
"""Testing class for utility functions related to PySAL integrations"""
|
||||
|
||||
def setUp(self):
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"attr1": "andy",
|
||||
"attr2": "jay_z",
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
|
||||
def test_query_attr_select(self):
|
||||
"""Test query_attr_select"""
|
||||
|
||||
ans = "i.\"{attr1}\"::numeric As attr1, " \
|
||||
"i.\"{attr2}\"::numeric As attr2, "
|
||||
|
||||
self.assertEqual(pu.query_attr_select(self.params), ans)
|
||||
|
||||
def test_query_attr_where(self):
|
||||
"""Test pu.query_attr_where"""
|
||||
|
||||
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND " \
|
||||
"idx_replace.\"{attr2}\" IS NOT NULL AND " \
|
||||
"idx_replace.\"{attr2}\" <> 0"
|
||||
|
||||
self.assertEqual(pu.query_attr_where(self.params), ans)
|
||||
|
||||
def test_knn(self):
|
||||
"""Test knn neighbors constructor"""
|
||||
|
||||
ans = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" <> 0 " \
|
||||
"ORDER BY " \
|
||||
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
|
||||
"LIMIT 321)) As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" <> 0 " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.knn(self.params), ans)
|
||||
|
||||
def test_queen(self):
|
||||
"""Test queen neighbors constructor"""
|
||||
|
||||
ans = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"ST_Touches(i.\"the_geom\", " \
|
||||
"j.\"the_geom\") AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" <> 0)" \
|
||||
") As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" <> 0 " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.queen(self.params), ans)
|
||||
|
||||
def test_construct_neighbor_query(self):
|
||||
"""Test construct_neighbor_query"""
|
||||
|
||||
# Compare to raw knn query
|
||||
self.assertEqual(pu.construct_neighbor_query('knn', self.params),
|
||||
pu.knn(self.params))
|
||||
|
||||
def test_get_attributes(self):
|
||||
"""Test get_attributes"""
|
||||
|
||||
## need to add tests
|
||||
|
||||
self.assertEqual(True, True)
|
||||
|
||||
def test_get_weight(self):
|
||||
"""Test get_weight"""
|
||||
|
||||
self.assertEqual(True, True)
|
||||
|
||||
def test_empty_zipped_array(self):
|
||||
"""Test empty_zipped_array"""
|
||||
ans2 = [(None, None)]
|
||||
ans4 = [(None, None, None, None)]
|
||||
self.assertEqual(pu.empty_zipped_array(2), ans2)
|
||||
self.assertEqual(pu.empty_zipped_array(4), ans4)
|
2
release/python/0.0.4/crankshaft/crankshaft/__init__.py
Normal file
2
release/python/0.0.4/crankshaft/crankshaft/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
import random_seeds
|
||||
import clustering
|
@ -0,0 +1,2 @@
|
||||
from moran import *
|
||||
from kmeans import *
|
@ -0,0 +1,18 @@
|
||||
from sklearn.cluster import KMeans
|
||||
import plpy
|
||||
|
||||
def kmeans(query, no_clusters, no_init=20):
|
||||
data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids,
|
||||
array_agg(ST_X(the_geom) order by cartodb_id) xs,
|
||||
array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a
|
||||
where the_geom is not null
|
||||
'''.format(query=query))
|
||||
|
||||
xs = data[0]['xs']
|
||||
ys = data[0]['ys']
|
||||
ids = data[0]['ids']
|
||||
|
||||
km = KMeans(n_clusters= no_clusters, n_init=no_init)
|
||||
labels = km.fit_predict(zip(xs,ys))
|
||||
return zip(ids,labels)
|
||||
|
260
release/python/0.0.4/crankshaft/crankshaft/clustering/moran.py
Normal file
260
release/python/0.0.4/crankshaft/crankshaft/clustering/moran.py
Normal file
@ -0,0 +1,260 @@
|
||||
"""
|
||||
Moran's I geostatistics (global clustering & outliers presence)
|
||||
"""
|
||||
|
||||
# TODO: Fill in local neighbors which have null/NoneType values with the
|
||||
# average of the their neighborhood
|
||||
|
||||
import pysal as ps
|
||||
import plpy
|
||||
|
||||
# crankshaft module
|
||||
import crankshaft.pysal_utils as pu
|
||||
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
def moran(subquery, attr_name,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I (global)
|
||||
Implementation building neighbors with a PostGIS database and Moran's I
|
||||
core clusters with PySAL.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
qvals = {"id_col": id_col,
|
||||
"attr1": attr_name,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
plpy.notice('** Query: %s' % query)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
plpy.notice('** Query returned with %d rows' % len(result))
|
||||
except plpy.SPIError:
|
||||
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||
plpy.notice('** Query failed: "%s"' % query)
|
||||
plpy.notice('** Error: %s' % plpy.SPIError)
|
||||
return pu.empty_zipped_array(2)
|
||||
|
||||
## collect attributes
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
## calculate weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
## calculate moran global
|
||||
moran_global = ps.esda.moran.Moran(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([moran_global.I], [moran_global.EI])
|
||||
|
||||
def moran_local(subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I implementation for PL/Python
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
qvals = {"id_col": id_col,
|
||||
"attr1": attr,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(5)
|
||||
except plpy.SPIError:
|
||||
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||
plpy.notice('** Query failed: "%s"' % query)
|
||||
return pu.empty_zipped_array(5)
|
||||
|
||||
attr_vals = pu.get_attributes(result)
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def moran_rate(subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Rate (global)
|
||||
Andy Eschbacher
|
||||
"""
|
||||
qvals = {"id_col": id_col,
|
||||
"attr1": numerator,
|
||||
"attr2": denominator,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
plpy.notice('** Query: %s' % query)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
plpy.notice('** Query returned with %d rows' % len(result))
|
||||
except plpy.SPIError:
|
||||
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||
plpy.notice('** Query failed: "%s"' % query)
|
||||
plpy.notice('** Error: %s' % plpy.SPIError)
|
||||
return pu.empty_zipped_array(2)
|
||||
|
||||
## collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
## calculate moran global rate
|
||||
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([lisa_rate.I], [lisa_rate.EI])
|
||||
|
||||
def moran_local_rate(subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Local Rate
|
||||
Andy Eschbacher
|
||||
"""
|
||||
# geometries with values that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
query = pu.construct_neighbor_query(w_type,
|
||||
{"id_col": id_col,
|
||||
"numerator": numerator,
|
||||
