segmentation
This commit is contained in:
parent
46c66476b5
commit
746dcc9723
27
pg/sql/0.0.1/05_segmentation.sql
Normal file
27
pg/sql/0.0.1/05_segmentation.sql
Normal file
@ -0,0 +1,27 @@
|
|||||||
|
CREATE OR REPLACE FUNCTION
|
||||||
|
cdb_create_segment (
|
||||||
|
segment_name TEXT,
|
||||||
|
table_name TEXT,
|
||||||
|
column_name TEXT,
|
||||||
|
geoid_column TEXT DEFAULT 'geoid',
|
||||||
|
census_table TEXT DEFAULT 'block_groups'
|
||||||
|
)
|
||||||
|
RETURNS NUMERIC
|
||||||
|
AS $$
|
||||||
|
from crankshaft.segmentation import create_segemnt
|
||||||
|
# TODO: use named parameters or a dictionary
|
||||||
|
return create_segment('table')
|
||||||
|
$$ LANGUAGE plpythonu;
|
||||||
|
|
||||||
|
CREATE OR REPLACE FUNCTION
|
||||||
|
cdb_predict_segment (
|
||||||
|
segment_name TEXT,
|
||||||
|
geoid_column TEXT DEFAULT 'geoid',
|
||||||
|
census_table TEXT DEFAULT 'block_groups'
|
||||||
|
)
|
||||||
|
RETURNS TABLE(geoid TEXT, prediction NUMERIC)
|
||||||
|
AS $$
|
||||||
|
from crankshaft.segmentation import create_segemnt
|
||||||
|
# TODO: use named parameters or a dictionary
|
||||||
|
return create_segment('table')
|
||||||
|
$$ LANGUAGE plpythonu;
|
@ -1,2 +1,3 @@
|
|||||||
import random_seeds
|
import random_seeds
|
||||||
import clustering
|
import clustering
|
||||||
|
import segmentation
|
||||||
|
118
python/crankshaft/crankshaft/segmentation/segmentation.py
Normal file
118
python/crankshaft/crankshaft/segmentation/segmentation.py
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
"""
|
||||||
|
Segmentation creation and prediction
|
||||||
|
"""
|
||||||
|
|
||||||
|
import sklearn
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
import pickle
|
||||||
|
import plpy
|
||||||
|
from sklearn.ensemble import ExtraTreesRegressor
|
||||||
|
from sklearn import metrics
|
||||||
|
from sklearn.cross_validation import train_test_split
|
||||||
|
|
||||||
|
# High level interface ---------------------------------------
|
||||||
|
|
||||||
|
def cdb_create_segment(segment_name,table_name,column_name,geoid_column,census_table,method):
|
||||||
|
"""
|
||||||
|
generate a segment with machine learning
|
||||||
|
Stuart Lynn
|
||||||
|
"""
|
||||||
|
data = pd.DataFrame(join_with_census(table_name, column_name,geoid_column, census_table))
|
||||||
|
features = data[data.columns.difference([column_name, 'geoid'])]
|
||||||
|
target, mean, std = normalize(data[column_name])
|
||||||
|
model, accuracy = train_model(target,features, test_split=0.2)
|
||||||
|
save_model(segment_name, model, accuracy, table_name, column_name, census_table, geoid_column, method)
|
||||||
|
return accuracy
|
||||||
|
|
||||||
|
def normalize(target):
|
||||||
|
mean = np.mean(target)
|
||||||
|
std = no.std(target)
|
||||||
|
return (target - mean)/std, mean, std
|
||||||
|
|
||||||
|
def denormalize(target, mean ,std):
|
||||||
|
return target*std + mean
|
||||||
|
|
||||||
|
def train_model(target,features,test_split):
|
||||||
|
features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
|
||||||
|
model = ExtraTreesRegressor(n_estimators = 40, max_features=len(features.columns))
