From b8330dce076ad91a3dbdce0b7938f61dad9c0da3 Mon Sep 17 00:00:00 2001 From: Javier Goizueta Date: Tue, 29 Mar 2016 14:53:51 +0200 Subject: [PATCH 1/9] Fix deployment Makefile goal The virtual environment virtual directory wasn't set properly for deployment. Fixes #21 --- Makefile.global | 11 ++++++----- src/pg/Makefile | 1 - 2 files changed, 6 insertions(+), 6 deletions(-) diff --git a/Makefile.global b/Makefile.global index 77f6c69..504886f 100644 --- a/Makefile.global +++ b/Makefile.global @@ -1,6 +1,7 @@ SELF_DIR := $(dir $(lastword $(MAKEFILE_LIST))) -EXTENSION = crankshaft -PACKAGE = crankshaft -EXTVERSION = $(shell grep default_version $(SELF_DIR)/src/pg/$(EXTENSION).control | sed -e "s/default_version[[:space:]]*=[[:space:]]*'\([^']*\)'/\1/") -RELEASE_VERSION ?= $(EXTVERSION) -SED = sed +EXTENSION = crankshaft +PACKAGE = crankshaft +EXTVERSION = $(shell grep default_version $(SELF_DIR)/src/pg/$(EXTENSION).control | sed -e "s/default_version[[:space:]]*=[[:space:]]*'\([^']*\)'/\1/") +RELEASE_VERSION ?= $(EXTVERSION) +SED = sed +VIRTUALENV_PATH := $(realpath $(SELF_DIR)/envs) diff --git a/src/pg/Makefile b/src/pg/Makefile index 8a745c4..f4a34a2 100644 --- a/src/pg/Makefile +++ b/src/pg/Makefile @@ -18,7 +18,6 @@ DATA = $(EXTENSION)--dev.sql \ SOURCES_DATA_DIR = sql SOURCES_DATA = $(wildcard $(SOURCES_DATA_DIR)/*.sql) -VIRTUALENV_PATH = $(realpath ../../envs) ESC_VIRVIRTUALENV_PATH = $(subst /,\/,$(VIRTUALENV_PATH)) REPLACEMENTS = -e 's/@@VERSION@@/$(EXTVERSION)/g' \ From c7e4baa4aa8c50ba2f86116c1f9581b39af6805d Mon Sep 17 00:00:00 2001 From: Javier Goizueta Date: Fri, 20 May 2016 11:47:12 +0200 Subject: [PATCH 2/9] Fix instructions to update/install the extension --- CONTRIBUTING.md | 9 ++++++--- 1 file changed, 6 insertions(+), 3 deletions(-) diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index bcdde4a..a8dc2db 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -45,8 +45,8 @@ source envs/dev/bin/activate Update extension in a working database with: -* `ALTER EXTENSION crankshaft VERSION TO 'current';` - `ALTER EXTENSION crankshaft VERSION TO 'dev';` +* `ALTER EXTENSION crankshaft UPDATE TO 'current';` + `ALTER EXTENSION crankshaft UPDATE TO 'dev';` Note: we keep the current development version install as 'dev' always; we update through the 'current' alias to allow changing the extension @@ -58,7 +58,10 @@ should be dropped manually before the update. If the extension has not previously been installed in a database, it can be installed directly with: -* `CREATE EXTENSION crankshaft WITH VERSION 'dev';` +* `CREATE EXTENSION IF NOT EXISTS plpythonu;` + `CREATE EXTENSION IF NOT EXISTS postgis;` + `CREATE EXTENSION IF NOT EXISTS cartodb;` + `CREATE EXTENSION crankshaft WITH VERSION 'dev';` Note: the development extension uses the development python virtual environment automatically. From 76ee4cacbcc67b51bfd42b894042d6b0eee9d908 Mon Sep 17 00:00:00 2001 From: Rafa de la Torre Date: Wed, 29 Jun 2016 18:49:14 +0200 Subject: [PATCH 3/9] Revert changes in release/ dir --- release/python/0.0.1/crankshaft/crankshaft/__init__.py | 1 - 1 file changed, 1 deletion(-) diff --git a/release/python/0.0.1/crankshaft/crankshaft/__init__.py b/release/python/0.0.1/crankshaft/crankshaft/__init__.py index bc8e065..d07e330 100644 --- a/release/python/0.0.1/crankshaft/crankshaft/__init__.py +++ b/release/python/0.0.1/crankshaft/crankshaft/__init__.py @@ -1,3 +1,2 @@ import random_seeds import clustering -import segmentation From 702a1fb1ede06fa23fc75021643354da4c970b51 Mon Sep 17 00:00:00 2001 From: Rafa de la Torre Date: Wed, 29 Jun 2016 19:00:53 +0200 Subject: [PATCH 4/9] Update NEWS.md --- NEWS.md | 7 +++++++ 1 file changed, 7 insertions(+) diff --git a/NEWS.md b/NEWS.md index c011a0d..8d40482 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,3 +1,10 @@ +0.0.5 (2016-06-29) +------------------ +* Adds Spatial Markov function +* Adds Spacial interpolation function +* Adds `CDB_pyAgg (columns Numeric[])` helper function +* Adds Segmentation Functions + 0.0.4 (2016-06-20) ------------------ * Remove cartodb extension dependency from tests From 408dc6806ea48cfb8a1a2f76e2d41876ad8b9046 Mon Sep 17 00:00:00 2001 From: Rafa de la Torre Date: Wed, 29 Jun 2016 19:10:26 +0200 Subject: [PATCH 5/9] Use 0.1.0 instead of 0.0.5 --- NEWS.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/NEWS.md b/NEWS.md index 8d40482..2c19570 100644 --- a/NEWS.md +++ b/NEWS.md @@ -1,4 +1,4 @@ -0.0.5 (2016-06-29) +0.1.0 (2016-06-29) ------------------ * Adds Spatial Markov function * Adds Spacial interpolation function From 78ceb02c2277af8af38441ffa3a9ada98d549452 Mon Sep 17 00:00:00 2001 From: Rafa de la Torre Date: Wed, 29 Jun 2016 19:15:28 +0200 Subject: [PATCH 6/9] Add release files generated with make release --- release/crankshaft--0.1.0.sql | 686 ++++++++++++++++++ release/crankshaft.control | 2 +- .../0.1.0/crankshaft/crankshaft/__init__.py | 5 + .../crankshaft/clustering/__init__.py | 3 + .../crankshaft/clustering/kmeans.py | 18 + .../crankshaft/crankshaft/clustering/moran.py | 262 +++++++ .../crankshaft/pysal_utils/__init__.py | 2 + .../crankshaft/pysal_utils/pysal_utils.py | 188 +++++ .../crankshaft/crankshaft/random_seeds.py | 11 + .../crankshaft/segmentation/__init__.py | 1 + .../crankshaft/segmentation/segmentation.py | 176 +++++ .../space_time_dynamics/__init__.py | 2 + .../crankshaft/space_time_dynamics/markov.py | 189 +++++ release/python/0.1.0/crankshaft/setup.py | 49 ++ .../crankshaft/test/fixtures/kmeans.json | 1 + .../crankshaft/test/fixtures/markov.json | 1 + .../0.1.0/crankshaft/test/fixtures/moran.json | 52 ++ .../crankshaft/test/fixtures/neighbors.json | 54 ++ .../test/fixtures/neighbors_markov.json | 1 + .../python/0.1.0/crankshaft/test/helper.py | 13 + .../python/0.1.0/crankshaft/test/mock_plpy.py | 52 ++ .../crankshaft/test/test_cluster_kmeans.py | 38 + .../crankshaft/test/test_clustering_moran.py | 88 +++ .../0.1.0/crankshaft/test/test_pysal_utils.py | 142 ++++ .../crankshaft/test/test_segmentation.py | 64 ++ .../test/test_space_time_dynamics.py | 324 +++++++++ src/pg/crankshaft.control | 2 +- 27 files changed, 2424 insertions(+), 2 deletions(-) create mode 100644 release/crankshaft--0.1.0.sql create mode 100644 release/python/0.1.0/crankshaft/crankshaft/__init__.py create mode 100644 release/python/0.1.0/crankshaft/crankshaft/clustering/__init__.py create mode 100644 release/python/0.1.0/crankshaft/crankshaft/clustering/kmeans.py create mode 100644 release/python/0.1.0/crankshaft/crankshaft/clustering/moran.py create mode 100644 release/python/0.1.0/crankshaft/crankshaft/pysal_utils/__init__.py create mode 100644 release/python/0.1.0/crankshaft/crankshaft/pysal_utils/pysal_utils.py create mode 100644 release/python/0.1.0/crankshaft/crankshaft/random_seeds.py create mode 100644 release/python/0.1.0/crankshaft/crankshaft/segmentation/__init__.py create mode 100644 release/python/0.1.0/crankshaft/crankshaft/segmentation/segmentation.py create mode 100644 release/python/0.1.0/crankshaft/crankshaft/space_time_dynamics/__init__.py create mode 100644 release/python/0.1.0/crankshaft/crankshaft/space_time_dynamics/markov.py create mode 100644 release/python/0.1.0/crankshaft/setup.py create mode 100644 release/python/0.1.0/crankshaft/test/fixtures/kmeans.json create mode 100644 release/python/0.1.0/crankshaft/test/fixtures/markov.json create mode 100644 release/python/0.1.0/crankshaft/test/fixtures/moran.json create mode 100644 release/python/0.1.0/crankshaft/test/fixtures/neighbors.json create mode 100644 release/python/0.1.0/crankshaft/test/fixtures/neighbors_markov.json create mode 100644 release/python/0.1.0/crankshaft/test/helper.py create mode 100644 release/python/0.1.0/crankshaft/test/mock_plpy.py create mode 100644 release/python/0.1.0/crankshaft/test/test_cluster_kmeans.py create mode 100644 release/python/0.1.0/crankshaft/test/test_clustering_moran.py create mode 100644 release/python/0.1.0/crankshaft/test/test_pysal_utils.py create mode 100644 release/python/0.1.0/crankshaft/test/test_segmentation.py create mode 100644 release/python/0.1.0/crankshaft/test/test_space_time_dynamics.py diff --git a/release/crankshaft--0.1.0.sql b/release/crankshaft--0.1.0.sql new file mode 100644 index 0000000..d5a5b66 --- /dev/null +++ b/release/crankshaft--0.1.0.sql @@ -0,0 +1,686 @@ +--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES +-- Complain if script is sourced in psql, rather than via CREATE EXTENSION +\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit +-- Version number of the extension release +CREATE OR REPLACE FUNCTION cdb_crankshaft_version() +RETURNS text AS $$ + SELECT '0.1.0'::text; +$$ language 'sql' STABLE STRICT; + +-- Internal identifier of the installed extension instence +-- e.g. 'dev' for current development version +CREATE OR REPLACE FUNCTION _cdb_crankshaft_internal_version() +RETURNS text AS $$ + SELECT installed_version FROM pg_available_extensions where name='crankshaft' and pg_available_extensions IS NOT NULL; +$$ language 'sql' STABLE STRICT; +-- Internal function. +-- Set the seeds of the RNGs (Random Number Generators) +-- used internally. +CREATE OR REPLACE FUNCTION +_cdb_random_seeds (seed_value INTEGER) RETURNS VOID +AS $$ + from crankshaft import random_seeds + random_seeds.set_random_seeds(seed_value) +$$ LANGUAGE plpythonu; +CREATE OR REPLACE FUNCTION + CDB_PyAggS(current_state Numeric[], current_row Numeric[]) + returns NUMERIC[] as $$ + BEGIN + if array_upper(current_state,1) is null then + RAISE NOTICE 'setting state %',array_upper(current_row,1); + current_state[1] = array_upper(current_row,1); + end if; + return array_cat(current_state,current_row) ; + END + $$ LANGUAGE plpgsql; + + +CREATE AGGREGATE CDB_PyAgg(NUMERIC[])( + SFUNC = CDB_PyAggS, + STYPE = Numeric[], + INITCOND = "{}" +); + + +CREATE OR REPLACE FUNCTION + CDB_CreateAndPredictSegment( + target NUMERIC[], + features NUMERIC[], + target_features NUMERIC[], + target_ids NUMERIC[], + n_estimators INTEGER DEFAULT 1200, + max_depth INTEGER DEFAULT 3, + subsample DOUBLE PRECISION DEFAULT 0.5, + learning_rate DOUBLE PRECISION DEFAULT 0.01, + min_samples_leaf INTEGER DEFAULT 1) +RETURNS TABLE(cartodb_id NUMERIC, prediction NUMERIC, accuracy NUMERIC) +AS $$ + import numpy as np + import plpy + + from crankshaft.segmentation import create_and_predict_segment_agg + model_params = {'n_estimators': n_estimators, + 'max_depth': max_depth, + 'subsample': subsample, + 'learning_rate': learning_rate, + 'min_samples_leaf': min_samples_leaf} + + def unpack2D(data): + dimension = data.pop(0) + a = np.array(data, dtype=float) + return a.reshape(len(a)/dimension, dimension) + + return create_and_predict_segment_agg(np.array(target, dtype=float), + unpack2D(features), + unpack2D(target_features), + target_ids, + model_params) + +$$ LANGUAGE plpythonu; + +CREATE OR REPLACE FUNCTION + CDB_CreateAndPredictSegment ( + query TEXT, + variable_name TEXT, + target_table TEXT, + n_estimators INTEGER DEFAULT 1200, + max_depth INTEGER DEFAULT 3, + subsample DOUBLE PRECISION DEFAULT 0.5, + learning_rate