creates class-based approach to analysis methods
This commit is contained in:
parent
7eee4faac1
commit
83f1900512
@ -3,8 +3,9 @@
|
||||
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer, no_init integer default 20)
|
||||
RETURNS table (cartodb_id integer, cluster_no integer) as $$
|
||||
|
||||
from crankshaft.clustering import kmeans
|
||||
return kmeans(query, no_clusters, no_init)
|
||||
from crankshaft.clustering import Kmeans
|
||||
kmeans = Kmeans()
|
||||
return kmeans.spatial(query, no_clusters, no_init)
|
||||
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
@ -20,8 +21,9 @@ CREATE OR REPLACE FUNCTION CDB_KMeansNonspatial(
|
||||
)
|
||||
RETURNS TABLE(cluster_label text, cluster_center json, silhouettes numeric, rowid bigint) AS $$
|
||||
|
||||
from crankshaft.clustering import kmeans_nonspatial
|
||||
return kmeans_nonspatial(query, colnames, num_clusters,
|
||||
from crankshaft.clustering import Kmeans
|
||||
kmeans = Kmeans()
|
||||
return kmeans.nonspatial(query, colnames, num_clusters,
|
||||
id_colname, standarize)
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
||||
|
@ -3,101 +3,135 @@ import plpy
|
||||
import numpy as np
|
||||
|
||||
|
||||
def kmeans(query, no_clusters, no_init=20):
|
||||
"""
|
||||
find centers based on clusteres of latitude/longitude pairs
|
||||
query: SQL query that has a WGS84 geometry (the_geom)
|
||||
"""
|
||||
full_query = ("SELECT array_agg(cartodb_id ORDER BY cartodb_id) as ids,"
|
||||
"array_agg(ST_X(the_geom) ORDER BY cartodb_id) xs,"
|
||||
"array_agg(ST_Y(the_geom) ORDER BY cartodb_id) ys "
|
||||
"FROM ({query}) As a "
|
||||
"WHERE the_geom IS NOT NULL").format(query=query)
|
||||
try:
|
||||
data = plpy.execute(full_query)
|
||||
except plpy.SPIError, err:
|
||||
plpy.error("k-means (spatial) cluster analysis failed: %s" % err)
|
||||
class QueryRunner:
|
||||
def get_moran(self, query):
|
||||
"""fetch data for moran's i analyses"""
|
||||
try:
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
except plpy.SPIError, e:
|
||||
plpy.error('Analysis failed: %s' % e)
|
||||
return pu.empty_zipped_array(2)
|
||||
|
||||
# Unpack query response
|
||||
xs = data[0]['xs']
|
||||
ys = data[0]['ys']
|
||||
ids = data[0]['ids']
|
||||
def get_columns(self, query, standarize):
|
||||
"""fetch data for non-spatial kmeans"""
|
||||
try:
|
||||
db_resp = plpy.execute(query)
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
km = KMeans(n_clusters=no_clusters, n_init=no_init)
|
||||
labels = km.fit_predict(zip(xs, ys))
|
||||
return zip(ids, labels)
|
||||
return db_resp
|
||||
|
||||
def get_result(self, query):
|
||||
"""fetch data for spatial kmeans"""
|
||||
try:
|
||||
data = plpy.execute(query)
|
||||
except plpy.SPIError, err:
|
||||
plpy.error("Analysis failed: %s" % err)
|
||||
return data
|
||||
|
||||
|
||||
def kmeans_nonspatial(query, colnames, num_clusters=5,
|
||||
id_col='cartodb_id', standarize=True):
|
||||
"""
|
||||
query (string): A SQL query to retrieve the data required to do the
|
||||
k-means clustering analysis, like so:
|
||||
SELECT * FROM iris_flower_data
|
||||
colnames (list): a list of the column names which contain the data of
|
||||
interest, like so: ["sepal_width", "petal_width",
|
||||
"sepal_length", "petal_length"]
|
||||
num_clusters (int): number of clusters (greater than zero)
|
||||
id_col (string): name of the input id_column
|
||||
"""
|
||||
import json
|
||||
from sklearn import metrics
|
||||
class Kmeans:
|
||||
def __init__(self, query_runner=None):
|
||||
if query_runner is None:
|
||||
self.query_runner = QueryRunner()
|
||||
else:
|
||||
self.query_runner = query_runner
|
||||
|
||||
out_id_colname = 'rowids'
