gwr output
This commit is contained in:
parent
b39d0150c7
commit
8beb7220b2
@ -16,7 +16,6 @@ def gwr(subquery, dep_var, ind_vars,
|
||||
"""
|
||||
|
||||
# query_result = subquery
|
||||
# rowid = np.array(query_result[0]['rowid'])
|
||||
params = {'geom_col': 'the_geom',
|
||||
'id_col': 'cartodb_id',
|
||||
'subquery': subquery,
|
||||
@ -31,6 +30,9 @@ def gwr(subquery, dep_var, ind_vars,
|
||||
plpy.notice(query)
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
#unique ids and variable names list
|
||||
rowid = np.array(query_result[0]['rowid'], dtype=np.int)
|
||||
|
||||
# TODO: should x, y be centroids? point on surface?
|
||||
# lat, long coordinates
|
||||
x = np.array(query_result[0]['x'])
|
||||
@ -38,7 +40,7 @@ def gwr(subquery, dep_var, ind_vars,
|
||||
coords = zip(x, y)
|
||||
|
||||
# extract dependent variable
|
||||
Y = query_result[0]['dep_var'].reshape((-1, 1))
|
||||
Y = np.array(query_result[0]['dep_var']).reshape((-1, 1))
|
||||
|
||||
n = Y.shape[0]
|
||||
k = len(ind_vars)
|
||||
@ -48,7 +50,10 @@ def gwr(subquery, dep_var, ind_vars,
|
||||
attr_name = 'attr' + str(attr + 1)
|
||||
X[:, attr] = np.array(
|
||||
query_result[0][attr_name]).flatten()
|
||||
|
||||
|
||||
#add intercept variable name
|
||||
ind_vars.insert(0, 'intercept')
|
||||
|
||||
# calculate bandwidth
|
||||
bw = Sel_BW(coords, Y, X,
|
||||
fixed=fixed, kernel=kernel).search()
|
||||
@ -59,13 +64,18 @@ def gwr(subquery, dep_var, ind_vars,
|
||||
# column called coeffs:
|
||||
# {'pctrural': ..., 'pctpov': ..., ...}
|
||||
# Follow the same structure for other outputs
|
||||
coefficients = model.params.reshape((-1,))
|
||||
t_vals = model.tvalues.reshape((-1,))
|
||||
stand_errs = model.bse.reshape((-1))
|
||||
predicted = np.repeat(model.predy.reshape((-1,)), k+1)
|
||||
residuals = np.repeat(model.resid_response.reshape((-1,)), k+1)
|
||||
r_squared = np.repeat(model.localR2.reshape((-1,)), k+1)
|
||||
rowid = np.tile(rowid, k+1).reshape((-1,))
|
||||
ind_vars.insert(0, 'intercept')
|
||||
var_name = np.tile(ind_vars, n).reshape((-1,))
|
||||
return zip(coefficients, stand_errs, t_vals, predicted, residuals, r_squared, rowid, var_name)
|
||||
|
||||
coefficients = []
|
||||
stand_errs = []
|
||||
t_vals = []
|
||||
predicted = model.predy
|
||||
residuals = model.resid_response
|
||||
r_squared = model.localR2
|
||||
|
||||
for n, row in enumerate(Y):
|
||||
coefficients.append({var: model.params[n,k] for k, var in enumerate(ind_vars)})
|
||||
stand_errs.append({var: model.bse[n,k] for k, var in enumerate(ind_vars)})
|
||||
t_vals.append({var: model.tvalues[n,k] for k, var in enumerate(ind_vars)})
|
||||
|
||||
plpy.notice(str(zip(coefficients, stand_errs, t_vals, predicted, residuals, r_squared, rowid)))
|
||||
return zip(coefficients, stand_errs, t_vals, predicted, residuals, r_squared, rowid)
|
||||
|
Loading…
Reference in New Issue
Block a user