"denominator": denominator,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs})
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(5)
|
||||
except plpy.SPIError:
|
||||
plpy.error('Error: areas of interest query failed, check input parameters')
|
||||
plpy.notice('** Query failed: "%s"' % query)
|
||||
plpy.notice('** Error: %s' % plpy.SPIError)
|
||||
return pu.empty_zipped_array(5)
|
||||
|
||||
## collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find units of significance
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def moran_local_bv(subquery, attr1, attr2,
|
||||
permutations, geom_col, id_col, w_type, num_ngbrs):
|
||||
"""
|
||||
Moran's I (local) Bivariate (untested)
|
||||
"""
|
||||
plpy.notice('** Constructing query')
|
||||
|
||||
qvals = {"num_ngbrs": num_ngbrs,
|
||||
"attr1": attr1,
|
||||
"attr2": attr2,
|
||||
"subquery": subquery,
|
||||
"geom_col": geom_col,
|
||||
"id_col": id_col}
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
except plpy.SPIError:
|
||||
plpy.error("Error: areas of interest query failed, " \
|
||||
"check input parameters")
|
||||
plpy.notice('** Query failed: "%s"' % query)
|
||||
return pu.empty_zipped_array(4)
|
||||
|
||||
## collect attributes
|
||||
attr1_vals = pu.get_attributes(result, 1)
|
||||
attr2_vals = pu.get_attributes(result, 2)
|
||||
|
||||
# create weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
plpy.notice("len of Is: %d" % len(lisa.Is))
|
||||
|
||||
# find clustering of significance
|
||||
lisa_sig = quad_position(lisa.q)
|
||||
|
||||
plpy.notice('** Finished calculations')
|
||||
|
||||
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
|
||||
|
||||
# Low level functions ----------------------------------------
|
||||
|
||||
def map_quads(coord):
|
||||
"""
|
||||
Map a quadrant number to Moran's I designation
|
||||
HH=1, LH=2, LL=3, HL=4
|
||||
Input:
|
||||
@param coord (int): quadrant of a specific measurement
|
||||
Output:
|
||||
classification (one of 'HH', 'LH', 'LL', or 'HL')
|
||||
"""
|
||||
if coord == 1:
|
||||
return 'HH'
|
||||
elif coord == 2:
|
||||
return 'LH'
|
||||
elif coord == 3:
|
||||
return 'LL'
|
||||
elif coord == 4:
|
||||
return 'HL'
|
||||
else:
|
||||
return None
|
||||
|
||||
def quad_position(quads):
|
||||
"""
|
||||
Produce Moran's I classification based of n
|
||||
Input:
|
||||
@param quads ndarray: an array of quads classified by
|
||||
1-4 (PySAL default)
|
||||
Output:
|
||||
@param list: an array of quads classied by 'HH', 'LL', etc.
|
||||
"""
|
||||
return [map_quads(q) for q in quads]
|
@ -0,0 +1 @@
|
||||
from pysal_utils import *
|
@ -0,0 +1,152 @@
|
||||
"""
|
||||
Utilities module for generic PySAL functionality, mainly centered on translating queries into numpy arrays or PySAL weights objects
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pysal as ps
|
||||
|
||||
def construct_neighbor_query(w_type, query_vals):
|
||||
"""Return query (a string) used for finding neighbors
|
||||
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
|
||||
@param query_vals dict: values used to construct the query
|
||||
"""
|
||||
|
||||
if w_type.lower() == 'knn':
|
||||
return knn(query_vals)
|
||||
else:
|
||||
return queen(query_vals)
|
||||
|
||||
## Build weight object
|
||||
def get_weight(query_res, w_type='knn', num_ngbrs=5):
|
||||
"""
|
||||
Construct PySAL weight from return value of query
|
||||
@param query_res: query results with attributes and neighbors
|
||||
"""
|
||||
if w_type.lower() == 'knn':
|
||||
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
|
||||
weights = {x['id']: row_normed_weights for x in query_res}
|
||||
else:
|
||||
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
|
||||
if len(x['neighbors']) > 0
|
||||
else [] for x in query_res}
|
||||
|
||||
neighbors = {x['id']: x['neighbors'] for x in query_res}
|
||||
|
||||
return ps.W(neighbors, weights)
|
||||
|
||||
def query_attr_select(params):
|
||||
"""
|
||||
Create portion of SELECT statement for attributes inolved in query.
|
||||
@param params: dict of information used in query (column names,
|
||||
table name, etc.)
|
||||
"""
|
||||
|
||||
attrs = [k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')]
|
||||
|
||||
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
|
||||
|
||||
attr_string = ""
|
||||
|
||||
for idx, val in enumerate(sorted(attrs)):
|
||||
attr_string += template % {"col": val, "alias_num": idx + 1}
|
||||
|
||||
return attr_string
|
||||
|
||||
def query_attr_where(params):
|
||||
"""
|
||||
Create portion of WHERE clauses for weeding out NULL-valued geometries
|
||||
"""
|
||||
attrs = sorted([k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')])
|
||||
|
||||
attr_string = []
|
||||
|
||||
for attr in attrs:
|
||||
attr_string.append("idx_replace.\"{%s}\" IS NOT NULL" % attr)
|
||||
|
||||
if len(attrs) == 2:
|
||||
attr_string.append("idx_replace.\"{%s}\" <> 0" % attrs[1])
|
||||
|
||||
out = " AND ".join(attr_string)
|
||||
|
||||
return out
|
||||
|
||||
def knn(params):
|
||||
"""SQL query for k-nearest neighbors.
|
||||
@param vars: dict of values to fill template
|
||||
"""
|
||||
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||
|
||||
query = "SELECT " \
|
||||
"i.\"{id_col}\" As id, " \
|
||||
"%(attr_select)s" \
|
||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||
"FROM ({subquery}) As j " \
|
||||
"WHERE " \
|
||||
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
|
||||
"%(attr_where_j)s " \
|
||||
"ORDER BY " \
|
||||
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
|
||||
"LIMIT {num_ngbrs})" \
|
||||
") As neighbors " \
|
||||
"FROM ({subquery}) As i " \
|
||||
"WHERE " \
|
||||
"%(attr_where_i)s " \
|
||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
## SQL query for finding queens neighbors (all contiguous polygons)
|
||||
def queen(params):
|
||||
"""SQL query for queen neighbors.
|
||||
@param params dict: information to fill query
|
||||
"""
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||
|
||||
query = "SELECT " \
|
||||
"i.\"{id_col}\" As id, " \
|
||||
"%(attr_select)s" \
|
||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||
"FROM ({subquery}) As j " \
|
||||
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
|
||||
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
|
||||
"%(attr_where_j)s)" \
|
||||
") As neighbors " \
|
||||
"FROM ({subquery}) As i " \
|
||||
"WHERE " \
|
||||
"%(attr_where_i)s " \
|
||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
## to add more weight methods open a ticket or pull request
|
||||
|
||||
def get_attributes(query_res, attr_num=1):
|
||||
"""
|
||||
@param query_res: query results with attributes and neighbors
|
||||
@param attr_num: attribute number (1, 2, ...)