|
||||
# TODO: need a random seed?
|
||||
def spatial(self, query, no_clusters, no_init=20):
|
||||
"""
|
||||
find centers based on clusters of latitude/longitude pairs
|
||||
query: SQL query that has a WGS84 geometry (the_geom)
|
||||
"""
|
||||
full_query = ("SELECT "
|
||||
"array_agg(cartodb_id ORDER BY cartodb_id) as ids,"
|
||||
"array_agg(ST_X(the_geom) ORDER BY cartodb_id) xs,"
|
||||
"array_agg(ST_Y(the_geom) ORDER BY cartodb_id) ys "
|
||||
"FROM ({query}) As a "
|
||||
"WHERE the_geom IS NOT NULL").format(query=query)
|
||||
|
||||
full_query = '''
|
||||
SELECT {cols}, array_agg({id_col}) As {out_id_colname}
|
||||
FROM ({query}) As a
|
||||
'''.format(query=query,
|
||||
id_col=id_col,
|
||||
out_id_colname=out_id_colname,
|
||||
cols=', '.join(['array_agg({0}) As col{1}'.format(val, idx)
|
||||
for idx, val in enumerate(colnames)]))
|
||||
data = self.query_runner.get_result(full_query)
|
||||
|
||||
try:
|
||||
db_resp = plpy.execute(full_query)
|
||||
except plpy.SPIError, err:
|
||||
plpy.error("k-means (non-spatial) cluster analysis failed: %s" % err)
|
||||
# Unpack query response
|
||||
xs = data[0]['xs']
|
||||
ys = data[0]['ys']
|
||||
ids = data[0]['ids']
|
||||
|
||||
# fill array with values for k-means clustering
|
||||
if standarize:
|
||||
cluster_columns = _scale_data(
|
||||
_extract_columns(db_resp, out_id_colname))
|
||||
else:
|
||||
cluster_columns = _extract_columns(db_resp, out_id_colname)
|
||||
km = KMeans(n_clusters=no_clusters, n_init=no_init)
|
||||
labels = km.fit_predict(zip(xs, ys))
|
||||
return zip(ids, labels)
|
||||
|
||||
# TODO: decide on optimal parameters for most cases
|
||||
# Are there ways of deciding parameters based on inputs?
|
||||
kmeans = KMeans(n_clusters=num_clusters,
|
||||
random_state=0).fit(cluster_columns)
|
||||
def nonspatial(self, query, colnames, num_clusters=5,
|
||||
id_col='cartodb_id', standarize=True):
|
||||
"""
|
||||
query (string): A SQL query to retrieve the data required to do the
|
||||
k-means clustering analysis, like so:
|
||||
SELECT * FROM iris_flower_data
|
||||
colnames (list): a list of the column names which contain the data
|
||||
of interest, like so: ["sepal_width",
|
||||
"petal_width",
|
||||
"sepal_length",
|
||||
"petal_length"]
|
||||
num_clusters (int): number of clusters (greater than zero)
|
||||
id_col (string): name of the input id_column
|
||||
"""
|
||||
import json
|
||||
from sklearn import metrics
|
||||
|
||||
centers = [json.dumps(dict(zip(colnames, c)))
|
||||
for c in kmeans.cluster_centers_[kmeans.labels_]]
|
||||
out_id_colname = 'rowids'
|
||||
# TODO: need a random seed?
|
||||
|
||||
silhouettes = metrics.silhouette_samples(cluster_columns,
|
||||
kmeans.labels_,
|
||||
metric='sqeuclidean')
|
||||
full_query = '''
|
||||
SELECT {cols}, array_agg({id_col}) As {out_id_colname}
|
||||
FROM ({query}) As a
|
||||
'''.format(query=query,
|
||||
id_col=id_col,
|
||||
out_id_colname=out_id_colname,
|
||||
cols=', '.join(['array_agg({0}) As col{1}'.format(val, idx)
|
||||
for idx, val in enumerate(colnames)]))
|
||||
|
||||
return zip(kmeans.labels_,
|
||||
centers,
|
||||
silhouettes,
|
||||
db_resp[0][out_id_colname])
|
||||
db_resp = self.query_runner.get_columns(full_query, standarize)
|
||||
|
||||
# fill array with values for k-means clustering
|
||||
if standarize:
|
||||
cluster_columns = _scale_data(
|
||||
_extract_columns(db_resp, colnames))
|
||||
else:
|
||||
cluster_columns = _extract_columns(db_resp, colnames)
|
||||
|
||||
print str(cluster_columns)