DOUBLE PRECISION DEFAULT 0.01, + min_samples_leaf INTEGER DEFAULT 1) +RETURNS TABLE (cartodb_id TEXT, prediction NUMERIC, accuracy NUMERIC) +AS $$ + from crankshaft.segmentation import create_and_predict_segment + model_params = {'n_estimators': n_estimators, 'max_depth':max_depth, 'subsample' : subsample, 'learning_rate': learning_rate, 'min_samples_leaf' : min_samples_leaf} + return create_and_predict_segment(query,variable_name,target_table, model_params) +$$ LANGUAGE plpythonu; +-- 0: nearest neighbor +-- 1: barymetric +-- 2: IDW + +CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation( + IN query text, + IN point geometry, + IN method integer DEFAULT 1, + IN p1 numeric DEFAULT 0, + IN p2 numeric DEFAULT 0 + ) +RETURNS numeric AS +$$ +DECLARE + gs geometry[]; + vs numeric[]; + output numeric; +BEGIN + EXECUTE 'WITH a AS('||query||') SELECT array_agg(the_geom), array_agg(attrib) FROM a' INTO gs, vs; + SELECT CDB_SpatialInterpolation(gs, vs, point, method, p1,p2) INTO output FROM a; + + RETURN output; +END; +$$ +language plpgsql IMMUTABLE; + +CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation( + IN geomin geometry[], + IN colin numeric[], + IN point geometry, + IN method integer DEFAULT 1, + IN p1 numeric DEFAULT 0, + IN p2 numeric DEFAULT 0 + ) +RETURNS numeric AS +$$ +DECLARE + gs geometry[]; + vs numeric[]; + gs2 geometry[]; + vs2 numeric[]; + g geometry; + vertex geometry[]; + sg numeric; + sa numeric; + sb numeric; + sc numeric; + va numeric; + vb numeric; + vc numeric; + output numeric; +BEGIN + output := -999.999; + -- nearest + IF method = 0 THEN + + WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v) + SELECT a.v INTO output FROM a ORDER BY point<->a.g LIMIT 1; + RETURN output; + + -- barymetric + ELSIF method = 1 THEN + WITH a as (SELECT unnest(geomin) AS e), + b as (SELECT ST_DelaunayTriangles(ST_Collect(a.e),0.001, 0) AS t FROM a), + c as (SELECT (ST_Dump(t)).geom as v FROM b), + d as (SELECT v FROM c WHERE ST_Within(point, v)) + SELECT v INTO g FROM d; + IF g is null THEN + -- out of the realm of the input data + RETURN -888.888; + END IF; + -- vertex of the selected cell + WITH a AS (SELECT (ST_DumpPoints(g)).geom AS v) + SELECT array_agg(v) INTO vertex FROM a; + + -- retrieve the value of each vertex + WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c) + SELECT c INTO va FROM a WHERE ST_Equals(geo, vertex[1]); + WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c) + SELECT c INTO vb FROM a WHERE ST_Equals(geo, vertex[2]); + WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c) + SELECT c INTO vc FROM a WHERE ST_Equals(geo, vertex[3]); + + SELECT ST_area(g), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[2], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[1], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point,vertex[1],vertex[2], point]))) INTO sg, sa, sb, sc; + + output := (coalesce(sa,0) * coalesce(va,0) + coalesce(sb,0) * coalesce(vb,0) + coalesce(sc,0) * coalesce(vc,0)) / coalesce(sg); + RETURN output; + + -- IDW + -- p1: limit the number of neighbors, 0->no limit + -- p2: order of distance decay, 0-> order 1 + ELSIF method = 2 THEN + + IF p2 = 0 THEN + p2 := 1; + END IF; + + WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v), + b as (SELECT a.g, a.v FROM a ORDER BY point<->a.g) + SELECT array_agg(b.g), array_agg(b.v) INTO gs, vs FROM b; + IF p1::integer>0 THEN + gs2:=gs; + vs2:=vs; + FOR i IN 1..p1 + LOOP + gs2 := gs2 || gs[i]; + vs2 := vs2 || vs[i]; + END LOOP; + ELSE + gs2:=gs; + vs2:=vs; + END IF; + + WITH a as (SELECT unnest(gs2) as g, unnest(vs2) as v), + b as ( + SELECT + (1/ST_distance(point, a.g)^p2::integer) as k, + (a.v/ST_distance(point, a.g)^p2::integer) as f + FROM a + ) + SELECT sum(b.f)/sum(b.k) INTO output FROM b; + RETURN output; + + END IF; + + RETURN -777.777; + +END; +$$ +language plpgsql IMMUTABLE; +-- Moran's I Global Measure (public-facing) +CREATE OR REPLACE FUNCTION + CDB_AreasOfInterestGlobal( + subquery TEXT, + column_name TEXT, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') +RETURNS TABLE (moran NUMERIC, significance NUMERIC) +AS $$ + from crankshaft.clustering import moran_local + # TODO: use named parameters or a dictionary + return moran(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col) +$$ LANGUAGE plpythonu; + +-- Moran's I Local (internal function) +CREATE OR REPLACE FUNCTION + _CDB_AreasOfInterestLocal( + subquery TEXT, + column_name TEXT, + w_type TEXT, + num_ngbrs INT, + permutations INT, + geom_col TEXT, + id_col TEXT) +RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) +AS $$ + from crankshaft.clustering import moran_local + # TODO: use named parameters or a dictionary + return moran_local(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col) +$$ LANGUAGE plpythonu; + +-- Moran's I Local (public-facing function) +CREATE OR REPLACE FUNCTION + CDB_AreasOfInterestLocal( + subquery TEXT, + column_name TEXT, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') +RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) +AS $$ + + SELECT moran, quads, significance, rowid, vals + FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col); + +$$ LANGUAGE SQL; + +-- Moran's I only for HH and HL (public-facing function) +CREATE OR REPLACE FUNCTION + CDB_GetSpatialHotspots( + subquery TEXT, + column_name TEXT, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') + RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) +AS $$ + + SELECT moran, quads, significance, rowid, vals + FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col) + WHERE quads IN ('HH', 'HL'); + +$$ LANGUAGE SQL; + +-- Moran's I only for LL and LH (public-facing function) +CREATE OR REPLACE FUNCTION + CDB_GetSpatialColdspots( + subquery TEXT, + attr TEXT, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') + RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) +AS $$ + + SELECT moran, quads, significance, rowid, vals + FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col) + WHERE quads IN ('LL', 'LH'); + +$$ LANGUAGE SQL; + +-- Moran's I only for LH and HL (public-facing function) +CREATE OR REPLACE FUNCTION + CDB_GetSpatialOutliers( + subquery TEXT, + attr TEXT, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') + RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) +AS $$ + + SELECT moran, quads, significance, rowid, vals + FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col) + WHERE quads IN ('HL', 'LH'); + +$$ LANGUAGE SQL; + +-- Moran's I Global Rate (public-facing function) +CREATE OR REPLACE FUNCTION + CDB_AreasOfInterestGlobalRate( + subquery TEXT, + numerator TEXT, + denominator TEXT, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') +RETURNS TABLE (moran FLOAT, significance FLOAT) +AS $$ + from crankshaft.clustering import moran_local + # TODO: use named parameters or a dictionary + return moran_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col) +$$ LANGUAGE plpythonu; + + +-- Moran's I Local Rate (internal function) +CREATE OR REPLACE FUNCTION + _CDB_AreasOfInterestLocalRate( + subquery TEXT, + numerator TEXT, + denominator TEXT, + w_type TEXT, + num_ngbrs INT, + permutations INT, + geom_col TEXT, + id_col TEXT) +RETURNS +TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) +AS $$ + from crankshaft.clustering import moran_local_rate + # TODO: use named parameters or a dictionary + return moran_local_rate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col) +$$ LANGUAGE plpythonu; + +-- Moran's I Local Rate (public-facing function) +CREATE OR REPLACE FUNCTION + CDB_AreasOfInterestLocalRate( + subquery TEXT, + numerator TEXT, + denominator TEXT, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') +RETURNS +TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) +AS $$ + + SELECT moran, quads, significance, rowid, vals + FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col); + +$$ LANGUAGE SQL; + +-- Moran's I Local Rate only for HH and HL (public-facing function) +CREATE OR REPLACE FUNCTION + CDB_GetSpatialHotspotsRate( + subquery TEXT, + numerator TEXT, + denominator TEXT, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') +RETURNS +TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) +AS $$ + + SELECT moran, quads, significance, rowid, vals + FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col) + WHERE quads IN ('HH', 'HL'); + +$$ LANGUAGE SQL; + +-- Moran's I Local Rate only for LL and LH (public-facing function) +CREATE OR REPLACE FUNCTION + CDB_GetSpatialColdspotsRate( + subquery TEXT, + numerator TEXT, + denominator TEXT, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') +RETURNS +TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) +AS $$ + + SELECT moran, quads, significance, rowid, vals + FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col) + WHERE quads IN ('LL', 'LH'); + +$$ LANGUAGE SQL; + +-- Moran's I Local Rate only for LH and HL (public-facing function) +CREATE OR REPLACE FUNCTION + CDB_GetSpatialOutliersRate( + subquery TEXT, + numerator TEXT, + denominator TEXT, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') +RETURNS +TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC) +AS $$ + + SELECT moran, quads, significance, rowid, vals + FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col) + WHERE quads IN ('HL', 'LH'); + +$$ LANGUAGE SQL; +CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer,no_init integer default 20) +RETURNS table (cartodb_id integer, cluster_no integer) as $$ + + from crankshaft.clustering import kmeans + return kmeans(query,no_clusters,no_init) + +$$ language plpythonu; + + +CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC) +RETURNS Numeric[] AS +$$ +DECLARE + newX NUMERIC; + newY NUMERIC; + newW NUMERIC; +BEGIN + IF weight IS NULL OR the_geom IS NULL THEN + newX = state[1]; + newY = state[2]; + newW = state[3]; + ELSE + newX = state[1] + ST_X(the_geom)*weight; + newY = state[2] + ST_Y(the_geom)*weight; + newW = state[3] + weight; + END IF; + RETURN Array[newX,newY,newW]; + +END +$$ LANGUAGE plpgsql; + +CREATE OR REPLACE FUNCTION CDB_WeightedMeanF(state Numeric[]) +RETURNS GEOMETRY AS +$$ +BEGIN + IF state[3] = 0 THEN + RETURN ST_SetSRID(ST_MakePoint(state[1],state[2]), 4326); + ELSE + RETURN ST_SETSRID(ST_MakePoint(state[1]/state[3], state[2]/state[3]),4326); + END IF; +END +$$ LANGUAGE plpgsql; + +CREATE AGGREGATE CDB_WeightedMean(geometry(Point, 4326), NUMERIC)( + SFUNC = CDB_WeightedMeanS, + FINALFUNC = CDB_WeightedMeanF, + STYPE = Numeric[], + INITCOND = "{0.0,0.0,0.0}" +); +-- Spatial Markov + +-- input table format: +-- id | geom | date_1 | date_2 | date_3 +-- 1 | Pt1 | 12.3 | 13.1 | 14.2 +-- 2 | Pt2 | 11.0 | 13.2 | 12.5 +-- ... +-- Sample Function call: +-- SELECT CDB_SpatialMarkov('SELECT * FROM real_estate', +-- Array['date_1', 'date_2', 'date_3']) + +CREATE OR REPLACE FUNCTION + CDB_SpatialMarkovTrend ( + subquery TEXT, + time_cols TEXT[], + num_classes INT DEFAULT 7, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') +RETURNS TABLE (trend NUMERIC, trend_up NUMERIC, trend_down NUMERIC, volatility