|
||||
"""
|
||||
return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float)
|
||||
|
||||
def empty_zipped_array(num_nones):
|
||||
"""
|
||||
prepare return values for cases of empty weights objects (no neighbors)
|
||||
Input:
|
||||
@param num_nones int: number of columns (e.g., 4)
|
||||
Output:
|
||||
[(None, None, None, None)]
|
||||
"""
|
||||
|
||||
return [tuple([None] * num_nones)]
|
10
release/python/0.0.4/crankshaft/crankshaft/random_seeds.py
Normal file
10
release/python/0.0.4/crankshaft/crankshaft/random_seeds.py
Normal file
@ -0,0 +1,10 @@
|
||||
import random
|
||||
import numpy
|
||||
|
||||
def set_random_seeds(value):
|
||||
"""
|
||||
Set the seeds of the RNGs (Random Number Generators)
|
||||
used internally.
|
||||
"""
|
||||
random.seed(value)
|
||||
numpy.random.seed(value)
|
48
release/python/0.0.4/crankshaft/setup.py
Normal file
48
release/python/0.0.4/crankshaft/setup.py
Normal file
@ -0,0 +1,48 @@
|
||||
|
||||
"""
|
||||
CartoDB Spatial Analysis Python Library
|
||||
See:
|
||||
https://github.com/CartoDB/crankshaft
|
||||
"""
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='crankshaft',
|
||||
|
||||
version='0.0.4',
|
||||
|
||||
description='CartoDB Spatial Analysis Python Library',
|
||||
|
||||
url='https://github.com/CartoDB/crankshaft',
|
||||
|
||||
author='Data Services Team - CartoDB',
|
||||
author_email='dataservices@cartodb.com',
|
||||
|
||||
license='MIT',
|
||||
|
||||
classifiers=[
|
||||
'Development Status :: 3 - Alpha',
|
||||
'Intended Audience :: Mapping comunity',
|
||||
'Topic :: Maps :: Mapping Tools',
|
||||
'License :: OSI Approved :: MIT License',
|
||||
'Programming Language :: Python :: 2.7',
|
||||
],
|
||||
|
||||
keywords='maps mapping tools spatial analysis geostatistics',
|
||||
|
||||
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
|
||||
|
||||
extras_require={
|
||||
'dev': ['unittest'],
|
||||
'test': ['unittest', 'nose', 'mock'],
|
||||
},
|
||||
|
||||
# The choice of component versions is dictated by what's
|
||||
# provisioned in the production servers.
|
||||
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
|
||||
|
||||
requires=['pysal', 'numpy', 'sklearn'],
|
||||
|
||||
test_suite='test'
|
||||
)
|
1
release/python/0.0.4/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
1
release/python/0.0.4/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
@ -0,0 +1 @@
|
||||
[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}]
|
52
release/python/0.0.4/crankshaft/test/fixtures/moran.json
vendored
Normal file
52
release/python/0.0.4/crankshaft/test/fixtures/moran.json
vendored
Normal file
@ -0,0 +1,52 @@
|
||||
[[0.9319096128346788, "HH"],
|
||||
[-1.135787401862846, "HL"],
|
||||
[0.11732030672508517, "LL"],
|
||||
[0.6152779669180425, "LL"],
|
||||
[-0.14657336660125297, "LH"],
|
||||
[0.6967858120189607, "LL"],
|
||||
[0.07949310115714454, "HH"],
|
||||
[0.4703198759258987, "HH"],
|
||||
[0.4421125200498064, "HH"],
|
||||
[0.5724288737143592, "LL"],
|
||||
[0.8970743435692062, "LL"],
|
||||
[0.18327334401918674, "LL"],
|
||||
[-0.01466729201304962, "HL"],
|
||||
[0.3481559372544409, "LL"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.15482141569329988, "HH"],
|
||||
[0.4373841193538136, "HH"],
|
||||
[0.15971286468915544, "LL"],
|
||||
[1.0543588860308968, "HH"],
|
||||
[1.7372866900020818, "HH"],
|
||||
[1.091998586053999, "LL"],
|
||||
[0.1171572584252222, "HH"],
|
||||
[0.08438455015300014, "LL"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.15482141569329985, "HH"],
|
||||
[1.1627044812890683, "HH"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.795275137550483, "HH"],
|
||||
[0.18562939195219, "LL"],
|
||||
[0.3010757406693439, "LL"],
|
||||
[2.8205795942839376, "HH"],
|
||||
[0.11259190602909264, "LL"],
|
||||
[-0.07116352791516614, "HL"],
|
||||
[-0.09945240794119009, "LH"],
|
||||
[0.18562939195219, "LL"],
|
||||
[0.1832733440191868, "LL"],
|
||||
[-0.39054253768447705, "HL"],
|
||||
[-0.1672071289487642, "HL"],
|
||||
[0.3337669247916343, "HH"],
|
||||
[0.2584386102554792, "HH"],
|
||||
[-0.19733845476322634, "HL"],
|
||||
[-0.9379282899805409, "LH"],
|
||||
[-0.028770969951095866, "LH"],
|
||||
[0.051367269430983485, "LL"],
|
||||
[-0.2172548045913472, "LH"],
|
||||
[0.05136726943098351, "LL"],
|
||||
[0.04191046803899837, "LL"],
|
||||
[0.7482357030403517, "HH"],
|
||||
[-0.014585767863118111, "LH"],
|
||||
[0.5410013139159929, "HH"],
|
||||
[1.0223932668429925, "LL"],
|
||||
[1.4179402898927476, "LL"]]
|
54
release/python/0.0.4/crankshaft/test/fixtures/neighbors.json
vendored
Normal file
54
release/python/0.0.4/crankshaft/test/fixtures/neighbors.json
vendored
Normal file
@ -0,0 +1,54 @@
|
||||
[
|
||||
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
|
||||
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
|
||||
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
|
||||
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
|
||||
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
|
||||
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
|
||||
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
|
||||
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
|
||||
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
|
||||
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
|
||||
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
|
||||
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
|
||||
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
|
||||
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
|
||||
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
|
||||
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
|
||||
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
|
||||
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
|
||||
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
|
||||
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
|
||||
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
|
||||
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
|
||||
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
|
||||
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
|
||||
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
|
||||
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
|
||||
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
|
||||
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
|
||||
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
|
||||
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
|
||||
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
|
||||
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
|
||||
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
|
||||
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
|
||||
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
|
||||
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
|
||||
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
|
||||
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
|
||||
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
|
||||
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
|
||||
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
|
||||
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
|
||||
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
|
||||
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
|
||||
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
|
||||
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
|
||||
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
|
||||
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
|
||||
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
|
||||
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
|
||||
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
|
||||
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
|
||||
]
|
13
release/python/0.0.4/crankshaft/test/helper.py
Normal file