|
||||||
|
model.fit(features_train, target_train)
|
||||||
|
accuracy = calculate_model_accuracy(model,features,target)
|
||||||
|
return model, accuracy
|
||||||
|
|
||||||
|
def calculate_model_accuracy(model,features,target):
|
||||||
|
prediction = self.model.predict(features)
|
||||||
|
return metrics.mean_squared_error(prediction,target)/np.std(target)
|
||||||
|
|
||||||
|
def join_with_census(table_name, column_name, geoid_column, census_table):
|
||||||
|
coulmns = plpy.execute('select {census_table}.* limit 1 ')
|
||||||
|
feature_names = ",".join(columns.keys.difference(['the_geom','cartodb_id']))
|
||||||
|
join_data = plpy.execute('''
|
||||||
|
WITH region_extent AS (
|
||||||
|
SELECT ST_Extent(the_geom) as table_extent FROM {table_name};
|
||||||
|
)
|
||||||
|
SELECT {features_names}, {table_name}.{column_name}
|
||||||
|
FROM {table_name} ,region_extent
|
||||||
|
JOIN {census_table}
|
||||||
|
ON {table_name}.{geoid_column} = {census_table}.geoid
|
||||||
|
WHERE {census_table}.the_geom && region_extent.table_extent
|
||||||
|
'''.format(**locals()))
|
||||||
|
|
||||||
|
if len(join_data) == 0:
|
||||||
|
plpy.notice('Failed to join with census data')
|
||||||
|
|
||||||
|
return join_data
|
||||||
|
|
||||||
|
def cdb_predict_segment(segment_name,geoid_column,census_table):
|
||||||
|
"""
|
||||||
|
predict a segment with machine learning
|
||||||
|
Stuart Lynn
|
||||||
|
"""
|
||||||
|
data = fetch_model(segment_name)
|
||||||
|
model = data['model']
|
||||||
|
features = ",".join(data['features'])
|
||||||
|
targets = plpy.execute('select {features} from {census_table}')
|
||||||
|
geo_ids = plpy.execute('select geoid from {census_table}')
|
||||||
|
result = model.predict(targets)
|
||||||
|
return zip(geo_ids,prediction)
|
||||||
|
|
||||||
|
|
||||||
|
def fetch_model(model_name):
|
||||||
|
"""
|
||||||
|
fetch a model from storage
|
||||||
|
"""
|
||||||
|
data = plpy.execute('select * from models where name={model_name}')
|
||||||
|
if len(data)==0:
|
||||||
|
plpy.notice('model not found')
|
||||||
|
data = data[0]
|
||||||
|
data['model'] = pickle.load(data['model'])
|
||||||
|
return data
|
||||||
|
|
||||||
|
|
||||||
|
def create_model_table(model_name):
|
||||||
|
"""
|
||||||
|
create the model table if requred
|
||||||
|
"""
|
||||||
|
plpy.execute('''
|
||||||
|
CREATE table IF NOT EXISTS _cdb_models(
|
||||||
|
name TEXT,
|
||||||
|
model BLOB,
|
||||||
|
features TEXT[],
|
||||||
|
accuracy NUMERIC,
|
||||||
|
table_name TEXT,
|
||||||
|
)''')
|
||||||
|
|
||||||
|
def save_model(model_name,model,accuracy,table_name, column_name,census_table,geoid_column,method):
|
||||||
|
"""
|
||||||
|
save a model to the model table for later use
|
||||||
|
"""
|
||||||
|
|
||||||
|
plpy.execute('''
|
||||||
|
DELETE FROM _cdb_models WHERE model_name = {model_name}
|
||||||
|
'''.format(**locals()))
|
||||||
|
|
||||||
|
plpy.execute("""
|
||||||
|
INSERT INTO _cdb_models ({model_name},{model_pickle},{accuracy})
|
||||||
|
""")
|
||||||
|
|
||||||
|
def
|
Loading…
Reference in New Issue
Block a user