addes minmax scaling for variables

This commit is contained in:
Andy Eschbacher 2016-10-12 17:16:52 -04:00
parent c47116571f
commit c2e2359e65

View File

@ -38,6 +38,7 @@ def kmeans_nonspatial(query, colnames, num_clusters=5, id_col='cartodb_id'):
num_clusters (int): number of clusters (greater than zero) num_clusters (int): number of clusters (greater than zero)
id_col (string): name of the input id_column id_col (string): name of the input id_column
""" """
import numpy as np
id_colname = 'rowids' id_colname = 'rowids'
@ -53,15 +54,26 @@ def kmeans_nonspatial(query, colnames, num_clusters=5, id_col='cartodb_id'):
try: try:
data = plpy.execute(full_query) data = plpy.execute(full_query)
plpy.notice('query: %s' % full_query) plpy.notice('query: %s' % full_query)
# fill array with values for kmeans clustering
data = np.array([d[c] for c in d if c != 'id_colname'],
dtype=float).T
except plpy.SPIError, err: except plpy.SPIError, err:
plpy.error('KMeans cluster failed: %s' % err) plpy.error('KMeans cluster failed: %s' % err)
# fill array with values for kmeans clustering
cluster_columns = scale_data(
np.array([data[0][c] for c in data.colnames()
if c != id_col],
dtype=float).T)
kmeans = KMeans(n_clusters=num_clusters, random_state=0).fit(data) kmeans = KMeans(n_clusters=num_clusters, random_state=0).fit(data)
# zip(ids, labels, means)
return zip(kmeans.labels_, map(str, kmeans.cluster_centers_), return zip(kmeans.labels_, map(str, kmeans.cluster_centers_),
d[0]['rowids']) data[0]['rowids'])
def scale_data(input_data):
"""
Scale all input columns from 0 to 1 so that k-means puts them on equal
footing
"""
from sklearn.preprocessing import MinMaxScaler
min_max_scaler = MinMaxScaler()
return min_max_scaler.fit_transform(input_data)