13
release/python/0.0.4/crankshaft/test/helper.py
Normal file
@ -0,0 +1,13 @@
|
||||
import unittest
|
||||
|
||||
from mock_plpy import MockPlPy
|
||||
plpy = MockPlPy()
|
||||
|
||||
import sys
|
||||
sys.modules['plpy'] = plpy
|
||||
|
||||
import os
|
||||
|
||||
def fixture_file(name):
|
||||
dir = os.path.dirname(os.path.realpath(__file__))
|
||||
return os.path.join(dir, 'fixtures', name)
|
34
release/python/0.0.4/crankshaft/test/mock_plpy.py
Normal file
34
release/python/0.0.4/crankshaft/test/mock_plpy.py
Normal file
@ -0,0 +1,34 @@
|
||||
import re
|
||||
|
||||
class MockPlPy:
|
||||
def __init__(self):
|
||||
self._reset()
|
||||
|
||||
def _reset(self):
|
||||
self.infos = []
|
||||
self.notices = []
|
||||
self.debugs = []
|
||||
self.logs = []
|
||||
self.warnings = []
|
||||
self.errors = []
|
||||
self.fatals = []
|
||||
self.executes = []
|
||||
self.results = []
|
||||
self.prepares = []
|
||||
self.results = []
|
||||
|
||||
def _define_result(self, query, result):
|
||||
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
|
||||
self.results.append([pattern, result])
|
||||
|
||||
def notice(self, msg):
|
||||
self.notices.append(msg)
|
||||
|
||||
def info(self, msg):
|
||||
self.infos.append(msg)
|
||||
|
||||
def execute(self, query): # TODO: additional arguments
|
||||
for result in self.results:
|
||||
if result[0].match(query):
|
||||
return result[1]
|
||||
return []
|
38
release/python/0.0.4/crankshaft/test/test_cluster_kmeans.py
Normal file
38
release/python/0.0.4/crankshaft/test/test_cluster_kmeans.py
Normal file
@ -0,0 +1,38 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
# from mock_plpy import MockPlPy
|
||||
# plpy = MockPlPy()
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import plpy, fixture_file
|
||||
import numpy as np
|
||||
import crankshaft.clustering as cc
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
|
||||
class KMeansTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
self.cluster_data = json.loads(open(fixture_file('kmeans.json')).read())
|
||||
self.params = {"subquery": "select * from table",
|
||||
"no_clusters": "10"
|
||||
}
|
||||
|
||||
def test_kmeans(self):
|
||||
data = self.cluster_data
|
||||
plpy._define_result('select' ,data)
|
||||
clusters = cc.kmeans('subquery', 2)
|
||||
labels = [a[1] for a in clusters]
|
||||
c1 = [a for a in clusters if a[1]==0]
|
||||
c2 = [a for a in clusters if a[1]==1]
|
||||
|
||||
self.assertEqual(len(np.unique(labels)),2)
|
||||
self.assertEqual(len(c1),20)
|
||||
self.assertEqual(len(c2),20)
|
||||
|
@ -0,0 +1,83 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
# from mock_plpy import MockPlPy
|
||||
# plpy = MockPlPy()
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import plpy, fixture_file
|
||||
|
||||
import crankshaft.clustering as cc
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
|
||||
class MoranTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"attr1": "andy",
|
||||
"attr2": "jay_z",
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read())
|
||||
self.moran_data = json.loads(open(fixture_file('moran.json')).read())
|
||||
|
||||
def test_map_quads(self):
|
||||
"""Test map_quads"""
|
||||
self.assertEqual(cc.map_quads(1), 'HH')
|
||||
self.assertEqual(cc.map_quads(2), 'LH')
|
||||
self.assertEqual(cc.map_quads(3), 'LL')
|
||||
self.assertEqual(cc.map_quads(4), 'HL')
|
||||
self.assertEqual(cc.map_quads(33), None)
|
||||
self.assertEqual(cc.map_quads('andy'), None)
|
||||
|
||||
def test_quad_position(self):
|
||||
"""Test lisa_sig_vals"""
|
||||
|
||||
quads = np.array([1, 2, 3, 4], np.int)
|
||||
|
||||
ans = np.array(['HH', 'LH', 'LL', 'HL'])
|
||||
test_ans = cc.quad_position(quads)
|
||||
|
||||
self.assertTrue((test_ans == ans).all())
|
||||
|
||||
def test_moran_local(self):
|
||||
"""Test Moran's I local"""
|
||||
data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
||||
plpy._define_result('select', data)
|
||||
random_seeds.set_random_seeds(1234)
|
||||
result = cc.moran_local('subquery', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
expected = self.moran_data
|
||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_val, exp_val)
|
||||
self.assertEqual(res_quad, exp_quad)
|
||||
|
||||
def test_moran_local_rate(self):
|
||||
"""Test Moran's I rate"""
|
||||
data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
||||
plpy._define_result('select', data)
|
||||
random_seeds.set_random_seeds(1234)
|
||||
result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
print 'result == None? ', result == None
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
expected = self.moran_data
|
||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_val, exp_val)
|
||||
|
||||
def test_moran(self):
|
||||
"""Test Moran's I global"""
|
||||
data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data]
|
||||
plpy._define_result('select', data)
|
||||
random_seeds.set_random_seeds(1235)
|
||||
result = cc.moran('table', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
print 'result == None?', result == None
|
||||
result_moran = result[0][0]
|
||||
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
|
||||
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)
|
107
release/python/0.0.4/crankshaft/test/test_pysal_utils.py
Normal file
107
release/python/0.0.4/crankshaft/test/test_pysal_utils.py
Normal file
@ -0,0 +1,107 @@
|
||||
import unittest
|
||||
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
|
||||
|
||||
class PysalUtilsTest(unittest.TestCase):
|
||||
"""Testing class for utility functions related to PySAL integrations"""
|
||||
|
||||
def setUp(self):
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"attr1": "andy",
|
||||
"attr2": "jay_z",
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
|
||||
def test_query_attr_select(self):
|
||||
"""Test query_attr_select"""
|
||||
|
||||
ans = "i.\"{attr1}\"::numeric As attr1, " \
|
||||
"i.\"{attr2}\"::numeric As attr2, "
|
||||
|
||||
self.assertEqual(pu.query_attr_select(self.params), ans)
|
||||
|
||||
def test_query_attr_where(self):
|
||||
"""Test pu.query_attr_where"""
|
||||
|
||||
ans = "idx_replace.\"{attr1}\" IS NOT NULL AND " \
|
||||
"idx_replace.\"{attr2}\" IS NOT NULL AND " \
|
||||
"idx_replace.\"{attr2}\" <> 0"
|
||||
|
||||
self.assertEqual(pu.query_attr_where(self.params), ans)
|
||||
|
||||
def test_knn(self):
|
||||
"""Test knn neighbors constructor"""
|
||||
|
||||
ans = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" <> 0 " \
|
||||
"ORDER BY " \
|
||||
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
|
||||
"LIMIT 321)) As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" <> 0 " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.knn(self.params), ans)
|
||||
|
||||
def test_queen(self):
|
||||
"""Test queen neighbors constructor"""
|
||||
|
||||
ans = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"ST_Touches(i.\"the_geom\", " \
|
||||
"j.\"the_geom\") AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" <> 0)" \
|
||||
") As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" <> 0 " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.queen(self.params), ans)
|
||||
|
||||
def test_construct_neighbor_query(self):
|
||||
"""Test construct_neighbor_query"""
|
||||
|
||||
# Compare to raw knn query
|
||||
self.assertEqual(pu.construct_neighbor_query('knn', self.params),
|
||||
pu.knn(self.params))
|
||||
|
||||
def test_get_attributes(self):
|
||||
"""Test get_attributes"""
|
||||
|
||||
## need to add tests
|
||||
|
||||
self.assertEqual(True, True)
|
||||
|
||||
def test_get_weight(self):
|
||||
"""Test get_weight"""
|
||||
|
||||
self.assertEqual(True, True)
|
||||
|
||||
def test_empty_zipped_array(self):
|
||||
"""Test empty_zipped_array"""
|
||||
ans2 = [(None, None)]
|
||||
ans4 = [(None, None, None, None)]
|
||||
self.assertEqual(pu.empty_zipped_array(2), ans2)
|
||||
self.assertEqual(pu.empty_zipped_array(4), ans4)
