more changes

This commit is contained in:
mehak-sachdeva 2017-02-01 11:42:58 -05:00
parent cbd95fa0a2
commit d7bccc1063
3 changed files with 28 additions and 20 deletions

View File

@ -119,7 +119,7 @@ class AnalysisDataProvider(object):
for a in params['feature_columns']]) for a in params['feature_columns']])
query = ''' query = '''
SELECT SELECT
Array({joined_features}) As features Array[{joined_features}] As features
FROM ({subquery}) as q FROM ({subquery}) as q
'''.format(subquery=params['subquery'], '''.format(subquery=params['subquery'],
joined_features=joined_features) joined_features=joined_features)

View File

@ -68,8 +68,7 @@ class Segmentation(object):
""" """
params = {"subquery": target_query, params = {"subquery": target_query,
"id_col": id_col, "id_col": id_col}
"feature_columns": feature_columns}
target, features, target_mean, \ target, features, target_mean, \
feature_means = self.clean_data(variable, feature_columns, query) feature_means = self.clean_data(variable, feature_columns, query)
@ -81,6 +80,10 @@ class Segmentation(object):
rowid = self.data_provider.get_segmentation_data(params) rowid = self.data_provider.get_segmentation_data(params)
'''
rowid = [{'ids': [2.9, 4.9, 4, 5, 6]}]
'''
return zip(rowid, result, accuracy_array) return zip(rowid, result, accuracy_array)
def predict_segment(self, model, feature_columns, target_query, def predict_segment(self, model, feature_columns, target_query,
@ -101,9 +104,12 @@ class Segmentation(object):
results = [] results = []
cursors = self.data_provider.get_segmentation_predict_data(params) cursors = self.data_provider.get_segmentation_predict_data(params)
# cursors = [{'': ,
# '': }] '''
# cursors = [{'features': [[m1[0],m2[0],m3[0]],[m1[1],m2[1],m3[1]],
[m1[2],m2[2],m3[2]]]}]
'''
while True: while True:
rows = cursors.fetch(batch_size) rows = cursors.fetch(batch_size)
if not rows: if not rows:
@ -131,7 +137,7 @@ class Segmentation(object):
data = self.data_provider.get_segmentation_model_data(params) data = self.data_provider.get_segmentation_model_data(params)
''' '''
data: [{'target': [2.9, 4.9, 4, 5, 6]}, data = [{'target': [2.9, 4.9, 4, 5, 6]},
{'feature1': [1,2,3,4]}, {'feature2' : [2,3,4,5]} {'feature1': [1,2,3,4]}, {'feature2' : [2,3,4,5]}
] ]
''' '''

View File

@ -1,9 +1,11 @@
import unittest import unittest
import numpy as np import numpy as np
from helper import plpy, fixture_file from helper import plpy, fixture_file
from crankshaft.analysis_data_provider import AnalysisDataProvider
from crankshaft.segmentation import Segmentation from crankshaft.segmentation import Segmentation
import json import json
class RawDataProvider(AnalysisDataProvider): class RawDataProvider(AnalysisDataProvider):
def __init__(self, raw_data1, raw_data2, raw_data3): def __init__(self, raw_data1, raw_data2, raw_data3):
self.raw_data1 = raw_data1 self.raw_data1 = raw_data1
@ -19,24 +21,25 @@ class RawDataProvider(AnalysisDataProvider):
def get_segmentation_model_data(self, params): def get_segmentation_model_data(self, params):
return self.raw_data3 return self.raw_data3
class SegmentationTest(unittest.TestCase): class SegmentationTest(unittest.TestCase):
"""Testing class for Moran's I functions""" """Testing class for Moran's I functions"""
def setUp(self): def setUp(self):
plpy._reset() plpy._reset()
def generate_random_data(self,n_samples,random_state, row_type=False): def generate_random_data(self, n_samples, random_state, row_type=False):
x1 = random_state.uniform(size=n_samples) x1 = random_state.uniform(size=n_samples)
x2 = random_state.uniform(size=n_samples) x2 = random_state.uniform(size=n_samples)
x3 = random_state.randint(0, 4, size=n_samples) x3 = random_state.randint(0, 4, size=n_samples)
y = x1+x2*x2+x3 y = x1+x2*x2+x3
cartodb_id = range(len(x1)) cartodb_id = range(len(x1))
if row_type: if row_type:
return [ {'features': vals} for vals in zip(x1,x2,x3)], y return [{'features': vals} for vals in zip(x1, x2, x3)], y
else: else:
return [dict( zip(['x1','x2','x3','target', 'cartodb_id'],[x1,x2,x3,y,cartodb_id]))] return [dict(zip(['x1', 'x2', 'x3', 'target', 'cartodb_id'], [x1, x2, x3, y, cartodb_id]))]
def test_replace_nan_with_mean(self): def test_replace_nan_with_mean(self):
test_array = np.array([1.2, np.nan, 3.2, np.nan, np.nan]) test_array = np.array([1.2, np.nan, 3.2, np.nan, np.nan])
@ -49,9 +52,8 @@ class SegmentationTest(unittest.TestCase):
training_data = self.generate_random_data(n_samples, random_state_train) training_data = self.generate_random_data(n_samples, random_state_train)
test_data, test_y = self.generate_random_data(n_samples, random_state_test, row_type=True) test_data, test_y = self.generate_random_data(n_samples, random_state_test, row_type=True)
ids = [{'cartodb_ids': range(len(test_data))}]
ids = [{'cartodb_ids': range(len(test_data))}] rows = [{'x1': 0, 'x2': 0, 'x3': 0, 'y': 0, 'cartodb_id': 0}]
rows = [{'x1': 0, 'x2': 0, 'x3': 0, 'y': 0, 'cartodb_id': 0}]
plpy._define_result('select \* from \(select \* from training\) a limit 1', rows) plpy._define_result('select \* from \(select \* from training\) a limit 1', rows)
plpy._define_result('.*from \(select \* from training\) as a', training_data) plpy._define_result('.*from \(select \* from training\) as a', training_data)
@ -60,7 +62,7 @@ class SegmentationTest(unittest.TestCase):
model_parameters = {'n_estimators': 1200, model_parameters = {'n_estimators': 1200,
'max_depth': 3, 'max_depth': 3,
'subsample' : 0.5, 'subsample': 0.5,
'learning_rate': 0.01, 'learning_rate': 0.01,
'min_samples_leaf': 1} 'min_samples_leaf': 1}
data = [{'target': [], data = [{'target': [],
@ -79,12 +81,12 @@ class SegmentationTest(unittest.TestCase):
'target', 'target',
'feature_columns', 'feature_columns',
'select * from test', 'select * from test',
model_parameters) model_parameters)
prediction = [r[1] for r in result] prediction = [r[1] for r in result]
accuracy = np.sqrt(np.mean( np.square( np.array(prediction) - np.array(test_y)))) accuracy = np.sqrt(np.mean(np.square(np.array(prediction) - np.array(test_y))))
self.assertEqual(len(result),len(test_data)) self.assertEqual(len(result), len(test_data))
self.assertTrue( result[0][2] < 0.01) self.assertTrue(result[0][2] < 0.01)
self.assertTrue( accuracy < 0.5*np.mean(test_y) ) self.assertTrue(accuracy < 0.5*np.mean(test_y))