first add

This commit is contained in:
Andy Eschbacher 2016-10-11 16:38:18 -04:00
parent ecb4bd9606
commit 947d6ba798
2 changed files with 86 additions and 24 deletions

View File

@ -1,10 +1,23 @@
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer,no_init integer default 20)
-- Spatial k-means clustering
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer, no_init integer default 20)
RETURNS table (cartodb_id integer, cluster_no integer) as $$
from crankshaft.clustering import kmeans
return kmeans(query,no_clusters,no_init)
return kmeans(query, no_clusters, no_init)
$$ language plpythonu;
$$ LANGUAGE plpythonu;
-- Non-spatial k-means clustering
-- query: sql query to retrieve all the needed data
CREATE OR REPLACE FUNCTION CDB_KMeansNonspatial(query TEXT, col_names TEXT[], no_clusters INTEGER, id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE(rowid BIGINT, cluster_no INTEGER, )
from crankshaft.clustering import kmeans_nonspatial
return kmeans_nonspatial(query, colnames, num_clusters, id_col)
$$ LANGUAGE plpythonu;
CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC)

View File

@ -1,18 +1,67 @@
from sklearn.cluster import KMeans
import plpy
def kmeans(query, no_clusters, no_init=20):
data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids,
array_agg(ST_X(the_geom) order by cartodb_id) xs,
array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a
where the_geom is not null
'''.format(query=query))
"""
"""
full_query = '''
SELECT array_agg(cartodb_id ORDER BY cartodb_id) as ids,
array_agg(ST_X(the_geom) ORDER BY cartodb_id) xs,
array_agg(ST_Y(the_geom) ORDER BY cartodb_id)
FROM ({query}) As a
WHERE the_geom IS NOT NULL
'''.format(query=query)
try:
data = plpy.execute(full_query)
except plpy.SPIError, err:
plpy.error("KMeans cluster failed: %s" % err)
xs = data[0]['xs']
ys = data[0]['ys']
ids = data[0]['ids']
km = KMeans(n_clusters= no_clusters, n_init=no_init)
labels = km.fit_predict(zip(xs,ys))
return zip(ids,labels)
km = KMeans(n_clusters=no_clusters, n_init=no_init)
labels = km.fit_predict(zip(xs, ys))
return zip(ids, labels)
def kmeans_nonspatial(query, colnames, num_clusters=5, id_col='cartodb_id'):
"""
query (string): A SQL query to retrieve the data required to do the
k-means clustering analysis, like so:
SELECT * FROM iris_flower_data
colnames (list): a list of the column names which contain the data of
interest, like so: ["sepal_width", "petal_width",
"sepal_length", "petal_length"]
num_clusters (int): number of clusters (greater than zero)
id_col (string): name of the input id_column
"""
id_colname = 'rowids'
full_query = '''
SELECT {cols}, array_agg({id_col}) As {id_colname}
FROM ({query}) As a
'''.format(query=query,
id_col=id_col,
id_colname=id_colname,
cols=', '.join(['array_agg({0}) As col{1}'.format(val, idx)
for idx, val in enumerate(colnames)]))
try:
data = plpy.execute(full_query)
plpy.notice('query: %s' % full_query)
# fill array with values for kmeans clustering
data = np.array([d[c] for c in d if c != 'id_colname'],
dtype=float).T
except plpy.SPIError, err:
plpy.error('KMeans cluster failed: %s' % err)
kmeans = KMeans(n_clusters=num_clusters, random_state=0).fit(data)
# zip(ids, labels, means)
return zip(kmeans.labels_, map(str, kmeans.cluster_centers_),
d[0]['rowids'])