|
||||
# TODO: decide on optimal parameters for most cases
|
||||
# Are there ways of deciding parameters based on inputs?
|
||||
kmeans = KMeans(n_clusters=num_clusters,
|
||||
random_state=0).fit(cluster_columns)
|
||||
|
||||
centers = [json.dumps(dict(zip(colnames, c)))
|
||||
for c in kmeans.cluster_centers_[kmeans.labels_]]
|
||||
|
||||
silhouettes = metrics.silhouette_samples(cluster_columns,
|
||||
kmeans.labels_,
|
||||
metric='sqeuclidean')
|
||||
|
||||
return zip(kmeans.labels_,
|
||||
centers,
|
||||
silhouettes,
|
||||
db_resp[0][out_id_colname])
|
||||
|
||||
|
||||
def _extract_columns(db_resp, id_col_name):
|
||||
# -- Preprocessing steps
|
||||
|
||||
def _extract_columns(db_resp, colnames):
|
||||
"""
|
||||
Extract the features from the query and pack them into a NumPy array
|
||||
db_resp (plpy data object): result of the kmeans request
|
||||
id_col_name (string): name of column which has the row id (not a
|
||||
feature of the analysis)
|
||||
"""
|
||||
return np.array([db_resp[0][c] for c in db_resp.colnames()
|
||||
if c != id_col_name],
|
||||
return np.array([db_resp[0][c] for c in colnames],
|
||||
dtype=float).T
|
||||
|
||||
# -- Preprocessing steps
|
||||
|
||||
|
||||
def _scale_data(features):
|
||||
"""
|
||||
|
@ -7,17 +7,31 @@ import numpy as np
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import plpy, fixture_file, MockDBResponse
|
||||
from helper import plpy, fixture_file
|
||||
from crankshaft.clustering import Kmeans
|
||||
from crankshaft.clustering import QueryRunner
|
||||
import crankshaft.clustering as cc
|
||||
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class FakeQueryRunner(QueryRunner):
|
||||
def __init__(self, mocked_result):
|
||||
self.mocked_result = mocked_result
|
||||
|
||||
def get_result(self, query):
|
||||
return self.mocked_result
|
||||
|
||||
def get_columns(self, query, standarize):
|
||||
return self.mocked_result
|
||||
|
||||
|
||||
class KMeansTest(unittest.TestCase):
|
||||
"""Testing class for k-means spatial"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
self.cluster_data = json.loads(
|
||||
open(fixture_file('kmeans.json')).read())
|
||||
self.params = {"subquery": "select * from table",
|
||||
@ -30,8 +44,9 @@ class KMeansTest(unittest.TestCase):
|
||||
'ys': d['ys'],
|
||||
'ids': d['ids']} for d in self.cluster_data]
|
||||
|
||||
plpy._define_result('select', data)
|
||||
clusters = cc.kmeans('subquery', 2)
|
||||
random_seeds.set_random_seeds(1234)
|
||||
kmeans = Kmeans(FakeQueryRunner(data))
|
||||
clusters = kmeans.spatial('subquery', 2)
|
||||
labels = [a[1] for a in clusters]
|
||||
c1 = [a for a in clusters if a[1] == 0]
|
||||
c2 = [a for a in clusters if a[1] == 1]
|
||||
@ -47,9 +62,6 @@ class KMeansNonspatialTest(unittest.TestCase):
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
|
||||
# self.cluster_data = json.loads(
|
||||
# open(fixture_file('kmeans-nonspatial.json')).read())
|
||||
|
||||
self.params = {"subquery": "SELECT * FROM TABLE",
|
||||
"n_clusters": 5}
|
||||
|
||||
@ -57,20 +69,23 @@ class KMeansNonspatialTest(unittest.TestCase):
|
||||
"""
|
||||
test for k-means non-spatial
|
||||
"""
|
||||
# data from:
|
||||
# http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn-cluster-kmeans
|
||||
data_raw = [OrderedDict([("col1", [1, 1, 1, 4, 4, 4]),
|
||||
("col2", [2, 4, 0, 2, 4, 0]),
|
||||
("rowids", [1, 2, 3, 4, 5, 6])])]
|
||||
|
||||
data_obj = MockDBResponse(data_raw, [k for k in data_raw[0]
|
||||
if k != 'rowids'])
|
||||
plpy._define_result('select', data_obj)
|
||||
clusters = cc.kmeans_nonspatial('subquery', ['col1', 'col2'], 4)
|
||||
random_seeds.set_random_seeds(1234)
|
||||
kmeans = Kmeans(FakeQueryRunner(data_raw))
|
||||
print 'asfasdfasd'
|
||||
clusters = kmeans.nonspatial('subquery', ['col1', 'col2'], 2)
|
||||
print str([c[0] for c in clusters])
|
||||
|
||||
cl1 = clusters[0][1]
|
||||
cl2 = clusters[3][1]
|
||||
cl1 = clusters[0][0]
|
||||
cl2 = clusters[3][0]
|
||||
|
||||
for idx, val in enumerate(clusters):
|
||||
if idx < 3:
|
||||
self.assertEqual(val[1], cl1)
|
||||
self.assertEqual(val[0], cl1)
|
||||
else:
|
||||
self.assertEqual(val[1], cl2)
|
||||
self.assertEqual(val[0], cl2)
|
||||
|
Loading…
Reference in New Issue
Block a user