remove mock plpy dependencies
This commit is contained in:
parent
a9add4b49c
commit
a8bd122762
@ -2,7 +2,6 @@ import unittest
|
||||
|
||||
from mock_plpy import MockPlPy
|
||||
plpy = MockPlPy()
|
||||
from mock_plpy import MockDBResponse
|
||||
|
||||
import sys
|
||||
sys.modules['plpy'] = plpy
|
||||
|
@ -52,16 +52,3 @@ class MockPlPy:
|
||||
if result[0].match(query):
|
||||
return result[1]
|
||||
return []
|
||||
|
||||
|
||||
class MockDBResponse:
|
||||
def __init__(self, data, colnames=None):
|
||||
self.data = data
|
||||
if colnames is None:
|
||||
self.colnames = data[0].keys()
|
||||
else:
|
||||
self.colnames = colnames
|
||||
|
||||
|
||||
def colnames(self):
|
||||
return self.colnames
|
||||
|
@ -7,7 +7,7 @@ import numpy as np
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import plpy, fixture_file
|
||||
from helper import fixture_file
|
||||
from crankshaft.clustering import Kmeans
|
||||
from crankshaft.clustering import QueryRunner
|
||||
import crankshaft.clustering as cc
|
||||
@ -60,8 +60,6 @@ class KMeansNonspatialTest(unittest.TestCase):
|
||||
"""Testing class for k-means non-spatial"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
|
||||
self.params = {"subquery": "SELECT * FROM TABLE",
|
||||
"n_clusters": 5}
|
||||
|
||||
|
@ -7,19 +7,30 @@ import numpy as np
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import plpy, fixture_file, MockDBResponse
|
||||
|
||||
import crankshaft.clustering as cc
|
||||
from helper import fixture_file
|
||||
from crankshaft.clustering import Moran
|
||||
from crankshaft.clustering import QueryRunner
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class FakeQueryRunner(QueryRunner):
|
||||
def __init__(self, mocked_result):
|
||||
self.mocked_result = mocked_result
|
||||
|
||||
def get_result(self, query):
|
||||
return self.mocked_result
|
||||
|
||||
def get_columns(self, query):
|
||||
return self.mocked_result
|
||||
|
||||
|
||||
class MoranTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"attr1": "andy",
|
||||
"attr2": "jay_z",
|
||||
@ -39,35 +50,35 @@ class MoranTest(unittest.TestCase):
|
||||
|
||||
def test_map_quads(self):
|
||||
"""Test map_quads"""
|
||||
self.assertEqual(cc.map_quads(1), 'HH')
|
||||
self.assertEqual(cc.map_quads(2), 'LH')
|
||||
self.assertEqual(cc.map_quads(3), 'LL')
|
||||
self.assertEqual(cc.map_quads(4), 'HL')
|
||||
self.assertEqual(cc.map_quads(33), None)
|
||||
self.assertEqual(cc.map_quads('andy'), None)
|
||||
from crankshaft.clustering import map_quads
|
||||
self.assertEqual(map_quads(1), 'HH')
|
||||
self.assertEqual(map_quads(2), 'LH')
|
||||
self.assertEqual(map_quads(3), 'LL')
|
||||
self.assertEqual(map_quads(4), 'HL')
|
||||
self.assertEqual(map_quads(33), None)
|
||||
self.assertEqual(map_quads('andy'), None)
|
||||
|
||||
def test_quad_position(self):
|
||||
"""Test lisa_sig_vals"""
|
||||
from crankshaft.clustering import quad_position
|
||||
|
||||
quads = np.array([1, 2, 3, 4], np.int)
|
||||
|
||||
ans = np.array(['HH', 'LH', 'LL', 'HL'])
|
||||
test_ans = cc.quad_position(quads)
|
||||
test_ans = quad_position(quads)
|
||||
|
||||
self.assertTrue((test_ans == ans).all())
|
||||
|
||||
def test_moran_local(self):
|
||||
def test_local_stat(self):
|
||||
"""Test Moran's I local"""
|
||||
data = [OrderedDict([('id', d['id']),
|
||||
('attr1', d['value']),
|
||||
('neighbors', d['neighbors'])])
|
||||
for d in self.neighbors_data]
|
||||
|
||||
db_resp = MockDBResponse(data)
|
||||
|
||||
plpy._define_result('select', db_resp)
|
||||
moran = Moran(FakeQueryRunner(data))
|
||||
random_seeds.set_random_seeds(1234)
|
||||
result = cc.moran_local('subquery', 'value',
|
||||
result = moran.local_stat('subquery', 'value',
|
||||
'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
zipped_values = zip(result, self.moran_data)
|
||||
@ -83,9 +94,9 @@ class MoranTest(unittest.TestCase):
|
||||
'attr2': 1,
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
|
||||
plpy._define_result('select', data)
|
||||
random_seeds.set_random_seeds(1234)
|
||||
result = cc.moran_local_rate('subquery', 'numerator', 'denominator',
|
||||
moran = Moran(FakeQueryRunner(data))
|
||||
result = moran.local_rate_stat('subquery', 'numerator', 'denominator',
|
||||
'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
|
||||
@ -99,10 +110,11 @@ class MoranTest(unittest.TestCase):
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
plpy._define_result('select', data)
|
||||
random_seeds.set_random_seeds(1235)
|
||||
result = cc.moran('table', 'value',
|
||||
'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
moran = Moran(FakeQueryRunner(data))
|
||||
result = moran.global_stat('table', 'value',
|
||||
'knn', 5, 99, 'the_geom',
|
||||
'cartodb_id')
|
||||
|
||||
result_moran = result[0][0]
|
||||
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
|
||||
|
Loading…
Reference in New Issue
Block a user