diff --git a/src/py/crankshaft/crankshaft/space_time_dynamics/markov.py b/src/py/crankshaft/crankshaft/space_time_dynamics/markov.py index be7f999..da7271c 100644 --- a/src/py/crankshaft/crankshaft/space_time_dynamics/markov.py +++ b/src/py/crankshaft/crankshaft/space_time_dynamics/markov.py @@ -6,7 +6,7 @@ Spatial dynamics measurements using Spatial Markov import numpy as np import pysal as ps import plpy -from crankshaft.clustering import get_query, get_weight +import crankshaft.pysal_utils as pu def spatial_markov_trend(subquery, time_cols, num_time_per_bin, permutations, geom_col, id_col, w_type, num_ngbrs): @@ -43,7 +43,7 @@ def spatial_markov_trend(subquery, time_cols, num_time_per_bin, "subquery": subquery, "num_ngbrs": num_ngbrs} - query = get_query(w_type, qvals) + query = pu.construct_neighbor_query(w_type, qvals) try: query_result = plpy.execute(query) @@ -53,7 +53,7 @@ def spatial_markov_trend(subquery, time_cols, num_time_per_bin, return zip([None], [None], [None], [None], [None]) ## build weight - weights = get_weight(query_result, w_type) + weights = pu.get_weight(query_result, w_type) ## prep time data t_data = get_time_data(query_result, time_cols) @@ -81,6 +81,14 @@ def spatial_markov_trend(subquery, time_cols, num_time_per_bin, return zip(trend, trend_up, trend_down, volatility, weights.id_order) +def spatial_markov_predict(subquery, time_cols, num_time_per_bin, + permutations, geom_col, id_col, w_type, num_ngbrs): + """ + Filler for this future function + """ + + return None + def get_time_data(markov_data, time_cols): """ Extract the time columns and bin appropriately @@ -98,13 +106,13 @@ def rebin_data(time_data, num_time_per_bin): 9 8 7 6 8.5 6.5 5 4 3 2 4.5 2.5 - if m = 2 + if m = 2, the 4 x 4 matrix is transformed to a 2 x 4 matrix. This process effectively resamples the data at a longer time span n units longer than the input data. For cases when there is a remainder (remainder(5/3) = 2), the remaining two columns are binned together as the last time period, while the - first three are binned together. + first three are binned together for the first period. Input: @param time_data n x l ndarray: measurements of an attribute at