|
@ -7,7 +7,6 @@ include ../../Makefile.global
|
||||
# requires sudo. In additionof the current development version
|
||||
# named 'dev', an alias 'current' is generating for ease of
|
||||
# update (upgrade to 'current', then to 'dev').
|
||||
# the python module is installed in a virtualenv in envs/dev/
|
||||
# * test runs the tests for the currently generated Development
|
||||
# extension.
|
||||
|
||||
@ -18,11 +17,8 @@ DATA = $(EXTENSION)--dev.sql \
|
||||
SOURCES_DATA_DIR = sql
|
||||
SOURCES_DATA = $(wildcard $(SOURCES_DATA_DIR)/*.sql)
|
||||
|
||||
VIRTUALENV_PATH = $(realpath ../../envs)
|
||||
ESC_VIRVIRTUALENV_PATH = $(subst /,\/,$(VIRTUALENV_PATH))
|
||||
|
||||
REPLACEMENTS = -e 's/@@VERSION@@/$(EXTVERSION)/g' \
|
||||
-e 's/@@VIRTUALENV_PATH@@/$(ESC_VIRVIRTUALENV_PATH)/g'
|
||||
REPLACEMENTS = -e 's/@@VERSION@@/$(EXTVERSION)/g'
|
||||
|
||||
$(DATA): $(SOURCES_DATA)
|
||||
$(SED) $(REPLACEMENTS) $(SOURCES_DATA_DIR)/*.sql > $@
|
||||
@ -54,7 +50,6 @@ release: ../../release/$(EXTENSION).control $(SOURCES_DATA)
|
||||
$(SED) $(REPLACEMENTS) $(SOURCES_DATA_DIR)/*.sql > ../../release/$(EXTENSION)--$(EXTVERSION).sql
|
||||
|
||||
# Install the current relese into the PostgreSQL extensions directory
|
||||
# and the Python package in a virtual environment envs/X.Y.Z
|
||||
deploy:
|
||||
$(INSTALL_DATA) ../../release/$(EXTENSION).control '$(DESTDIR)$(datadir)/extension/'
|
||||
$(INSTALL_DATA) ../../release/*.sql '$(DESTDIR)$(datadir)/extension/'
|
||||
|
@ -1,5 +1,5 @@
|
||||
comment = 'CartoDB Spatial Analysis extension'
|
||||
default_version = '0.0.2'
|
||||
requires = 'plpythonu, postgis, cartodb'
|
||||
default_version = '0.0.4'
|
||||
requires = 'plpythonu, postgis'
|
||||
superuser = true
|
||||
schema = cdb_crankshaft
|
||||
|
@ -1,23 +0,0 @@
|
||||
CREATE OR REPLACE FUNCTION _cdb_crankshaft_virtualenvs_path()
|
||||
RETURNS text
|
||||
AS $$
|
||||
BEGIN
|
||||
-- RETURN '/opt/virtualenvs/crankshaft';
|
||||
RETURN '@@VIRTUALENV_PATH@@';
|
||||
END;
|
||||
$$ language plpgsql IMMUTABLE STRICT;
|
||||
|
||||
-- Use the crankshaft python module
|
||||
CREATE OR REPLACE FUNCTION _cdb_crankshaft_activate_py()
|
||||
RETURNS VOID
|
||||
AS $$
|
||||
import os
|
||||
# plpy.notice('%',str(os.environ))
|
||||
# activate virtualenv
|
||||
crankshaft_version = plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_internal_version()')[0]['_cdb_crankshaft_internal_version']
|
||||
base_path = plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_virtualenvs_path()')[0]['_cdb_crankshaft_virtualenvs_path']
|
||||
default_venv_path = os.path.join(base_path, crankshaft_version)
|
||||
venv_path = os.environ.get('CRANKSHAFT_VENV', default_venv_path)
|
||||
activate_path = venv_path + '/bin/activate_this.py'
|
||||
exec(open(activate_path).read(), dict(__file__=activate_path))
|
||||
$$ LANGUAGE plpythonu;
|
@ -4,7 +4,6 @@
|
||||
CREATE OR REPLACE FUNCTION
|
||||
_cdb_random_seeds (seed_value INTEGER) RETURNS VOID
|
||||
AS $$
|
||||
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
||||
from crankshaft import random_seeds
|
||||
random_seeds.set_random_seeds(seed_value)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
130
src/pg/sql/08_interpolation.sql
Normal file
130
src/pg/sql/08_interpolation.sql
Normal file
@ -0,0 +1,130 @@
|
||||
-- 0: nearest neighbor
|
||||
-- 1: barymetric
|
||||
-- 2: IDW
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation(
|
||||
IN query text,
|
||||
IN point geometry,
|
||||
IN method integer DEFAULT 1,
|
||||
IN p1 numeric DEFAULT 0,
|
||||
IN p2 numeric DEFAULT 0
|
||||
)
|
||||
RETURNS numeric AS
|
||||
$$
|
||||
DECLARE
|
||||
gs geometry[];
|
||||
vs numeric[];
|
||||
output numeric;
|
||||
BEGIN
|
||||
EXECUTE 'WITH a AS('||query||') SELECT array_agg(the_geom), array_agg(attrib) FROM a' INTO gs, vs;
|
||||
SELECT CDB_SpatialInterpolation(gs, vs, point, method, p1,p2) INTO output FROM a;
|
||||
|
||||
RETURN output;
|
||||
END;
|
||||
$$
|
||||
language plpgsql IMMUTABLE;
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation(
|
||||
IN geomin geometry[],
|
||||
IN colin numeric[],
|
||||
IN point geometry,
|
||||
IN method integer DEFAULT 1,
|
||||
IN p1 numeric DEFAULT 0,
|
||||
IN p2 numeric DEFAULT 0
|
||||
)
|
||||
RETURNS numeric AS
|
||||
$$
|
||||
DECLARE
|
||||
gs geometry[];
|
||||
vs numeric[];
|
||||
gs2 geometry[];
|
||||
vs2 numeric[];
|
||||
g geometry;
|
||||
vertex geometry[];
|
||||
sg numeric;
|
||||
sa numeric;
|
||||
sb numeric;
|
||||
sc numeric;
|
||||
va numeric;
|
||||
vb numeric;
|
||||
vc numeric;
|
||||
output numeric;
|
||||
BEGIN
|
||||
output := -999.999;
|
||||
-- nearest
|
||||
IF method = 0 THEN
|
||||
|
||||
WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v)
|
||||
