first add
This commit is contained in:
parent
ecb4bd9606
commit
947d6ba798
@ -1,10 +1,23 @@
|
|||||||
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer,no_init integer default 20)
|
-- Spatial k-means clustering
|
||||||
|
|
||||||
|
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer, no_init integer default 20)
|
||||||
RETURNS table (cartodb_id integer, cluster_no integer) as $$
|
RETURNS table (cartodb_id integer, cluster_no integer) as $$
|
||||||
|
|
||||||
from crankshaft.clustering import kmeans
|
from crankshaft.clustering import kmeans
|
||||||
return kmeans(query,no_clusters,no_init)
|
return kmeans(query, no_clusters, no_init)
|
||||||
|
|
||||||
$$ language plpythonu;
|
$$ LANGUAGE plpythonu;
|
||||||
|
|
||||||
|
-- Non-spatial k-means clustering
|
||||||
|
-- query: sql query to retrieve all the needed data
|
||||||
|
|
||||||
|
CREATE OR REPLACE FUNCTION CDB_KMeansNonspatial(query TEXT, col_names TEXT[], no_clusters INTEGER, id_col TEXT DEFAULT 'cartodb_id')
|
||||||
|
RETURNS TABLE(rowid BIGINT, cluster_no INTEGER, )
|
||||||
|
|
||||||
|
from crankshaft.clustering import kmeans_nonspatial
|
||||||
|
return kmeans_nonspatial(query, colnames, num_clusters, id_col)
|
||||||
|
|
||||||
|
$$ LANGUAGE plpythonu;
|
||||||
|
|
||||||
|
|
||||||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC)
|
CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC)
|
||||||
|
@ -1,18 +1,67 @@
|
|||||||
from sklearn.cluster import KMeans
|
from sklearn.cluster import KMeans
|
||||||
import plpy
|
import plpy
|
||||||
|
|
||||||
|
|
||||||
def kmeans(query, no_clusters, no_init=20):
|
def kmeans(query, no_clusters, no_init=20):
|
||||||
data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids,
|
"""
|
||||||
array_agg(ST_X(the_geom) order by cartodb_id) xs,
|
|
||||||
array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a
|
"""
|
||||||
where the_geom is not null
|
full_query = '''
|
||||||
'''.format(query=query))
|
SELECT array_agg(cartodb_id ORDER BY cartodb_id) as ids,
|
||||||
|
array_agg(ST_X(the_geom) ORDER BY cartodb_id) xs,
|
||||||
|
array_agg(ST_Y(the_geom) ORDER BY cartodb_id)
|
||||||
|
FROM ({query}) As a
|
||||||
|
WHERE the_geom IS NOT NULL
|
||||||
|
'''.format(query=query)
|
||||||
|
try:
|
||||||
|
data = plpy.execute(full_query)
|
||||||
|
except plpy.SPIError, err:
|
||||||
|
plpy.error("KMeans cluster failed: %s" % err)
|
||||||
|
|
||||||
xs = data[0]['xs']
|
xs = data[0]['xs']
|
||||||
ys = data[0]['ys']
|
ys = data[0]['ys']
|
||||||
ids = data[0]['ids']
|
ids = data[0]['ids']
|
||||||
|
|
||||||
km = KMeans(n_clusters= no_clusters, n_init=no_init)
|
km = KMeans(n_clusters=no_clusters, n_init=no_init)
|
||||||
labels = km.fit_predict(zip(xs,ys))
|
labels = km.fit_predict(zip(xs, ys))
|
||||||
return zip(ids,labels)
|
return zip(ids, labels)
|
||||||
|
|
||||||
|
|
||||||
|
def kmeans_nonspatial(query, colnames, num_clusters=5, id_col='cartodb_id'):
|
||||||
|
"""
|
||||||
|
query (string): A SQL query to retrieve the data required to do the
|
||||||
|
k-means clustering analysis, like so:
|
||||||
|
SELECT * FROM iris_flower_data
|
||||||
|
colnames (list): a list of the column names which contain the data of
|
||||||
|
interest, like so: ["sepal_width", "petal_width",
|
||||||
|
"sepal_length", "petal_length"]
|
||||||
|
num_clusters (int): number of clusters (greater than zero)
|
||||||
|
id_col (string): name of the input id_column
|
||||||
|
"""
|
||||||
|
|
||||||
|
id_colname = 'rowids'
|
||||||
|
|
||||||
|
full_query = '''
|
||||||
|
SELECT {cols}, array_agg({id_col}) As {id_colname}
|
||||||
|
FROM ({query}) As a
|
||||||
|
'''.format(query=query,
|
||||||
|
id_col=id_col,
|
||||||
|
id_colname=id_colname,
|
||||||
|
cols=', '.join(['array_agg({0}) As col{1}'.format(val, idx)
|
||||||
|
for idx, val in enumerate(colnames)]))
|
||||||
|
|
||||||
|
try:
|
||||||
|
data = plpy.execute(full_query)
|
||||||
|
plpy.notice('query: %s' % full_query)
|
||||||
|
|
||||||
|
# fill array with values for kmeans clustering
|
||||||
|
data = np.array([d[c] for c in d if c != 'id_colname'],
|
||||||
|
dtype=float).T
|
||||||
|
except plpy.SPIError, err:
|
||||||
|
plpy.error('KMeans cluster failed: %s' % err)
|
||||||
|
|
||||||
|
kmeans = KMeans(n_clusters=num_clusters, random_state=0).fit(data)
|
||||||
|
|
||||||
|
# zip(ids, labels, means)
|
||||||
|
return zip(kmeans.labels_, map(str, kmeans.cluster_centers_),
|
||||||
|
d[0]['rowids'])
|
||||||
|
Loading…
Reference in New Issue
Block a user