NUMERIC, rowid INT) +AS $$ + + from crankshaft.space_time_dynamics import spatial_markov_trend + + ## TODO: use named parameters or a dictionary + return spatial_markov_trend(subquery, time_cols, num_classes, w_type, num_ngbrs, permutations, geom_col, id_col) +$$ LANGUAGE plpythonu; + +-- input table format: identical to above but in a predictable format +-- Sample function call: +-- SELECT cdb_spatial_markov('SELECT * FROM real_estate', +-- 'date_1') + + +-- CREATE OR REPLACE FUNCTION +-- cdb_spatial_markov ( +-- subquery TEXT, +-- time_col_min text, +-- time_col_max text, +-- date_format text, -- '_YYYY_MM_DD' +-- num_time_per_bin INT DEFAULT 1, +-- permutations INT DEFAULT 99, +-- geom_column TEXT DEFAULT 'the_geom', +-- id_col TEXT DEFAULT 'cartodb_id', +-- w_type TEXT DEFAULT 'knn', +-- num_ngbrs int DEFAULT 5) +-- RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT) +-- AS $$ +-- plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()') +-- from crankshaft.clustering import moran_local +-- # TODO: use named parameters or a dictionary +-- return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs) +-- $$ LANGUAGE plpythonu; +-- +-- -- input table format: +-- -- id | geom | date | measurement +-- -- 1 | Pt1 | 12/3 | 13.2 +-- -- 2 | Pt2 | 11/5 | 11.3 +-- -- 3 | Pt1 | 11/13 | 12.9 +-- -- 4 | Pt3 | 12/19 | 10.1 +-- -- ... +-- +-- CREATE OR REPLACE FUNCTION +-- cdb_spatial_markov ( +-- subquery TEXT, +-- time_col text, +-- num_time_per_bin INT DEFAULT 1, +-- permutations INT DEFAULT 99, +-- geom_column TEXT DEFAULT 'the_geom', +-- id_col TEXT DEFAULT 'cartodb_id', +-- w_type TEXT DEFAULT 'knn', +-- num_ngbrs int DEFAULT 5) +-- RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT) +-- AS $$ +-- plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()') +-- from crankshaft.clustering import moran_local +-- # TODO: use named parameters or a dictionary +-- return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs) +-- $$ LANGUAGE plpythonu; +-- Function by Stuart Lynn for a simple interpolation of a value +-- from a polygon table over an arbitrary polygon +-- (weighted by the area proportion overlapped) +-- Aereal weighting is a very simple form of aereal interpolation. +-- +-- Parameters: +-- * geom a Polygon geometry which defines the area where a value will be +-- estimated as the area-weighted sum of a given table/column +-- * target_table_name table name of the table that provides the values +-- * target_column column name of the column that provides the values +-- * schema_name optional parameter to defina the schema the target table +-- belongs to, which is necessary if its not in the search_path. +-- Note that target_table_name should never include the schema in it. +-- Return value: +-- Aereal-weighted interpolation of the column values over the geometry +CREATE OR REPLACE +FUNCTION cdb_overlap_sum(geom geometry, target_table_name text, target_column text, schema_name text DEFAULT NULL) + RETURNS numeric AS +$$ +DECLARE + result numeric; + qualified_name text; +BEGIN + IF schema_name IS NULL THEN + qualified_name := Format('%I', target_table_name); + ELSE + qualified_name := Format('%I.%s', schema_name, target_table_name); + END IF; + EXECUTE Format(' + SELECT sum(%I*ST_Area(St_Intersection($1, a.the_geom))/ST_Area(a.the_geom)) + FROM %s AS a + WHERE $1 && a.the_geom + ', target_column, qualified_name) + USING geom + INTO result; + RETURN result; +END; +$$ LANGUAGE plpgsql; +-- +-- Creates N points randomly distributed arround the polygon +-- +-- @param g - the geometry to be turned in to points +-- +-- @param no_points - the number of points to generate +-- +-- @params max_iter_per_point - the function generates points in the polygon's bounding box +-- and discards points which don't lie in the polygon. max_iter_per_point specifies how many +-- misses per point the funciton accepts before giving up. +-- +-- Returns: Multipoint with the requested points +CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry , no_points Integer, max_iter_per_point Integer DEFAULT 1000) +RETURNS GEOMETRY AS $$ +DECLARE + extent GEOMETRY; + test_point Geometry; + width NUMERIC; + height NUMERIC; + x0 NUMERIC; + y0 NUMERIC; + xp NUMERIC; + yp NUMERIC; + no_left INTEGER; + remaining_iterations INTEGER; + points GEOMETRY[]; + bbox_line GEOMETRY; + intersection_line GEOMETRY; +BEGIN + extent := ST_Envelope(geom); + width := ST_XMax(extent) - ST_XMIN(extent); + height := ST_YMax(extent) - ST_YMIN(extent); + x0 := ST_XMin(extent); + y0 := ST_YMin(extent); + no_left := no_points; + + LOOP + if(no_left=0) THEN + EXIT; + END IF; + yp = y0 + height*random(); + bbox_line = ST_MakeLine( + ST_SetSRID(ST_MakePoint(yp, x0),4326), + ST_SetSRID(ST_MakePoint(yp, x0+width),4326) + ); + intersection_line = ST_Intersection(bbox_line,geom); + test_point = ST_LineInterpolatePoint(st_makeline(st_linemerge(intersection_line)),random()); + points := points || test_point; + no_left = no_left - 1 ; + END LOOP; + RETURN ST_Collect(points); +END; +$$ +LANGUAGE plpgsql VOLATILE; +-- Make sure by default there are no permissions for publicuser +-- NOTE: this happens at extension creation time, as part of an implicit transaction. +-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE; + +-- Grant permissions on the schema to publicuser (but just the schema) +GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser; + +-- Revoke execute permissions on all functions in the schema by default +-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser; diff --git a/release/crankshaft.control b/release/crankshaft.control index 01088b1..876fadc 100644 --- a/release/crankshaft.control +++ b/release/crankshaft.control @@ -1,5 +1,5 @@ comment = 'CartoDB Spatial Analysis extension' -default_version = '0.0.4' +default_version = '0.1.0' requires = 'plpythonu, postgis' superuser = true schema = cdb_crankshaft diff --git a/release/python/0.1.0/crankshaft/crankshaft/__init__.py b/release/python/0.1.0/crankshaft/crankshaft/__init__.py new file mode 100644 index 0000000..4e06bc5 --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/__init__.py @@ -0,0 +1,5 @@ +"""Import all modules""" +import crankshaft.random_seeds +import crankshaft.clustering +import crankshaft.space_time_dynamics +import crankshaft.segmentation diff --git a/release/python/0.1.0/crankshaft/crankshaft/clustering/__init__.py b/release/python/0.1.0/crankshaft/crankshaft/clustering/__init__.py new file mode 100644 index 0000000..ed34fe0 --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/clustering/__init__.py @@ -0,0 +1,3 @@ +"""Import all functions from for clustering""" +from moran import * +from kmeans import * diff --git a/release/python/0.1.0/crankshaft/crankshaft/clustering/kmeans.py b/release/python/0.1.0/crankshaft/crankshaft/clustering/kmeans.py new file mode 100644 index 0000000..4134062 --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/clustering/kmeans.py @@ -0,0 +1,18 @@ +from sklearn.cluster import KMeans +import plpy + +def kmeans(query, no_clusters, no_init=20): + data = plpy.execute('''select array_agg(cartodb_id order by cartodb_id) as ids, + array_agg(ST_X(the_geom) order by cartodb_id) xs, + array_agg(ST_Y(the_geom) order by cartodb_id) ys from ({query}) a + where the_geom is not null + '''.format(query=query)) + + xs = data[0]['xs'] + ys = data[0]['ys'] + ids = data[0]['ids'] + + km = KMeans(n_clusters= no_clusters, n_init=no_init) + labels = km.fit_predict(zip(xs,ys)) + return zip(ids,labels) + diff --git a/release/python/0.1.0/crankshaft/crankshaft/clustering/moran.py b/release/python/0.1.0/crankshaft/crankshaft/clustering/moran.py new file mode 100644 index 0000000..3282f5f --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/clustering/moran.py @@ -0,0 +1,262 @@ +""" +Moran's I geostatistics (global clustering & outliers presence) +""" + +# TODO: Fill in local neighbors which have null/NoneType values with the +# average of the their neighborhood + +import pysal as ps +import plpy +from collections import OrderedDict + +# crankshaft module +import crankshaft.pysal_utils as pu + +# High level interface --------------------------------------- + +def moran(subquery, attr_name, + w_type, num_ngbrs, permutations, geom_col, id_col): + """ + Moran's I (global) + Implementation building neighbors with a PostGIS database and Moran's I + core clusters with PySAL. + Andy Eschbacher + """ + qvals = OrderedDict([("id_col", id_col), + ("attr1", attr_name), + ("geom_col", geom_col), + ("subquery", subquery), + ("num_ngbrs", num_ngbrs)]) + + query = pu.construct_neighbor_query(w_type, qvals) + + plpy.notice('** Query: %s' % query) + + try: + result = plpy.execute(query) + # if there are no neighbors, exit + if len(result) == 0: + return pu.empty_zipped_array(2) + plpy.notice('** Query returned with %d rows' % len(result)) + except plpy.SPIError: + plpy.error('Error: areas of interest query failed, check input parameters') + plpy.notice('** Query failed: "%s"' % query) + plpy.notice('** Error: %s' % plpy.SPIError) + return pu.empty_zipped_array(2) + + ## collect attributes + attr_vals = pu.get_attributes(result) + + ## calculate weights + weight = pu.get_weight(result, w_type, num_ngbrs) + + ## calculate moran global + moran_global = ps.esda.moran.Moran(attr_vals, weight, + permutations=permutations) + + return zip([moran_global.I], [moran_global.EI]) + +def moran_local(subquery, attr, + w_type, num_ngbrs, permutations, geom_col, id_col): + """ + Moran's I implementation for PL/Python + Andy Eschbacher + """ + + # geometries with attributes that are null are ignored + # resulting in a collection of not as near neighbors + + qvals = OrderedDict([("id_col", id_col), + ("attr1", attr), + ("geom_col", geom_col), + ("subquery", subquery), + ("num_ngbrs", num_ngbrs)]) + + query = pu.construct_neighbor_query(w_type, qvals) + + try: + result = plpy.execute(query) + # if there are no neighbors, exit + if len(result) == 0: + return pu.empty_zipped_array(5) + except plpy.SPIError: + plpy.error('Error: areas of interest query failed, check input parameters') + plpy.notice('** Query failed: "%s"' % query) + return pu.empty_zipped_array(5) + + attr_vals = pu.get_attributes(result) + weight = pu.get_weight(result, w_type, num_ngbrs) + + # calculate LISA values + lisa = ps.esda.moran.Moran_Local(attr_vals, weight, + permutations=permutations) + + # find quadrants for each geometry + quads = quad_position(lisa.q) + + return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y) + +def moran_rate(subquery, numerator, denominator, + w_type, num_ngbrs, permutations, geom_col, id_col): + """ + Moran's I Rate (global) + Andy Eschbacher + """ + qvals = OrderedDict([("id_col", id_col), + ("attr1", numerator), + ("attr2", denominator) + ("geom_col", geom_col), + ("subquery", subquery), + ("num_ngbrs", num_ngbrs)]) + + query = pu.construct_neighbor_query(w_type, qvals) + + plpy.notice('** Query: %s' % query) + + try: + result = plpy.execute(query) + # if there are no neighbors, exit + if len(result) == 0: + return pu.empty_zipped_array(2) + plpy.notice('** Query