SELECT a.v INTO output FROM a ORDER BY point<->a.g LIMIT 1;
|
||||
RETURN output;
|
||||
|
||||
-- barymetric
|
||||
ELSIF method = 1 THEN
|
||||
WITH a as (SELECT unnest(geomin) AS e),
|
||||
b as (SELECT ST_DelaunayTriangles(ST_Collect(a.e),0.001, 0) AS t FROM a),
|
||||
c as (SELECT (ST_Dump(t)).geom as v FROM b),
|
||||
d as (SELECT v FROM c WHERE ST_Within(point, v))
|
||||
SELECT v INTO g FROM d;
|
||||
IF g is null THEN
|
||||
-- out of the realm of the input data
|
||||
RETURN -888.888;
|
||||
END IF;
|
||||
-- vertex of the selected cell
|
||||
WITH a AS (SELECT (ST_DumpPoints(g)).geom AS v)
|
||||
SELECT array_agg(v) INTO vertex FROM a;
|
||||
|
||||
-- retrieve the value of each vertex
|
||||
WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c)
|
||||
SELECT c INTO va FROM a WHERE ST_Equals(geo, vertex[1]);
|
||||
WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c)
|
||||
SELECT c INTO vb FROM a WHERE ST_Equals(geo, vertex[2]);
|
||||
WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c)
|
||||
SELECT c INTO vc FROM a WHERE ST_Equals(geo, vertex[3]);
|
||||
|
||||
SELECT ST_area(g), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[2], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[1], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point,vertex[1],vertex[2], point]))) INTO sg, sa, sb, sc;
|
||||
|
||||
output := (coalesce(sa,0) * coalesce(va,0) + coalesce(sb,0) * coalesce(vb,0) + coalesce(sc,0) * coalesce(vc,0)) / coalesce(sg);
|
||||
RETURN output;
|
||||
|
||||
-- IDW
|
||||
-- p1: limit the number of neighbors, 0->no limit
|
||||
-- p2: order of distance decay, 0-> order 1
|
||||
ELSIF method = 2 THEN
|
||||
|
||||
IF p2 = 0 THEN
|
||||
p2 := 1;
|
||||
END IF;
|
||||
|
||||
WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v),
|
||||
b as (SELECT a.g, a.v FROM a ORDER BY point<->a.g)
|
||||
SELECT array_agg(b.g), array_agg(b.v) INTO gs, vs FROM b;
|
||||
IF p1::integer>0 THEN
|
||||
gs2:=gs;
|
||||
vs2:=vs;
|
||||
FOR i IN 1..p1
|
||||
LOOP
|
||||
gs2 := gs2 || gs[i];
|
||||
vs2 := vs2 || vs[i];
|
||||
END LOOP;
|
||||
ELSE
|
||||
gs2:=gs;
|
||||
vs2:=vs;
|
||||
END IF;
|
||||
|
||||
WITH a as (SELECT unnest(gs2) as g, unnest(vs2) as v),
|
||||
b as (
|
||||
SELECT
|
||||
(1/ST_distance(point, a.g)^p2::integer) as k,
|
||||
(a.v/ST_distance(point, a.g)^p2::integer) as f
|
||||
FROM a
|
||||
)
|
||||
SELECT sum(b.f)/sum(b.k) INTO output FROM b;
|
||||
RETURN output;
|
||||
|
||||
END IF;
|
||||
|
||||
RETURN -777.777;
|
||||
|
||||
END;
|
||||
$$
|
||||
language plpgsql IMMUTABLE;
|
@ -10,7 +10,6 @@ CREATE OR REPLACE FUNCTION
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
|
||||
AS $$
|
||||
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
@ -28,7 +27,6 @@ CREATE OR REPLACE FUNCTION
|
||||
id_col TEXT)
|
||||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
@ -122,7 +120,6 @@ CREATE OR REPLACE FUNCTION
|
||||
id_col TEXT DEFAULT 'cartodb_id')
|
||||
RETURNS TABLE (moran FLOAT, significance FLOAT)
|
||||
AS $$
|
||||
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
||||
from crankshaft.clustering import moran_local
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
@ -143,7 +140,6 @@ CREATE OR REPLACE FUNCTION
|
||||
RETURNS
|
||||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||||
AS $$
|
||||
plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
||||
from crankshaft.clustering import moran_local_rate
|
||||
# TODO: use named parameters or a dictionary
|
||||
return moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||||
|
49
src/pg/sql/11_kmeans.sql
Normal file
49
src/pg/sql/11_kmeans.sql
Normal file
@ -0,0 +1,49 @@
|
||||
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer,no_init integer default 20)
|
||||
RETURNS table (cartodb_id integer, cluster_no integer) as $$
|
||||
|
||||
from crankshaft.clustering import kmeans
|
||||
return kmeans(query,no_clusters,no_init)
|
||||
|
||||
$$ language plpythonu;
|
||||
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC)
|
||||
RETURNS Numeric[] AS
|
||||
$$
|
||||
DECLARE
|
||||
newX NUMERIC;
|
||||
newY NUMERIC;
|
||||
newW NUMERIC;
|
||||
BEGIN
|
||||
IF weight IS NULL OR the_geom IS NULL THEN
|
||||
newX = state[1];
|
||||
newY = state[2];
|
||||
newW = state[3];
|
||||
ELSE
|
||||
newX = state[1] + ST_X(the_geom)*weight;
|
||||
newY = state[2] + ST_Y(the_geom)*weight;
|
||||
newW = state[3] + weight;
|
||||
END IF;
|
||||
RETURN Array[newX,newY,newW];
|
||||
|
||||
END
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanF(state Numeric[])
|
||||
RETURNS GEOMETRY AS
|
||||
$$
|
||||
BEGIN
|
||||
IF state[3] = 0 THEN
|
||||
RETURN ST_SetSRID(ST_MakePoint(state[1],state[2]), 4326);
|
||||
ELSE
|
||||
