fleshing out segmentation

This commit is contained in:
Stuart Lynn 2016-03-07 11:41:37 -05:00
parent 746dcc9723
commit d96d6b2c48
2 changed files with 119 additions and 118 deletions

View File

@ -0,0 +1 @@
from segmentation import *

View File

@ -1,118 +1,118 @@
"""
Segmentation creation and prediction
"""
import sklearn
import numpy as np
import pandas as pd
import pickle
import plpy
from sklearn.ensemble import ExtraTreesRegressor
from sklearn import metrics
from sklearn.cross_validation import train_test_split
# High level interface ---------------------------------------
def cdb_create_segment(segment_name,table_name,column_name,geoid_column,census_table,method):
"""
generate a segment with machine learning
Stuart Lynn
"""
data = pd.DataFrame(join_with_census(table_name, column_name,geoid_column, census_table))
features = data[data.columns.difference([column_name, 'geoid'])]
target, mean, std = normalize(data[column_name])
model, accuracy = train_model(target,features, test_split=0.2)
save_model(segment_name, model, accuracy, table_name, column_name, census_table, geoid_column, method)
return accuracy
def normalize(target):
mean = np.mean(target)
std = no.std(target)
return (target - mean)/std, mean, std
def denormalize(target, mean ,std):
return target*std + mean
def train_model(target,features,test_split):
features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
model = ExtraTreesRegressor(n_estimators = 40, max_features=len(features.columns))
model.fit(features_train, target_train)
accuracy = calculate_model_accuracy(model,features,target)
return model, accuracy
def calculate_model_accuracy(model,features,target):
prediction = self.model.predict(features)
return metrics.mean_squared_error(prediction,target)/np.std(target)
def join_with_census(table_name, column_name, geoid_column, census_table):
coulmns = plpy.execute('select {census_table}.* limit 1 ')
feature_names = ",".join(columns.keys.difference(['the_geom','cartodb_id']))
join_data = plpy.execute('''
WITH region_extent AS (
SELECT ST_Extent(the_geom) as table_extent FROM {table_name};
)
SELECT {features_names}, {table_name}.{column_name}
FROM {table_name} ,region_extent
JOIN {census_table}
ON {table_name}.{geoid_column} = {census_table}.geoid
WHERE {census_table}.the_geom && region_extent.table_extent
'''.format(**locals()))
if len(join_data) == 0:
plpy.notice('Failed to join with census data')
return join_data
def cdb_predict_segment(segment_name,geoid_column,census_table):
"""
predict a segment with machine learning
Stuart Lynn
"""
data = fetch_model(segment_name)
model = data['model']
features = ",".join(data['features'])
targets = plpy.execute('select {features} from {census_table}')
geo_ids = plpy.execute('select geoid from {census_table}')
result = model.predict(targets)
return zip(geo_ids,prediction)
def fetch_model(model_name):
"""
fetch a model from storage
"""
data = plpy.execute('select * from models where name={model_name}')
if len(data)==0:
plpy.notice('model not found')
data = data[0]
data['model'] = pickle.load(data['model'])
return data
def create_model_table(model_name):
"""
create the model table if requred
"""
plpy.execute('''
CREATE table IF NOT EXISTS _cdb_models(
name TEXT,
model BLOB,
features TEXT[],
accuracy NUMERIC,
table_name TEXT,
)''')
def save_model(model_name,model,accuracy,table_name, column_name,census_table,geoid_column,method):
"""
save a model to the model table for later use
"""
plpy.execute('''
DELETE FROM _cdb_models WHERE model_name = {model_name}
'''.format(**locals()))
plpy.execute("""
INSERT INTO _cdb_models ({model_name},{model_pickle},{accuracy})
""")
def
# """
# Segmentation creation and prediction
# """
#
# import sklearn
# import numpy as np
# import pandas as pd
# import pickle
# import plpy
# from sklearn.ensemble import ExtraTreesRegressor
# from sklearn import metrics
# from sklearn.cross_validation import train_test_split
#
# # High level interface ---------------------------------------
#
# def cdb_create_segment(segment_name,table_name,column_name,geoid_column,census_table,method):
# """
# generate a segment with machine learning
# Stuart Lynn
# """
# data = pd.DataFrame(join_with_census(table_name, column_name,geoid_column, census_table))
# features = data[data.columns.difference([column_name, 'geoid'])]
# target, mean, std = normalize(data[column_name])
# model, accuracy = train_model(target,features, test_split=0.2)
# save_model(segment_name, model, accuracy, table_name, column_name, census_table, geoid_column, method)
# return accuracy
#
# def normalize(target):
# mean = np.mean(target)
# std = no.std(target)
# return (target - mean)/std, mean, std
#
# def denormalize(target, mean ,std):
# return target*std + mean
#
# def train_model(target,features,test_split):
# features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
# model = ExtraTreesRegressor(n_estimators = 40, max_features=len(features.columns))
# model.fit(features_train, target_train)
# accuracy = calculate_model_accuracy(model,features,target)
# return model, accuracy
#
# def calculate_model_accuracy(model,features,target):
# prediction = self.model.predict(features)
# return metrics.mean_squared_error(prediction,target)/np.std(target)
#
# def join_with_census(table_name, column_name, geoid_column, census_table):
# coulmns = plpy.execute('select {census_table}.* limit 1 ')
# feature_names = ",".join(columns.keys.difference(['the_geom','cartodb_id']))
# join_data = plpy.execute('''
# WITH region_extent AS (
# SELECT ST_Extent(the_geom) as table_extent FROM {table_name};
# )
# SELECT {features_names}, {table_name}.{column_name}
# FROM {table_name} ,region_extent
# JOIN {census_table}
# ON {table_name}.{geoid_column} = {census_table}.geoid
# WHERE {census_table}.the_geom && region_extent.table_extent
# '''.format(**locals()))
#
# if len(join_data) == 0:
# plpy.notice('Failed to join with census data')
#
# return join_data
#
# def cdb_predict_segment(segment_name,geoid_column,census_table):
# """
# predict a segment with machine learning
# Stuart Lynn
# """
# data = fetch_model(segment_name)
# model = data['model']
# features = ",".join(data['features'])
# targets = plpy.execute('select {features} from {census_table}')
# geo_ids = plpy.execute('select geoid from {census_table}')
# result = model.predict(targets)
# return zip(geo_ids,prediction)
#
#
# def fetch_model(model_name):
# """
# fetch a model from storage
# """
# data = plpy.execute('select * from models where name={model_name}')
# if len(data)==0:
# plpy.notice('model not found')
# data = data[0]
# data['model'] = pickle.load(data['model'])
# return data
#
#
# def create_model_table(model_name):
# """
# create the model table if requred
# """
# plpy.execute('''
# CREATE table IF NOT EXISTS _cdb_models(
# name TEXT,
# model BLOB,
# features TEXT[],
# accuracy NUMERIC,
# table_name TEXT,
# )''')
#
# def save_model(model_name,model,accuracy,table_name, column_name,census_table,geoid_column,method):
# """
# save a model to the model table for later use
# """
#
# plpy.execute('''
# DELETE FROM _cdb_models WHERE model_name = {model_name}
# '''.format(**locals()))
#
# plpy.execute("""
# INSERT INTO _cdb_models ({model_name},{model_pickle},{accuracy})
# """)
#
# def