returned with %d rows' % len(result)) + except plpy.SPIError: + plpy.error('Error: areas of interest query failed, check input parameters') + plpy.notice('** Query failed: "%s"' % query) + plpy.notice('** Error: %s' % plpy.SPIError) + return pu.empty_zipped_array(2) + + ## collect attributes + numer = pu.get_attributes(result, 1) + denom = pu.get_attributes(result, 2) + + weight = pu.get_weight(result, w_type, num_ngbrs) + + ## calculate moran global rate + lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight, + permutations=permutations) + + return zip([lisa_rate.I], [lisa_rate.EI]) + +def moran_local_rate(subquery, numerator, denominator, + w_type, num_ngbrs, permutations, geom_col, id_col): + """ + Moran's I Local Rate + Andy Eschbacher + """ + # geometries with values that are null are ignored + # resulting in a collection of not as near neighbors + + qvals = OrderedDict([("id_col", id_col), + ("numerator", numerator), + ("denominator", denominator), + ("geom_col", geom_col), + ("subquery", subquery), + ("num_ngbrs", num_ngbrs)]) + + query = pu.construct_neighbor_query(w_type, qvals) + + try: + result = plpy.execute(query) + # if there are no neighbors, exit + if len(result) == 0: + return pu.empty_zipped_array(5) + except plpy.SPIError: + plpy.error('Error: areas of interest query failed, check input parameters') + plpy.notice('** Query failed: "%s"' % query) + plpy.notice('** Error: %s' % plpy.SPIError) + return pu.empty_zipped_array(5) + + ## collect attributes + numer = pu.get_attributes(result, 1) + denom = pu.get_attributes(result, 2) + + weight = pu.get_weight(result, w_type, num_ngbrs) + + # calculate LISA values + lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight, + permutations=permutations) + + # find quadrants for each geometry + quads = quad_position(lisa.q) + + return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y) + +def moran_local_bv(subquery, attr1, attr2, + permutations, geom_col, id_col, w_type, num_ngbrs): + """ + Moran's I (local) Bivariate (untested) + """ + plpy.notice('** Constructing query') + + qvals = OrderedDict([("id_col", id_col), + ("attr1", attr1), + ("attr2", attr2), + ("geom_col", geom_col), + ("subquery", subquery), + ("num_ngbrs", num_ngbrs)]) + + query = pu.construct_neighbor_query(w_type, qvals) + + try: + result = plpy.execute(query) + # if there are no neighbors, exit + if len(result) == 0: + return pu.empty_zipped_array(4) + except plpy.SPIError: + plpy.error("Error: areas of interest query failed, " \ + "check input parameters") + plpy.notice('** Query failed: "%s"' % query) + return pu.empty_zipped_array(4) + + ## collect attributes + attr1_vals = pu.get_attributes(result, 1) + attr2_vals = pu.get_attributes(result, 2) + + # create weights + weight = pu.get_weight(result, w_type, num_ngbrs) + + # calculate LISA values + lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight, + permutations=permutations) + + plpy.notice("len of Is: %d" % len(lisa.Is)) + + # find clustering of significance + lisa_sig = quad_position(lisa.q) + + plpy.notice('** Finished calculations') + + return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order) + +# Low level functions ---------------------------------------- + +def map_quads(coord): + """ + Map a quadrant number to Moran's I designation + HH=1, LH=2, LL=3, HL=4 + Input: + @param coord (int): quadrant of a specific measurement + Output: + classification (one of 'HH', 'LH', 'LL', or 'HL') + """ + if coord == 1: + return 'HH' + elif coord == 2: + return 'LH' + elif coord == 3: + return 'LL' + elif coord == 4: + return 'HL' + else: + return None + +def quad_position(quads): + """ + Produce Moran's I classification based of n + Input: + @param quads ndarray: an array of quads classified by + 1-4 (PySAL default) + Output: + @param list: an array of quads classied by 'HH', 'LL', etc. + """ + return [map_quads(q) for q in quads] diff --git a/release/python/0.1.0/crankshaft/crankshaft/pysal_utils/__init__.py b/release/python/0.1.0/crankshaft/crankshaft/pysal_utils/__init__.py new file mode 100644 index 0000000..fdf073b --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/pysal_utils/__init__.py @@ -0,0 +1,2 @@ +"""Import all functions for pysal_utils""" +from crankshaft.pysal_utils.pysal_utils import * diff --git a/release/python/0.1.0/crankshaft/crankshaft/pysal_utils/pysal_utils.py b/release/python/0.1.0/crankshaft/crankshaft/pysal_utils/pysal_utils.py new file mode 100644 index 0000000..4622925 --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/pysal_utils/pysal_utils.py @@ -0,0 +1,188 @@ +""" + Utilities module for generic PySAL functionality, mainly centered on + translating queries into numpy arrays or PySAL weights objects +""" + +import numpy as np +import pysal as ps + +def construct_neighbor_query(w_type, query_vals): + """Return query (a string) used for finding neighbors + @param w_type text: type of neighbors to calculate ('knn' or 'queen') + @param query_vals dict: values used to construct the query + """ + + if w_type.lower() == 'knn': + return knn(query_vals) + else: + return queen(query_vals) + +## Build weight object +def get_weight(query_res, w_type='knn', num_ngbrs=5): + """ + Construct PySAL weight from return value of query + @param query_res dict-like: query results with attributes and neighbors + """ + # if w_type.lower() == 'knn': + # row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs + # weights = {x['id']: row_normed_weights for x in query_res} + # else: + # weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors']) + # if len(x['neighbors']) > 0 + # else [] for x in query_res} + + neighbors = {x['id']: x['neighbors'] for x in query_res} + print 'len of neighbors: %d' % len(neighbors) + + built_weight = ps.W(neighbors) + built_weight.transform = 'r' + + return built_weight + +def query_attr_select(params): + """ + Create portion of SELECT statement for attributes inolved in query. + @param params: dict of information used in query (column names, + table name, etc.) + """ + + attr_string = "" + template = "i.\"%(col)s\"::numeric As attr%(alias_num)s, " + + if 'time_cols' in params: + ## if markov analysis + attrs = params['time_cols'] + + for idx, val in enumerate(attrs): + attr_string += template % {"col": val, "alias_num": idx + 1} + else: + ## if moran's analysis + attrs = [k for k in params + if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs', 'subquery')] + + for idx, val in enumerate(sorted(attrs)): + attr_string += template % {"col": params[val], "alias_num": idx + 1} + + return attr_string + +def query_attr_where(params): + """ + Construct where conditions when building neighbors query + Create portion of WHERE clauses for weeding out NULL-valued geometries + Input: dict of params: + {'subquery': ..., + 'numerator': 'data1', + 'denominator': 'data2', + '': ...} + Output: 'idx_replace."data1" IS NOT NULL AND idx_replace."data2" IS NOT NULL' + Input: + {'subquery': ..., + 'time_cols': ['time1', 'time2', 'time3'], + 'etc': ...} + Output: 'idx_replace."time1" IS NOT NULL AND idx_replace."time2" IS NOT + NULL AND idx_replace."time3" IS NOT NULL' + """ + attr_string = [] + template = "idx_replace.\"%s\" IS NOT NULL" + + if 'time_cols' in params: + ## markov where clauses + attrs = params['time_cols'] + # add values to template + for attr in attrs: + attr_string.append(template % attr) + else: + ## moran where clauses + + # get keys + attrs = sorted([k for k in params + if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs', 'subquery')]) + # add values to template + for attr in attrs: + attr_string.append(template % params[attr]) + + if len(attrs) == 2: + attr_string.append("idx_replace.\"%s\" <> 0" % params[attrs[1]]) + + out = " AND ".join(attr_string) + + return out + +def knn(params): + """SQL query for k-nearest neighbors. + @param vars: dict of values to fill template + """ + + attr_select = query_attr_select(params) + attr_where = query_attr_where(params) + + replacements = {"attr_select": attr_select, + "attr_where_i": attr_where.replace("idx_replace", "i"), + "attr_where_j": attr_where.replace("idx_replace", "j")} + + query = "SELECT " \ + "i.\"{id_col}\" As id, " \ + "%(attr_select)s" \ + "(SELECT ARRAY(SELECT j.\"{id_col}\" " \ + "FROM ({subquery}) As j " \ + "WHERE " \ + "i.\"{id_col}\" <> j.\"{id_col}\" AND " \ + "%(attr_where_j)s " \ + "ORDER BY " \ + "j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \ + "LIMIT {num_ngbrs})" \ + ") As neighbors " \ + "FROM ({subquery}) As i " \ + "WHERE " \ + "%(attr_where_i)s " \ + "ORDER BY i.\"{id_col}\" ASC;" % replacements + + return query.format(**params) + +## SQL query for finding queens neighbors (all contiguous polygons) +def queen(params): + """SQL query for queen neighbors. + @param params dict: information to fill query + """ + attr_select = query_attr_select(params) + attr_where = query_attr_where(params) + + replacements = {"attr_select": attr_select, + "attr_where_i": attr_where.replace("idx_replace", "i"), + "attr_where_j": attr_where.replace("idx_replace", "j")} + + query = "SELECT " \ + "i.\"{id_col}\" As id, " \ + "%(attr_select)s" \ + "(SELECT ARRAY(SELECT j.\"{id_col}\" " \ + "FROM ({subquery}) As j " \ + "WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \ + "ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \ + "%(attr_where_j)s)" \ + ") As neighbors " \ + "FROM ({subquery}) As i " \ + "WHERE " \ + "%(attr_where_i)s " \ + "ORDER BY i.