RETURN ST_SETSRID(ST_MakePoint(state[1]/state[3], state[2]/state[3]),4326);
|
||||
END IF;
|
||||
END
|
||||
$$ LANGUAGE plpgsql;
|
||||
|
||||
CREATE AGGREGATE CDB_WeightedMean(geometry(Point, 4326), NUMERIC)(
|
||||
SFUNC = CDB_WeightedMeanS,
|
||||
FINALFUNC = CDB_WeightedMeanF,
|
||||
STYPE = Numeric[],
|
||||
INITCOND = "{0.0,0.0,0.0}"
|
||||
);
|
@ -1,6 +1,5 @@
|
||||
-- Install dependencies
|
||||
CREATE EXTENSION plpythonu;
|
||||
CREATE EXTENSION postgis;
|
||||
CREATE EXTENSION cartodb;
|
||||
-- Install the extension
|
||||
CREATE EXTENSION crankshaft VERSION 'dev';
|
||||
|
10
src/pg/test/expected/05_kmeans_test.out
Normal file
10
src/pg/test/expected/05_kmeans_test.out
Normal file
@ -0,0 +1,10 @@
|
||||
\pset format unaligned
|
||||
\set ECHO all
|
||||
SELECT count(DISTINCT cluster_no) as clusters from cdb_crankshaft.cdb_kmeans('select * from ppoints', 2);
|
||||
clusters
|
||||
2
|
||||
(1 row)
|
||||
SELECT count(*) clusters from (select cdb_crankshaft.CDB_WeightedMean(the_geom, value::NUMERIC), code from ppoints group by code) p;
|
||||
clusters
|
||||
52
|
||||
(1 row)
|
5
src/pg/test/expected/08_interpolation_test.out
Normal file
5
src/pg/test/expected/08_interpolation_test.out
Normal file
@ -0,0 +1,5 @@
|
||||
SET client_min_messages TO WARNING;
|
||||
\set ECHO none
|
||||
cdb_spatialinterpolation
|
||||
t
|
||||
(1 row)
|
@ -1,7 +1,6 @@
|
||||
-- Install dependencies
|
||||
CREATE EXTENSION plpythonu;
|
||||
CREATE EXTENSION postgis;
|
||||
CREATE EXTENSION cartodb;
|
||||
|
||||
-- Install the extension
|
||||
CREATE EXTENSION crankshaft VERSION 'dev';
|
||||
|
6
src/pg/test/sql/05_kmeans_test.sql
Normal file
6
src/pg/test/sql/05_kmeans_test.sql
Normal file
@ -0,0 +1,6 @@
|
||||
\pset format unaligned
|
||||
\set ECHO all
|
||||
|
||||
SELECT count(DISTINCT cluster_no) as clusters from cdb_crankshaft.cdb_kmeans('select * from ppoints', 2);
|
||||
|
||||
SELECT count(*) clusters from (select cdb_crankshaft.CDB_WeightedMean(the_geom, value::NUMERIC), code from ppoints group by code) p;
|
10
src/pg/test/sql/08_interpolation_test.sql
Normal file
10
src/pg/test/sql/08_interpolation_test.sql
Normal file
@ -0,0 +1,10 @@
|
||||
SET client_min_messages TO WARNING;
|
||||
\set ECHO none
|
||||
\pset format unaligned
|
||||
|
||||
WITH a AS (
|
||||
SELECT
|
||||
ARRAY[800, 700, 600, 500, 400, 300, 200, 100] AS vals,
|
||||
ARRAY[ST_GeomFromText('POINT(2.1744 41.403)'),ST_GeomFromText('POINT(2.1228 41.380)'),ST_GeomFromText('POINT(2.1511 41.374)'),ST_GeomFromText('POINT(2.1528 41.413)'),ST_GeomFromText('POINT(2.165 41.391)'),ST_GeomFromText('POINT(2.1498 41.371)'),ST_GeomFromText('POINT(2.1533 41.368)'),ST_GeomFromText('POINT(2.131386 41.41399)')] AS g
|
||||
)
|
||||
SELECT (cdb_crankshaft.CDB_SpatialInterpolation(g, vals, ST_GeomFromText('POINT(2.154 41.37)'), 1) - 780.79470198683925288365) / 780.79470198683925288365 < 0.001 As cdb_spatialinterpolation FROM a;
|
@ -4,7 +4,7 @@ SELECT cdb_crankshaft._cdb_random_seeds(1234);
|
||||
SET ROLE test_regular_user;
|
||||
|
||||
-- Add to the search path the schema
|
||||
SET search_path TO public,cartodb,cdb_crankshaft;
|
||||
SET search_path TO public,cdb_crankshaft;
|
||||
|
||||
-- Exercise public functions
|
||||
SELECT ppoints.code, m.quads
|
||||
|
@ -2,21 +2,16 @@ include ../../Makefile.global
|
||||
|
||||
# Install the package locally for development
|
||||
install:
|
||||
virtualenv --system-site-packages ../../envs/dev
|
||||
# source ../../envs/dev/bin/activate
|
||||
../../envs/dev/bin/pip install -I ./crankshaft
|
||||
../../envs/dev/bin/pip install -I nose
|
||||
pip install --upgrade ./crankshaft
|
||||
|
||||
# Test develpment install
|
||||
test:
|
||||
../../envs/dev/bin/nosetests crankshaft/test/
|
||||
nosetests crankshaft/test/
|
||||
|
||||
release: ../../release/$(EXTENSION).control $(SOURCES_DATA)
|
||||
mkdir -p ../../release/python/$(EXTVERSION)
|
||||
cp -r ./$(PACKAGE) ../../release/python/$(EXTVERSION)/
|
||||
$(SED) -i -r 's/version='"'"'[0-9]+\.[0-9]+\.[0-9]+'"'"'/version='"'"'$(EXTVERSION)'"'"'/g' ../../release/python/$(EXTVERSION)/$(PACKAGE)/setup.py
|
||||
|
||||
deploy:
|
||||
virtualenv --system-site-packages $(VIRTUALENV_PATH)/$(RELEASE_VERSION)
|
||||
$(VIRTUALENV_PATH)/$(RELEASE_VERSION)/bin/pip install -I -U ../../release/python/$(RELEASE_VERSION)/$(PACKAGE)
|
||||
$(VIRTUALENV_PATH)/$(RELEASE_VERSION)/bin/pip install -I nose
|
||||
deploy:
|
||||
pip install $(RUN_OPTIONS) --upgrade ../../release/python/$(RELEASE_VERSION)/$(PACKAGE)
|
||||
|
@ -10,7 +10,6 @@ nosetests test/
|
||||
|
||||
## Notes about Python dependencies
|
||||
* This extension is targeted at production databases. Therefore certain restrictions must be assumed about the production environment vs other experimental environments.
