diff --git a/src/pg/sql/11_markov.sql b/src/pg/sql/11_markov.sql index 63a46ac..fa7c838 100644 --- a/src/pg/sql/11_markov.sql +++ b/src/pg/sql/11_markov.sql @@ -6,7 +6,7 @@ -- 2 | Pt2 | 11.0 | 13.2 | 12.5 -- ... -- Sample Function call: --- SELECT cdb_spatial_markov('SELECT * FROM real_estate', +-- SELECT cdb_spatial_markov('SELECT * FROM real_estate', -- Array['date_1', 'date_2', 'date_3']) @@ -16,7 +16,7 @@ CREATE OR REPLACE FUNCTION time_cols text[], num_time_per_bin int DEFAULT 1, permutations INT DEFAULT 99, - geom_column TEXT DEFAULT 'the_geom', + geom_col TEXT DEFAULT 'the_geom', id_col TEXT DEFAULT 'cartodb_id', w_type TEXT DEFAULT 'knn', num_ngbrs int DEFAULT 5) @@ -25,7 +25,7 @@ AS $$ plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()') from crankshaft.space_time_predictions import spatial_markov # TODO: use named parameters or a dictionary - return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs) + return def spatial_markov_trend(subquery, time_cols, num_time_per_bin, permutations, geom_col, id_col, w_type, num_ngbrs) $$ LANGUAGE plpythonu; -- input table format: identical to above but in a predictable format @@ -34,48 +34,48 @@ $$ LANGUAGE plpythonu; -- 'date_1') -CREATE OR REPLACE FUNCTION - cdb_spatial_markov ( - subquery TEXT, - time_col_min text, - time_col_max text, - date_format text, -- '_YYYY_MM_DD' - num_time_per_bin INT DEFAULT 1, - permutations INT DEFAULT 99, - geom_column TEXT DEFAULT 'the_geom', - id_col TEXT DEFAULT 'cartodb_id', - w_type TEXT DEFAULT 'knn', - num_ngbrs int DEFAULT 5) -RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT) -AS $$ - plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()') - from crankshaft.clustering import moran_local - # TODO: use named parameters or a dictionary - return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs) -$$ LANGUAGE plpythonu; - --- input table format: --- id | geom | date | measurement --- 1 | Pt1 | 12/3 | 13.2 --- 2 | Pt2 | 11/5 | 11.3 --- 3 | Pt1 | 11/13 | 12.9 --- 4 | Pt3 | 12/19 | 10.1 --- ... - -CREATE OR REPLACE FUNCTION - cdb_spatial_markov ( - subquery TEXT, - time_col text, - num_time_per_bin INT DEFAULT 1, - permutations INT DEFAULT 99, - geom_column TEXT DEFAULT 'the_geom', - id_col TEXT DEFAULT 'cartodb_id', - w_type TEXT DEFAULT 'knn', - num_ngbrs int DEFAULT 5) -RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT) -AS $$ - plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()') - from crankshaft.clustering import moran_local - # TODO: use named parameters or a dictionary - return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs) -$$ LANGUAGE plpythonu; +-- CREATE OR REPLACE FUNCTION +-- cdb_spatial_markov ( +-- subquery TEXT, +-- time_col_min text, +-- time_col_max text, +-- date_format text, -- '_YYYY_MM_DD' +-- num_time_per_bin INT DEFAULT 1, +-- permutations INT DEFAULT 99, +-- geom_column TEXT DEFAULT 'the_geom', +-- id_col TEXT DEFAULT 'cartodb_id', +-- w_type TEXT DEFAULT 'knn', +-- num_ngbrs int DEFAULT 5) +-- RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT) +-- AS $$ +-- plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()') +-- from crankshaft.clustering import moran_local +-- # TODO: use named parameters or a dictionary +-- return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs) +-- $$ LANGUAGE plpythonu; +-- +-- -- input table format: +-- -- id | geom | date | measurement +-- -- 1 | Pt1 | 12/3 | 13.2 +-- -- 2 | Pt2 | 11/5 | 11.3 +-- -- 3 | Pt1 | 11/13 | 12.9 +-- -- 4 | Pt3 | 12/19 | 10.1 +-- -- ... +-- +-- CREATE OR REPLACE FUNCTION +-- cdb_spatial_markov ( +-- subquery TEXT, +-- time_col text, +-- num_time_per_bin INT DEFAULT 1, +-- permutations INT DEFAULT 99, +-- geom_column TEXT DEFAULT 'the_geom', +-- id_col TEXT DEFAULT 'cartodb_id', +-- w_type TEXT DEFAULT 'knn', +-- num_ngbrs int DEFAULT 5) +-- RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT) +-- AS $$ +-- plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()') +-- from crankshaft.clustering import moran_local +-- # TODO: use named parameters or a dictionary +-- return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs) +-- $$ LANGUAGE plpythonu;