\"{id_col}\" ASC;" % replacements + + return query.format(**params) + +## to add more weight methods open a ticket or pull request + +def get_attributes(query_res, attr_num=1): + """ + @param query_res: query results with attributes and neighbors + @param attr_num: attribute number (1, 2, ...) + """ + return np.array([x['attr' + str(attr_num)] for x in query_res], dtype=np.float) + +def empty_zipped_array(num_nones): + """ + prepare return values for cases of empty weights objects (no neighbors) + Input: + @param num_nones int: number of columns (e.g., 4) + Output: + [(None, None, None, None)] + """ + + return [tuple([None] * num_nones)] diff --git a/release/python/0.1.0/crankshaft/crankshaft/random_seeds.py b/release/python/0.1.0/crankshaft/crankshaft/random_seeds.py new file mode 100644 index 0000000..31958cb --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/random_seeds.py @@ -0,0 +1,11 @@ +"""Random seed generator used for non-deterministic functions in crankshaft""" +import random +import numpy + +def set_random_seeds(value): + """ + Set the seeds of the RNGs (Random Number Generators) + used internally. + """ + random.seed(value) + numpy.random.seed(value) diff --git a/release/python/0.1.0/crankshaft/crankshaft/segmentation/__init__.py b/release/python/0.1.0/crankshaft/crankshaft/segmentation/__init__.py new file mode 100644 index 0000000..b825e85 --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/segmentation/__init__.py @@ -0,0 +1 @@ +from segmentation import * diff --git a/release/python/0.1.0/crankshaft/crankshaft/segmentation/segmentation.py b/release/python/0.1.0/crankshaft/crankshaft/segmentation/segmentation.py new file mode 100644 index 0000000..ed61139 --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/segmentation/segmentation.py @@ -0,0 +1,176 @@ +""" +Segmentation creation and prediction +""" + +import sklearn +import numpy as np +import plpy +from sklearn.ensemble import GradientBoostingRegressor +from sklearn import metrics +from sklearn.cross_validation import train_test_split + +# Lower level functions +#---------------------- + +def replace_nan_with_mean(array): + """ + Input: + @param array: an array of floats which may have null-valued entries + Output: + array with nans filled in with the mean of the dataset + """ + # returns an array of rows and column indices + indices = np.where(np.isnan(array)) + + # iterate through entries which have nan values + for row, col in zip(*indices): + array[row, col] = np.mean(array[~np.isnan(array[:, col]), col]) + + return array + +def get_data(variable, feature_columns, query): + """ + Fetch data from the database, clean, and package into + numpy arrays + Input: + @param variable: name of the target variable + @param feature_columns: list of column names + @param query: subquery that data is pulled from for the packaging + Output: + prepared data, packaged into NumPy arrays + """ + + columns = ','.join(['array_agg("{col}") As "{col}"'.format(col=col) for col in feature_columns]) + + try: + data = plpy.execute('''SELECT array_agg("{variable}") As target, {columns} FROM ({query}) As a'''.format( + variable=variable, + columns=columns, + query=query)) + except Exception, e: + plpy.error('Failed to access data to build segmentation model: %s' % e) + + # extract target data from plpy object + target = np.array(data[0]['target']) + + # put n feature data arrays into an n x m array of arrays + features = np.column_stack([np.array(data[0][col], dtype=float) for col in feature_columns]) + + return replace_nan_with_mean(target), replace_nan_with_mean(features) + +# High level interface +# -------------------- + +def create_and_predict_segment_agg(target, features, target_features, target_ids, model_parameters): + """ + Version of create_and_predict_segment that works on arrays that come stright form the SQL calling + the function. + + Input: + @param target: The 1D array of lenth NSamples containing the target variable we want the model to predict + @param features: Thw 2D array of size NSamples * NFeatures that form the imput to the model + @param target_ids: A 1D array of target_ids that will be used to associate the results of the prediction with the rows which they come from + @param model_parameters: A dictionary containing parameters for the model. + """ + + clean_target = replace_nan_with_mean(target) + clean_features = replace_nan_with_mean(features) + target_features = replace_nan_with_mean(target_features) + + model, accuracy = train_model(clean_target, clean_features, model_parameters, 0.2) + prediction = model.predict(target_features) + accuracy_array = [accuracy]*prediction.shape[0] + return zip(target_ids, prediction, np.full(prediction.shape, accuracy_array)) + + + +def create_and_predict_segment(query, variable, target_query, model_params): + """ + generate a segment with machine learning + Stuart Lynn + """ + + ## fetch column names + try: + columns = plpy.execute('SELECT * FROM ({query}) As a LIMIT 1 '.format(query=query))[0].keys() + except Exception, e: + plpy.error('Failed to build segmentation model: %s' % e) + + ## extract column names to be used in building the segmentation model + feature_columns = set(columns) - set([variable, 'cartodb_id', 'the_geom', 'the_geom_webmercator']) + ## get data from database + target, features = get_data(variable, feature_columns, query) + + model, accuracy = train_model(target, features, model_params, 0.2) + cartodb_ids, result = predict_segment(model, feature_columns, target_query) + accuracy_array = [accuracy]*result.shape[0] + return zip(cartodb_ids, result, accuracy_array) + + +def train_model(target, features, model_params, test_split): + """ + Train the Gradient Boosting model on the provided data and calculate the accuracy of the model + Input: + @param target: 1D Array of the variable that the model is to be trianed to predict + @param features: 2D Array NSamples * NFeatures to use in trining the model + @param model_params: A dictionary of model parameters, the full specification can be found on the + scikit learn page for [GradientBoostingRegressor](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html) + @parma test_split: The fraction of the data to be withheld for testing the model / calculating the accuray + """ + features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split) + model = GradientBoostingRegressor(**model_params) + model.fit(features_train, target_train) + accuracy = calculate_model_accuracy(model, features, target) + return model, accuracy + +def calculate_model_accuracy(model, features, target): + """ + Calculate the mean squared error of the model prediction + Input: + @param model: model trained from input features + @param features: features to make a prediction from + @param target: target to compare prediction to + Output: + mean squared error of the model prection compared to the target + """ + prediction = model.predict(features) + return metrics.mean_squared_error(prediction, target) + +def predict_segment(model, features, target_query): + """ + Use the provided model to predict the values for the new feature set + Input: + @param model: The pretrained model + @features: A list of features to use in the model prediction (list of column names) + @target_query: The query to run to obtain the data to predict on and the cartdb_ids associated with it. + """ + + batch_size = 1000 + joined_features = ','.join(['"{0}"::numeric'.format(a) for a in features]) + + try: + cursor = plpy.cursor('SELECT Array[{joined_features}] As features FROM ({target_query}) As a'.format( + joined_features=joined_features, + target_query=target_query)) + except Exception, e: + plpy.error('Failed to build segmentation model: %s' % e) + + results = [] + + while True: + rows = cursor.fetch(batch_size) + if not rows: + break + batch = np.row_stack([np.array(row['features'], dtype=float) for row in rows]) + + #Need to fix this. Should be global mean. This will cause weird effects + batch = replace_nan_with_mean(batch) + prediction = model.predict(batch) + results.append(prediction) + + try: + cartodb_ids = plpy.execute('''SELECT array_agg(cartodb_id ORDER BY cartodb_id) As cartodb_ids FROM ({0}) As a'''.format(target_query))[0]['cartodb_ids'] + except Exception, e: + plpy.error('Failed to build segmentation model: %s' % e) + + return cartodb_ids, np.concatenate(results) diff --git a/release/python/0.1.0/crankshaft/crankshaft/space_time_dynamics/__init__.py b/release/python/0.1.0/crankshaft/crankshaft/space_time_dynamics/__init__.py new file mode 100644 index 0000000..a439286 --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/space_time_dynamics/__init__.py @@ -0,0 +1,2 @@ +"""Import all functions from clustering libraries.""" +from markov import * diff --git a/release/python/0.1.0/crankshaft/crankshaft/space_time_dynamics/markov.py b/release/python/0.1.0/crankshaft/crankshaft/space_time_dynamics/markov.py new file mode 100644 index 0000000..bbf524d --- /dev/null +++ b/release/python/0.1.0/crankshaft/crankshaft/space_time_dynamics/markov.py @@ -0,0 +1,189 @@ +""" +Spatial dynamics measurements using Spatial Markov +""" + + +import numpy as np +import pysal as ps +import plpy +import crankshaft.pysal_utils as pu + +def spatial_markov_trend(subquery, time_cols, num_classes=7, + w_type='knn', num_ngbrs=5, permutations=0, + geom_col='the_geom', id_col='cartodb_id'): + """ + Predict the trends of a unit based on: + 1. history of its transitions to different classes (e.g., 1st quantile -> 2nd quantile) + 2. average class of its neighbors + + Inputs: + @param subquery string: e.g., SELECT the_geom, cartodb_id, + interesting_time_column FROM table_name + @param time_cols list of strings: list of strings of column names + @param num_classes (optional): number of classes to break distribution + of values into. Currently uses quantile bins. + @param w_type string (optional): weight type ('knn' or 'queen') + @param num_ngbrs int (optional): number of neighbors (if knn type) + @param permutations int (optional): number of permutations for test + stats + @param geom_col string (optional): name of column which contains the + geometries + @param id_col string (optional): name of column which has the ids of + the table + + Outputs: + @param trend_up float: probablity that a geom will move to a higher + class + @param trend_down float: probablity that a geom will move to a lower + class + @param trend float: (trend_up - trend_down) / trend_static + @param volatility float: a measure of the volatility based on + probability stddev(prob array) + """ + + if len(time_cols) < 2: + plpy.error('More than one time column needs to be passed') + + qvals = {"id_col": id_col, + "time_cols": time_cols, + "geom_col": geom_col, + "subquery": subquery, + "num_ngbrs": num_ngbrs} + + try: + query_result = plpy.execute( + pu.construct_neighbor_query(w_type, qvals) + ) + if len(query_result) == 0: + return zip([None], [None], [None], [None], [None]) + except plpy.SPIError, err: + plpy.debug('Query failed with exception %s: %s' % (err, pu.construct_neighbor_query(w_type, qvals))) + plpy.error('Query failed, check the input parameters') + return zip([None], [None], [None], [None], [None]) + + ## build weight + weights = pu.get_weight(query_result, w_type) + weights.transform = 'r' + + ## prep time data + t_data = get_time_data(query_result, time_cols) + + plpy.debug('shape of t_data %d, %d' % t_data.shape) + plpy.debug('number of weight objects: %d, %d' % (weights.sparse).shape) + plpy.debug('first num elements: %f' % t_data[0, 0]) + + sp_markov_result = ps.Spatial_Markov(t_data, + weights, + k=num_classes, + fixed=False, + permutations=permutations) + + ## get lag classes + lag_classes = ps.Quantiles( + ps.lag_spatial(weights, t_data[:, -1]), + k=num_classes).yb + + ## look up probablity distribution for each unit according to class and lag class + prob_dist = get_prob_dist(sp_markov_result.P, + lag_classes, + sp_markov_result.classes[:, -1]) + + ## find the ups and down and overall distribution of each cell + trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist, + sp_markov_result.classes[:, -1]) + + ## output the results + return zip(trend, trend_up, trend_down, volatility, weights.id_order) + +def get_time_data(markov_data, time_cols): + """ + Extract the time columns and bin appropriately + """ + num_attrs = len(time_cols) + return np.array([[x['attr' + str(i)] for x in markov_data] + for i in range(1, num_attrs+1)], dtype=float).transpose() + +## not currently used +def rebin_data(time_data, num_time_per_bin): + """ + Convert an n x l matrix into an (n/m) x l matrix where the values are + reduced (averaged) for the intervening