|
||||
* We're using `pip` and `virtualenv` to generate a suitable isolated environment for python code that has all the dependencies
|
||||
* Every dependency should be:
|
||||
- Added to the `setup.py` file
|
||||
- Installed through it
|
||||
@ -30,21 +29,7 @@ PySAL 1.10 or later, so we'll stick to 1.9.1.
|
||||
apt-get install -y python-scipy
|
||||
```
|
||||
|
||||
We'll use virtual environments to install our packages,
|
||||
but configued to use also system modules so that the
|
||||
mentioned scipy and numpy are used.
|
||||
|
||||
# Create a virtual environment for python
|
||||
$ virtualenv --system-site-packages dev
|
||||
|
||||
# Activate the virtualenv
|
||||
$ source dev/bin/activate
|
||||
|
||||
# Install all the requirements
|
||||
# expect this to take a while, as it will trigger a few compilations
|
||||
(dev) $ pip install -I ./crankshaft
|
||||
|
||||
#### Test the libraries with that virtual env
|
||||
#### Test the libraries
|
||||
|
||||
##### Test numpy library dependency:
|
||||
|
||||
|
@ -1,2 +1,3 @@
|
||||
"""Import all functions from moran clustering"""
|
||||
from crankshaft.clustering.moran import *
|
||||
"""Import all functions from for clustering"""
|
||||
from moran import *
|
||||
from kmeans import *
|
||||
|
18
src/py/crankshaft/crankshaft/clustering/kmeans.py
Normal file
18
src/py/crankshaft/crankshaft/clustering/kmeans.py
Normal file
@ -0,0 +1,18 @@
|
||||
from sklearn.cluster import KMeans
|
||||
import plpy
|
||||
|
||||
def kmeans(query, no_clusters, no_init=20):
|
||||
data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids,
|
||||
array_agg(ST_X(the_geom) order by cartodb_id) xs,
|
||||
array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a
|
||||
where the_geom is not null
|
||||
'''.format(query=query))
|
||||
|
||||
xs = data[0]['xs']
|
||||
ys = data[0]['ys']
|
||||
ids = data[0]['ids']
|
||||
|
||||
km = KMeans(n_clusters= no_clusters, n_init=no_init)
|
||||
labels = km.fit_predict(zip(xs,ys))
|
||||
return zip(ids,labels)
|
||||
|
@ -7,6 +7,7 @@ Moran's I geostatistics (global clustering & outliers presence)
|
||||
|
||||
import pysal as ps
|
||||
import plpy
|
||||
from collections import OrderedDict
|
||||
|
||||
# crankshaft module
|
||||
import crankshaft.pysal_utils as pu
|
||||
@ -21,11 +22,11 @@ def moran(subquery, attr_name,
|
||||
core clusters with PySAL.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
qvals = {"id_col": id_col,
|
||||
"attr1": attr_name,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr_name),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
@ -65,11 +66,11 @@ def moran_local(subquery, attr,
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
qvals = {"id_col": id_col,
|
||||
"attr1": attr,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
@ -101,12 +102,12 @@ def moran_rate(subquery, numerator, denominator,
|
||||
Moran's I Rate (global)
|
||||
Andy Eschbacher
|
||||
"""
|
||||
qvals = {"id_col": id_col,
|
||||
"attr1": numerator,
|
||||
"attr2": denominator,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", numerator),
|
||||
("attr2", denominator)
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
@ -145,13 +146,14 @@ def moran_local_rate(subquery, numerator, denominator,
|
||||
# geometries with values that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
query = pu.construct_neighbor_query(w_type,
|
||||
{"id_col": id_col,
|
||||
"numerator": numerator,
|
||||
"denominator": denominator,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs})
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("numerator", numerator),
|
||||
("denominator", denominator),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
@ -186,12 +188,12 @@ def moran_local_bv(subquery, attr1, attr2,
|
||||
"""
|
||||
plpy.notice('** Constructing query')
|
||||
|
||||
qvals = {"num_ngbrs": num_ngbrs,
|
||||
"attr1": attr1,
|
||||
"attr2": attr2,
|
||||
"subquery": subquery,
|
||||
"geom_col": geom_col,
|
||||
"id_col": id_col}
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr1),
|
||||
("attr2", attr2),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
query = pu.construct_neighbor_query(w_type, qvals)
|
||||
|
||||
|
@ -40,9 +40,9 @@ setup(
|
||||
|
||||
# The choice of component versions is dictated by what's
|
||||
# provisioned in the production servers.
|
||||
install_requires=['pysal==1.9.1', 'numpy==1.11.0'],
|
||||
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
|
||||
|
||||
requires=['pysal', 'numpy' ],
|
||||
requires=['pysal', 'numpy', 'sklearn'],
|
||||
|
||||
test_suite='test'
|
||||
)
|
||||
|
1
src/py/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
1
src/py/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
@ -0,0 +1 @@
|
||||
[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}]
|
38
src/py/crankshaft/test/test_cluster_kmeans.py
Normal file
38
src/py/crankshaft/test/test_cluster_kmeans.py
Normal file
@ -0,0 +1,38 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
# from mock_plpy import MockPlPy
|
||||
# plpy = MockPlPy()
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import plpy, fixture_file
|
||||
import numpy as np
|
||||
import crankshaft.clustering as cc
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
|
||||
class KMeansTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
self.cluster_data = json.loads(open(fixture_file('kmeans.json')).read())
|
||||
self.params = {"subquery": "select * from table",
|
||||
"no_clusters": "10"
|
||||
}
|
||||
|
||||
def test_kmeans(self):
|
||||
data = self.cluster_data
|
||||
plpy._define_result('select' ,data)
|
||||
clusters = cc.kmeans('subquery', 2)
|
||||
labels = [a[1] for a in clusters]
|
||||
c1 = [a for a in clusters if a[1]==0]
|
||||
c2 = [a for a in clusters if a[1]==1]
|
||||
|
||||
self.assertEqual(len(np.unique(labels)),2)
|
||||
self.assertEqual(len(c1),20)
|
||||
self.assertEqual(len(c2),20)
|
||||
|
Loading…
Reference in New Issue
Block a user