diff --git a/src/py/crankshaft/crankshaft/space_time_dynamics/markov.py b/src/py/crankshaft/crankshaft/space_time_dynamics/markov.py index da7271c..e42176e 100644 --- a/src/py/crankshaft/crankshaft/space_time_dynamics/markov.py +++ b/src/py/crankshaft/crankshaft/space_time_dynamics/markov.py @@ -47,8 +47,8 @@ def spatial_markov_trend(subquery, time_cols, num_time_per_bin, try: query_result = plpy.execute(query) - except: - plpy.notice('** Query failed: %s' % query) + except plpy.SPIError, err: + plpy.notice('** Query failed with exception %s: %s' % (err, query)) plpy.error('Spatial Markov failed: check the input parameters') return zip([None], [None], [None], [None], [None]) @@ -75,20 +75,13 @@ def spatial_markov_trend(subquery, time_cols, num_time_per_bin, prob_dist = get_prob_dist(sp_markov_result.P, lag_classes, sp_markov_result.classes[:, -1]) ## find the ups and down and overall distribution of each cell - trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist, sp_markov_result.classes[:, -1]) + trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist, + sp_markov_result.classes[:, -1]) ## output the results return zip(trend, trend_up, trend_down, volatility, weights.id_order) -def spatial_markov_predict(subquery, time_cols, num_time_per_bin, - permutations, geom_col, id_col, w_type, num_ngbrs): - """ - Filler for this future function - """ - - return None - def get_time_data(markov_data, time_cols): """ Extract the time columns and bin appropriately @@ -131,7 +124,7 @@ def rebin_data(time_data, num_time_per_bin): n_max = time_data.shape[1] / num_time_per_bin + 1 return np.array([time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1) - for i in range(n_max)]).T + for i in range(n_max)]).T def get_prob_dist(transition_matrix, lag_indices, unit_indices): """ Given an array of transition matrices, look up the probability