states: + 1 2 3 4 1.5 3.5 + 5 6 7 8 -> 5.5 7.5 + 9 8 7 6 8.5 6.5 + 5 4 3 2 4.5 2.5 + + if m = 2, the 4 x 4 matrix is transformed to a 2 x 4 matrix. + + This process effectively resamples the data at a longer time span n + units longer than the input data. + For cases when there is a remainder (remainder(5/3) = 2), the remaining + two columns are binned together as the last time period, while the + first three are binned together for the first period. + + Input: + @param time_data n x l ndarray: measurements of an attribute at + different time intervals + @param num_time_per_bin int: number of columns to average into a new + column + Output: + ceil(n / m) x l ndarray of resampled time series + """ + + if time_data.shape[1] % num_time_per_bin == 0: + ## if fit is perfect, then use it + n_max = time_data.shape[1] / num_time_per_bin + else: + ## fit remainders into an additional column + n_max = time_data.shape[1] / num_time_per_bin + 1 + + return np.array([time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1) + for i in range(n_max)]).T + +def get_prob_dist(transition_matrix, lag_indices, unit_indices): + """ + Given an array of transition matrices, look up the probability + associated with the arrangements passed + + Input: + @param transition_matrix ndarray[k,k,k]: + @param lag_indices ndarray: + @param unit_indices ndarray: + + Output: + Array of probability distributions + """ + + return np.array([transition_matrix[(lag_indices[i], unit_indices[i])] + for i in range(len(lag_indices))]) + +def get_prob_stats(prob_dist, unit_indices): + """ + get the statistics of the probability distributions + + Outputs: + @param trend_up ndarray(float): sum of probabilities for upward + movement (relative to the unit index of that prob) + @param trend_down ndarray(float): sum of probabilities for downward + movement (relative to the unit index of that prob) + @param trend ndarray(float): difference of upward and downward + movements + """ + + num_elements = len(unit_indices) + trend_up = np.empty(num_elements, dtype=float) + trend_down = np.empty(num_elements, dtype=float) + trend = np.empty(num_elements, dtype=float) + + for i in range(num_elements): + trend_up[i] = prob_dist[i, (unit_indices[i]+1):].sum() + trend_down[i] = prob_dist[i, :unit_indices[i]].sum() + if prob_dist[i, unit_indices[i]] > 0.0: + trend[i] = (trend_up[i] - trend_down[i]) / prob_dist[i, unit_indices[i]] + else: + trend[i] = None + + ## calculate volatility of distribution + volatility = prob_dist.std(axis=1) + + return trend_up, trend_down, trend, volatility diff --git a/release/python/0.1.0/crankshaft/setup.py b/release/python/0.1.0/crankshaft/setup.py new file mode 100644 index 0000000..273cce1 --- /dev/null +++ b/release/python/0.1.0/crankshaft/setup.py @@ -0,0 +1,49 @@ + +""" +CartoDB Spatial Analysis Python Library +See: +https://github.com/CartoDB/crankshaft +""" + +from setuptools import setup, find_packages + +setup( + name='crankshaft', + + version='0.1.0', + + description='CartoDB Spatial Analysis Python Library', + + url='https://github.com/CartoDB/crankshaft', + + author='Data Services Team - CartoDB', + author_email='dataservices@cartodb.com', + + license='MIT', + + classifiers=[ + 'Development Status :: 3 - Alpha', + 'Intended Audience :: Mapping comunity', + 'Topic :: Maps :: Mapping Tools', + 'License :: OSI Approved :: MIT License', + 'Programming Language :: Python :: 2.7', + ], + + keywords='maps mapping tools spatial analysis geostatistics', + + packages=find_packages(exclude=['contrib', 'docs', 'tests']), + + extras_require={ + 'dev': ['unittest'], + 'test': ['unittest', 'nose', 'mock'], + }, + + # The choice of component versions is dictated by what's + # provisioned in the production servers. + # IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation. + install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'], + + requires=['pysal', 'numpy', 'sklearn'], + + test_suite='test' +) diff --git a/release/python/0.1.0/crankshaft/test/fixtures/kmeans.json b/release/python/0.1.0/crankshaft/test/fixtures/kmeans.json new file mode 100644 index 0000000..8f31c79 --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/fixtures/kmeans.json @@ -0,0 +1 @@ +[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}] \ No newline at end of file diff --git a/release/python/0.1.0/crankshaft/test/fixtures/markov.json b/release/python/0.1.0/crankshaft/test/fixtures/markov.json new file mode 100644 index 0000000..d60e4e0 --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/fixtures/markov.json @@ -0,0 +1 @@ +[[0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 0], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 1], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 2], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 3], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 4], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 5], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 6], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 7], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 8], [0.19047619047619049, 0.16, 0.0, 0.32594478059941379, 9], [-0.23529411764705882, 0.0, 0.19047619047619047, 0.31356338348865387, 10], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 11], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 12], [0.027777777777777783, 0.11111111111111112, 0.088888888888888892, 0.30339641183779581, 13], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 14], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 15], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 16], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 17], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 18], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 19], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 20], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 21], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 22], [-0.16666666666666663, 0.18181818181818182, 0.27272727272727271, 0.20246415864836445, 23], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 24], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 25], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 26], [-0.043478260869565216, 0.0, 0.041666666666666664, 0.37950991789118999, 27], [0.22222222222222221, 0.18181818181818182, 0.0, 0.31701083225750354, 28], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 29], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 30], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 31], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 32], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 33], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 34], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 35], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 36], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 37], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 38], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 39], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 40], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 41], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 42], [0.0, 0.0, 0.0, 0.40000000000000002, 43], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 44], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 45], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 46], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 47]] diff --git a/release/python/0.1.0/crankshaft/test/fixtures/moran.json b/release/python/0.1.0/crankshaft/test/fixtures/moran.json new file mode 100644 index 0000000..2f75cf1 --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/fixtures/moran.json @@ -0,0 +1,52 @@ +[[0.9319096128346788, "HH"], +[-1.135787401862846, "HL"], +[0.11732030672508517, "LL"], +[0.6152779669180425, "LL"], +[-0.14657336660125297, "LH"], +[0.6967858120189607, "LL"], +[0.07949310115714454, "HH"], +[0.4703198759258987, "HH"], +[0.4421125200498064, "HH"], +[0.5724288737143592, "LL"], +[0.8970743435692062, "LL"], +[0.18327334401918674, "LL"], +[-0.01466729201304962, "HL"], +[0.3481559372544409, "LL"], +[0.06547094736902978, "LL"], +[0.15482141569329988, "HH"], +[0.4373841193538136, "HH"], +[0.15971286468915544, "LL"], +[1.0543588860308968, "HH"], +[1.7372866900020818, "HH"], +[1.091998586053999, "LL"], +[0.1171572584252222, "HH"], +[0.08438455015300014, "LL"], +[0.06547094736902978, "LL"], +[0.15482141569329985, "HH"], +[1.1627044812890683, "HH"], +[0.06547094736902978, "LL"], +[0.795275137550483, "HH"], +[0.18562939195219, "LL"], +[0.3010757406693439, "LL"], +[2.8205795942839376, "HH"], +[0.11259190602909264, "LL"], +[-0.07116352791516614, "HL"], +[-0.09945240794119009, "LH"], +[0.18562939195219, "LL"], +[0.1832733440191868, "LL"], +[-0.39054253768447705, "HL"], +[-0.1672071289487642, "HL"], +[0.3337669247916343, "HH"], +[0.2584386102554792, "HH"], +[-0.19733845476322634, "HL"], +[-0.9379282899805409, "LH"], +[-0.028770969951095866, "LH"], +[0.051367269430983485, "LL"], +[-0.2172548045913472, "LH"], +[0.05136726943098351, "LL"], +[0.04191046803899837, "LL"], +[0.7482357030403517, "HH"], +[-0.014585767863118111, "LH"], +[0.5410013139159929, "HH"], +[1.0223932668429925, "LL"], +[1.4179402898927476, "LL"]] \ No newline at end of file diff --git a/release/python/0.1.0/crankshaft/test/fixtures/neighbors.json b/release/python/0.1.0/crankshaft/test/fixtures/neighbors.json new file mode 100644 index 0000000..055b359 --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/fixtures/neighbors.json @@ -0,0 +1,54 @@ +[ + {"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5}, + {"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7}, + {"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2}, + {"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1}, + {"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3}, + {"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05}, + {"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4}, + {"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7}, + {"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5}, + {"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04}, + {"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08}, + {"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2}, + {"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4}, + {"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2}, + {"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3}, + {"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4}, + {"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6}, + {"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3}, + {"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7}, + {"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8}, + {"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1}, + {"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4}, + {"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1}, + {"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3}, + {"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4}, + {"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6}, + {"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3}, + {"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8}, + {"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3}, + {"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1}, + {"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9}, + {"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3}, + {"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4}, + {"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3}, + {"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3}, + {"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2}, + {"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5}, + {"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4}, + {"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6}, + {"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5}, + {"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4}, + {"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2}, + {"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3}, + {"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2}, + {"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3}, + {"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2}, + {"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3}, + {"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5}, + {"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2}, + {"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6}, + {"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01}, + {"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01} + ] diff --git a/release/python/0.1.0/crankshaft/test/fixtures/neighbors_markov.json b/release/python/0.1.0/crankshaft/test/fixtures/neighbors_markov.json new file mode 100644 index 0000000..45a20e7 --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/fixtures/neighbors_markov.json @@ -0,0 +1 @@ +[{"neighbors": [10, 7, 21, 23, 1], "y1995": 0.87654416055651474, "y1997": 0.85637566664752718, "y1996": 0.8631470006766887, "y1999": 0.84461540228037335, "y1998": 0.84811668329242784, "y2006": 0.86302631339545688, "y2007": 0.86148266513456728, "y2004": 0.86416611731111015, "y2005": 0.87119374831581786, "y2002": 0.85012592862683589, "y2003": 0.8550965633336135, "y2000": 0.83271652434603094, "y2001": 0.83786313566577242, "id": 0, "y2008": 0.86252252380501315, "y2009": 0.86746356478544273}, {"neighbors": [5, 7, 22, 29, 3], "y1995": 0.91889509774542122, "y1997": 0.92333257900976462, "y1996": 0.91757931190043385, "y1999": 0.92552387732371888, "y1998": 0.92517289327379471, "y2006": 0.91706053906277052, "y2007": 0.90139504820726424, "y2004": 0.89815175749309051, "y2005": 0.91832090781161113, "y2002": 0.89431990798552208, "y2003": 0.88924793576523797, "y2000": 0.90746978227271013, "y2001": 0.89830489127332913, "id": 1, "y2008": 0.87897455159080617, "y2009": 0.86216858051752643}, {"neighbors": [11, 8, 13, 18, 17], "y1995": 0.82591007476914713, "y1997": 0.81989792988843901, "y1996": 0.82548595539161707, "y1999": 0.81731522200916285, "y1998": 0.81503235035017918, "y2006": 0.81814804358939286, "y2007": 0.83675961003285626, "y2004": 0.82668195534569056, "y2005": 0.82373723764184559, "y2002": 0.80849979516360859, "y2003": 0.82258550658074148, "y2000": 0.78964559168205917, "y2001": 0.8058444152731008, "id": 2, "y2008": 0.8357419865626442, "y2009": 0.84647177436289112}, {"neighbors": [4, 14, 9, 5, 12], "y1995": 1.0908817638059434, "y1997": 1.0845641754849344, "y1996": 1.0853768890893893, "y1999": 1.098988414417104, "y1998": 1.0841540389418189, "y2006": 1.1316479722785828, "y2007": 1.1295850763954971, "y2004": 1.1139980568106316, "y2005": 1.1216802898290368, "y2002": 1.1116069731657288, "y2003": 1.1088862051501811, "y2000": 1.1450694824791507, "y2001": 1.1215113292620285, "id": 3, "y2008": 1.1137181812756343, "y2009": 1.0993677488645406}, {"neighbors": [14, 3, 9, 31, 12], "y1995": 1.1073144618319228, "y1997": 1.1328363804627946, "y1996": 1.1137394350312471, "y1999": 1.1591002514611153, "y1998": 1.144725587086376, "y2006": 1.1173646811350333, "y2007": 1.1086324218539598, "y2004": 1.1102496406140896, "y2005": 1.11943471361418, "y2002": 1.1475230282561595, "y2003": 1.1184328424005199, "y2000": 1.1689820101690329, "y2001": 1.1721248787169682, "id": 4, "y2008": 1.0964251552643696, "y2009": 1.0776233718455337}, {"neighbors": [29, 1, 22, 7, 4], "y1995": 1.422697571371182, "y1997": 1.4427350196405593, "y1996": 1.4211843379728528, "y1999": 1.4440068434166562, "y1998": 1.4357757095632602, "y2006": 1.4405276647793266, "y2007": 1.4524121586440921, "y2004": 1.4059372049179741, "y2005": 1.4078864636665769, "y2002": 1.4197822680667809, "y2003": 1.3909220829548647, "y2000": 1.4418473669388905, "y2001": 1.4478283203013527, "id": 5, "y2008": 1.4330609762040207, "y2009": 1.4174430982377491}, {"neighbors": [12, 47, 9, 25, 20], "y1995": 1.1307388498039153, "y1997": 1.1107470843142355, "y1996": 1.1311051255854685, "y1999": 1.130881491772973, "y1998": 1.1336463608751246, "y2006": 1.1088003408832796, "y2007": 1.0840170924825394, "y2004": 1.1244623853593112, "y2005": 1.1167100811401538, "y2002": 1.1306293052597198, "y2003": 1.1194498381213465, "y2000": 1.1088813841947593, "y2001": 1.1185662918783175, "id": 6, "y2008": 1.0695920556329086, "y2009": 1.0787522517402164}, {"neighbors": [21, 1, 22, 10, 0], "y1995": 1.0470612357366649, "y1997": 1.0425337165747406, "y1996": 1.0451683097376836, "y1999": 1.0207254480945218, "y1998": 1.0323998680588111, "y2006": 1.0405109962442973, "y2007": 1.0174964540280445, "y2004": 1.0140090547678748, "y2005": 1.0317674181861733, "y2002": 0.99669586934394627, "y2003": 0.99327675611171373, "y2000": 0.99854316295509526, "y2001": 0.98802579761429143, "id": 7, "y2008": 0.9936394033949828, "y2009": 0.98279746069218921}, {"neighbors": [11, 13, 17, 18, 15], "y1995": 0.98996985668705595, "y1997": 0.99491000469481983, "y1996": 1.0014356415938011, "y1999": 1.0045584503565237, "y1998": 1.0018840754492748, "y2006": 0.92232873520447411, "y2007": 0.91284090705064902, "y2004": 0.93694786512729977, "y2005": 0.94308212820743131, "y2002": 0.96834820215592055, "y2003": 0.95335147249088092, "y2000": 0.99127006477048718, "y2001": 0.97925917470464008, "id": 8, "y2008": 0.89689832627117483, "y2009": 0.88928857608264111}, {"neighbors": [12, 6, 4, 3, 14], "y1995": 0.87418390853652306, "y1997": 0.84425695187978567, "y1996": 0.86416601430334228, "y1999": 0.83903043942542854, "y1998": 0.8404493987171674, "y2006": 0.87204140839730271, "y2007": 0.86633032299764789, "y2004": 0.86981997840756087, "y2005": 0.86837929279319737, "y2002": 0.86107306112852877, "y2003": 0.85007719735663123, "y2000": 0.85787080050645603, "y2001": 0.86036185149249467, "id": 9, "y2008": 0.84946077011565357, "y2009": 0.83287145944123797}, {"neighbors": [0, 7, 21, 23, 22], "y1995": 1.1419611801631209, "y1997": 1.1489271154554144, "y1996": 1.146602624490825, "y1999": 1.1443662376135306, "y1998": 1.1490959392942743, "y2006": 1.1049125811637337, "y2007": 1.1105984164317646, "y2004": 1.1119989015058092, "y2005": 1.1025779214946556, "y2002": 1.1259666377127024, "y2003": 1.1221399558345004, "y2000": 1.144501826035474, "y2001": 1.1234975172649961, "id": 10, "y2008": 1.1050979494645479, "y2009": 1.1002009697391872}, {"neighbors": [8, 13, 18, 17, 2], "y1995": 0.97282462974938089, "y1997": 0.96252588061647382, "y1996": 0.96700147279313231, "y1999": 0.96057686787383312, "y1998": 0.96538780087103548, "y2006": 0.91010201260822066, "y2007": 0.89280392121658247, "y2004": 0.94103988614185807, "y2005": 0.9212251863828258, "y2002": 0.94804194711420009, "y2003": 0.9543028555845573, "y2000": 0.95831051250950716, "y2001": 0.94480908623936988, "id": 11, "y2008": 0.89298242828382146, "y2009": 0.89165384824292859}, {"neighbors": [33, 9, 6, 25, 31], "y1995": 0.94325467991401402, "y1997": 0.96455242154753429, "y1996": 0.96436902092427723, "y1999": 0.94117647058823528, "y1998": 0.95243008993884537, "y2006": 0.9346681464882507, "y2007": 0.94281559150403071, "y2004": 0.96918424441756057, "y2005": 0.94781280876672958, "y2002": 0.95388717527096822, "y2003": 0.94597005193649519, "y2000": 0.94809269652332606, "y2001": 0.93539181553564288, "id": 12, "y2008": 0.965203150896216, "y2009": 0.967154410723015}, {"neighbors": [18, 17, 11, 8, 19], "y1995": 0.97478408425654373, "y1997": 0.98712808751954773, "y1996": 0.98169225257738801, "y1999": 0.985598971191053, "y1998": 0.98474769442356791, "y2006": 0.98416665248276058, "y2007": 0.98423613480079708, "y2004": 0.97399471186978948, "y2005": 0.96910087128357136, "y2002": 0.9820996926750224, "y2003": 0.98776529543110569, "y2000": 0.98687072733199255, "y2001": 0.99237486444837619, "id": 13, "y2008": 0.99823861244053191, "y2009": 0.99545704236827348}, {"neighbors": [4, 31, 3, 29, 12], "y1995": 0.85570268988941878, "y1997": 0.85986131704895119, "y1996": 0.85575915188345031, "y1999": 0.85380119644969055, "y1998": 0.85693406055397725, "y2006": 0.82803647591954255, "y2007": 0.81987360180979219, "y2004": 0.83998883284341452, "y2005": 0.83478547261894065, "y2002": 0.85472102128186755, "y2003": 0.84564834502399988, "y2000": 0.86191535266765262, "y2001": 0.84981450830432048, "id": 14, "y2008": 0.82265395167873867, "y2009": 0.83994039782937002}, {"neighbors": [19, 8, 17, 16, 13], "y1995": 0.87022046646521634, "y1997": 0.85961813213722393, "y1996": 0.85996258309339635, "y1999": 0.8394713575455558, "y1998": 0.85689572413110093, "y2006": 0.94202108334913126, "y2007": 0.94222309998743192, "y2004": 0.86763340229291142, "y2005": 0.89179316746010362, "y2002": 0.86776297543511893, "y2003": 0.86720209304280604, "y2000": 0.82785596604704892, "y2001": 0.86008789452656809, "id": 15, "y2008": 0.93902708112840494, "y2009": 0.94479183757120588}, {"neighbors": [28, 26, 15, 19, 32], "y1995": 0.90134907329491731, "y1997": 0.90403990934606904, "y1996": 0.904077381347274, "y1999": 0.90399237579083946, "y1998": 0.90201769385650832, "y2006": 0.91108803862404764, "y2007": 0.90543476309316473, "y2004": 0.94338264626469681, "y2005": 0.91981795862151561, "y2002": 0.93695966482853577, "y2003": 0.94242697007039, "y2000": 0.90906631602055099, "y2001": 0.92693339421265908, "id": 16, "y2008": 0.91737137682250491, "y2009": 0.94793657442067902}, {"neighbors": [13, 18, 11, 19, 8], "y1995": 1.1977611005602815, "y1997": 1.1843915817489725, "y1996": 1.1822256425225894, "y1999": 1.1928672308275252, "y1998": 1.1826786457339149, "y2006": 1.2392938410349985, "y2007": 1.2341867605077472, "y2004": 1.2385704217423759, "y2005": 1.2441989281116201, "y2002": 1.2262477774195681, "y2003": 1.2239707531714479, "y2000": 1.2017286912636342, "y2001": 1.2132869128474402, "id": 17, "y2008": 1.2362673914436095, "y2009": 1.2675439750795283}, {"neighbors": [13, 17, 11, 8, 19], "y1995": 1.2491967813733067, "y1997": 1.2699116090397236, "y1996": 1.2575477330927329, "y1999": 1.3062566740535762, "y1998": 1.2802065055312271, "y2006": 1.3210776560048689, "y2007": 1.329362443219563, "y2004": 1.3054484140490119, "y2005": 1.3030330249408666, "y2002": 1.3257518058685978, "y2003": 1.3079549159235695, "y2000": 1.3479002255103918, "y2001": 1.3439986302151703, "id": 18, "y2008": 1.3300124123891741, "y2009": 1.3328846185074705}, {"neighbors": [26, 17, 28, 15, 16], "y1995": 1.0676800411188558, "y1997": 1.0363730321443168, "y1996": 1.0379927554499979, "y1999": 1.0329609259280523, "y1998": 1.027684488045026, "y2006": 0.94241549375546196, "y2007": 0.92754546923532677, "y2004": 0.99614160423102482, "y2005": 0.97356208269708677, "y2002": 1.0274762326434594, "y2003": 1.0316273366809443, "y2000": 1.0505901631347052, "y2001": 1.0340505678899605, "id": 19, "y2008": 0.92549226593721745, "y2009": 0.92138101880290568}, {"neighbors": [30, 25, 24, 37, 47], "y1995": 1.0947561397632881, "y1997": 1.1165429913770684, "y1996": 1.1152679554712275, "y1999": 1.1314326394231322, "y1998": 1.1310394841195361, "y2006": 1.1090538904302065, "y2007": 1.1057776900012568, "y2004": 1.1402994437897009, "y2005": 1.1197940058085571, "y2002": 1.133670175399079, "y2003": 1.139822558851451, "y2000": 1.1388962186541665, "y2001": 1.1244221220249986, "id": 20, "y2008": 1.1116682481010467, "y2009": 1.0998515545336902}, {"neighbors": [23, 22, 7, 10, 34], "y1995": 0.76530058421804126, "y1997": 0.76542450966153397, "y1996": 0.76612841163904621, "y1999": 0.76014283909933289, "y1998": 0.7672268310234307, "y2006": 0.76842416021983684, "y2007": 0.77487117798086069, "y2004": 0.76533287692895391, "y2005": 0.78205934309410463, "y2002": 0.76156903267949927, "y2003": 0.76651951668098528, "y2000": 0.74480073263159763, "y2001": 0.76098396210261965, "id": 21, "y2008": 0.77768682781054099, "y2009": 0.78801192267396702}, {"neighbors": [21, 34, 5, 7, 29], "y1995": 0.98391336093764348, "y1997": 0.98295341320156315, "y1996": 0.98075815675295552, "y1999": 0.96913802803963667, "y1998": 0.97386015032669815, "y2006": 0.93965462091114671, "y2007": 0.93069644684632924, "y2004": 0.9635616201227476, "y2005": 0.94745351657235244, "y2002": 0.97209860866113018, "y2003": 0.97441312580606143, "y2000": 0.97370819354423843, "y2001": 0.96419154157867693, "id": 22, "y2008": 0.94020973488297466, "y2009": 0.94358232339833159}, {"neighbors": [21, 10, 22, 34, 7], "y1995": 0.83561828119099946, "y1997": 0.81738501913392403, "y1996": 0.82298088022609361, "y1999": 0.80904800725677739, "y1998": 0.81748588141426259, "y2006": 0.87170334233473346, "y2007": 0.8786379876833581, "y2004": 0.85954307066870839, "y2005": 0.86790023653402792, "y2002": 0.83451612857812574, "y2003": 0.85175031934895873, "y2000": 0.80071489233375537, "y2001": 0.83358255807316928, "id": 23, "y2008": 0.87497981001981484, "y2009": 0.87888675419592222}, {"neighbors": [27, 20, 30, 32, 47], "y1995": 0.98845573274970278, "y1997": 0.99665282989553183, "y1996": 1.0209242772035507, "y1999": 0.99386618594343845, "y1998": 0.99141823200404444, "y2006": 0.97906748937234156, "y2007": 0.9932312332800689, "y2004": 1.0111665058188304, "y2005": 0.9998802359352077, "y2002": 0.99669586934394627, "y2003": 1.0255909749831356, "y2000": 0.98733194819247994, "y2001": 0.99644997431653437, "id": 24, "y2008": 1.0020493856497013, "y2009": 0.99602148231561483}, {"neighbors": [20, 33, 6, 30, 12], "y1995": 1.1493091345649815, "y1997": 1.143009615936718, "y1996": 1.1524194939429724, "y1999": 1.1398468268822266, "y1998": 1.1426554202510555, "y2006": 1.0889107875354573, "y2007": 1.0860369499254896, "y2004": 1.0856975145267398, "y2005": 1.1244348633192611, "y2002": 1.0423089214343333, "y2003": 1.0557727834721793, "y2000": 1.0831239730629278, "y2001": 1.0519262599166714, "id": 25, "y2008": 1.0599731384290745, "y2009": 1.0216094265950888}, {"neighbors": [28, 19, 16, 32, 17], "y1995": 1.1136826889802023, "y1997": 1.1189343096757198, "y1996": 1.1057147027213501, "y1999": 1.1432271991365353, "y1998": 1.1377866945457653, "y2006": 1.1268023587150906, "y2007": 1.1235793669317915, "y2004": 1.1482023546040769, "y2005": 1.1238659840114973, "y2002": 1.1600919581655105, "y2003": 1.1446778932605579, "y2000": 1.1825702862895446, "y2001": 1.1622624279436105, "id": 26, "y2008": 1.115925801617498, "y2009": 1.1257082797404696}, {"neighbors": [32, 24, 36, 16, 28], "y1995": 1.303794309231981, "y1997": 1.3120636604057812, "y1996": 1.3075218596998686, "y1999": 1.3062566740535762, "y1998": 1.3153226688859194, "y2006": 1.2865667454509278, "y2007": 1.2973409698906584, "y2004": 1.2683078569016086, "y2005": 1.2617743046198988, "y2002": 1.2920319347677043, "y2003": 1.2718351646774422, "y2000": 1.3121023910310281, "y2001": 1.2998915587009874, "id": 27, "y2008": 1.2939020510829768, "y2009": 1.2934544564717687}, {"neighbors": [26, 16, 19, 32, 27], "y1995": 0.83953719020532513, "y1997": 0.82006005316292385, "y1996": 0.82701447583159737, "y1999": 0.80294863992835086, "y1998": 0.8118887636743225, "y2006": 0.8389109342655191, "y2007": 0.84349246817602375, "y2004": 0.83108634437662732, "y2005": 0.84373783646216949, "y2002": 0.82596790474192727, "y2003": 0.82435704751379402, "y2000": 0.78772975118465016, "y2001": 0.82848010958278628, "id": 28, "y2008": 0.85637272428125033, "y2009": 0.86539395164519117}, {"neighbors": [5, 39, 22, 14, 31], "y1995": 1.2345008725695852, "y1997": 1.2353793515744536, "y1996": 1.2426021999018138, "y1999": 1.2452262575926329, "y1998": 1.2358129278404693, "y2006": 1.2365329681906834, "y2007": 1.2796200872578414, "y2004": 1.1967443443492951, "y2005": 1.2153657295128597, "y2002": 1.1937780418204111, "y2003": 1.1835533748469893, "y2000": 1.2256766974812463, "y2001": 1.2112664802237314, "id": 29, "y2008": 1.2796839248335934, "y2009": 1.2590773758694083}, {"neighbors": [37, 20, 24, 25, 27], "y1995": 0.97696620404861145, "y1997": 0.98035944080980575, "y1996": 0.9740071914763756, "y1999": 0.95543282313901556, "y1998": 0.97581530789338955, "y2006": 0.92100464312607799, "y2007": 0.9147530387633086, "y2004": 0.9298883479571457, "y2005": 0.93442917452618346, "y2002": 0.93679072759857129, "y2003": 0.92540049332494034, "y2000": 0.96480308308405971, "y2001": 0.9468637634838194, "id": 30, "y2008": 0.90249622070947177, "y2009": 0.90213630440783921}, {"neighbors": [35, 14, 33, 12, 4], "y1995": 0.84986885942491119, "y1997": 0.84295996568390696, "y1996": 0.89868510090623221, "y1999": 0.85659367787716301, "y1998": 0.87280533962476625, "y2006": 0.92562487931452408, "y2007": 0.96635366357254426, "y2004": 0.92698332540482575, "y2005": 0.94745351657235244, "y2002": 0.90448992922937876, "y2003": 0.95495898185605821, "y2000": 0.88937573313051443, "y2001": 0.89440100450887505, "id": 31, "y2008": 1.025203118044723, "y2009": 1.0394296020754366}, {"neighbors": [36, 27, 28, 16, 26], "y1995": 1.0192280751235561, "y1997": 1.0097442843101825, "y1996": 1.0025820319237864, "y1999": 0.99765073314119712, "y1998": 1.0030341681355639, "y2006": 0.94779637858468868, "y2007": 0.93759089358493275, "y2004": 0.97583768316642261, "y2005": 0.96101679691008712, "y2002": 0.99747298060178258, "y2003": 0.99550758543481688, "y2000": 1.0075901875261932, "y2001": 0.99192968437874551, "id": 32, "y2008": 0.93353431146829191, "y2009": 0.94121705123804411}, {"neighbors": [44, 25, 12, 35, 31], "y1995": 0.86367410708901315, "y1997": 0.85544345781923936, "y1996": 0.85558931627900803, "y1999": 0.84336613427334628, "y1998": 0.85103025143102673, "y2006": 0.89455097373003656, "y2007": 0.88283929116469462, "y2004": 0.85951183386707053, "y2005": 0.87194227372077004, "y2002": 0.84667960913556228, "y2003": 0.84374557883664714, "y2000": 0.83434853662160158, "y2001": 0.85813595114434105, "id": 33, "y2008": 0.90349490610221961, "y2009": 0.9060067497610369}, {"neighbors": [22, 39, 21, 29, 23], "y1995": 1.0094753356447226, "y1997": 1.0069881886439402, "y1996": 1.0041105523637666, "y1999": 0.99291086334982948, "y1998": 0.99513686502304577, "y2006": 0.96382634438484593, "y2007": 0.95011400973122428, "y2004": 0.975119236728752, "y2005": 0.96134614808826613, "y2002": 0.99291167539274383, "y2003": 0.98983209318633369, "y2000": 1.0058162611397035, "y2001": 0.98850522230466298, "id": 34, "y2008": 0.94346860300667812, "y2009": 0.9463776450423077}, {"neighbors": [31, 38, 44, 33, 14], "y1995": 1.0571257066143651, "y1997": 1.0575301194645879, "y1996": 1.0545941857842291, "y1999": 1.0510385688532684, "y1998": 1.0488078570498685, "y2006": 1.0247627521629479, "y2007": 1.0234752320591773, "y2004": 1.0329697933620496, "y2005": 1.0219168238570018, "y2002": 1.0420048344203974, "y2003": 1.0402553971511816, "y2000": 1.0480002306104303, "y2001": 1.030249414987729, "id": 35, "y2008": 1.0251768368501768, "y2009": 1.0435957064486703}, {"neighbors": [32, 43, 27, 28, 42], "y1995": 1.070841888164505, "y1997": 1.0793762307014196, "y1996": 1.0666949726007404, "y1999": 1.0794043012481198, "y1998": 1.0738798776109699, "y2006": 1.087727556316465, "y2007": 1.0885954360198933, "y2004": 1.1032213602455734, "y2005": 1.0916793915985508, "y2002": 1.0938347765734742, "y2003": 1.1052447043433509, "y2000": 1.0531800956589803, "y2001": 1.0745277096056161, "id": 36, "y2008": 1.0917733838297285, "y2009": 1.1096083021948762}, {"neighbors": [30, 40, 20, 42, 41], "y1995": 0.8671922185905101, "y1997": 0.86675155621455668, "y1996": 0.86628895935887062, "y1999": 0.86511809486628932, "y1998": 0.86425631732335095, "y2006": 0.84488343470424199, "y2007": 0.83374328958471722, "y2004": 0.84517414191529749, "y2005": 0.84843857600526962, "y2002": 0.85411284725399572, "y2003": 0.84886336375435456, "y2000": 0.86287327291635718, "y2001": 0.8516979624450659, "id": 37, "y2008": 0.82812044014430564, "y2009": 0.82878598934619596}, {"neighbors": [35, 31, 45, 39, 44], "y1995": 0.8838921149583755, "y1997": 0.90282398478743275, "y1996": 0.92288667453925455, "y1999": 0.92023285988219217, "y1998": 0.91229185518735723, "y2006": 0.93869676706720051, "y2007": 0.96947770975097391, "y2004": 0.99223700402629367, "y2005": 0.97984969609868555, "y2002": 0.93682451504456421, "y2003": 0.98655146182882891, "y2000": 0.92652175166361039, "y2001": 0.94278865361566122, "id": 38, "y2008": 1.0036262573224608, "y2009": 0.98102350657197357}, {"neighbors": [29, 34, 38, 22, 35], "y1995": 0.970820642185237, "y1997": 0.94534081352108112, "y1996": 0.95320232993219844, "y1999": 0.93967000034446724, "y1998": 0.94215592860799646, "y2006": 0.91035556215514757, "y2007": 0.90430364292511256, "y2004": 0.92879505989982103, "y2005": 0.9211054223180335, "y2002": 0.93412151936513388, "y2003": 0.93501274320242933, "y2000": 0.93092108910210503, "y2001": 0.92662519262599163, "id": 39, "y2008": 0.89994694483851023, "y2009": 0.9007386435858511}, {"neighbors": [41, 37, 42, 30, 45], "y1995": 0.95861858457245008, "y1997": 0.98254810501535106, "y1996": 0.95774543235102894, "y1999": 0.98684823919808018, "y1998": 0.98919471947721893, "y2006": 0.97163003599581876, "y2007": 0.97007020126757271, "y2004": 0.9493488753775261, "y2005": 0.97152609359561659, "y2002": 0.95601578436851964, "y2003": 0.94905384541254967, "y2000": 0.98882204635713133, "y2001": 0.97662233890759653, "id": 40, "y2008": 0.97158948117089283, "y2009": 0.95884908006927827}, {"neighbors": [40, 45, 44, 37, 42], "y1995": 0.83980438854721107, "y1997": 0.85746999875029983, "y1996": 0.84726737166133714, "y1999": 0.85567509846023126, "y1998": 0.85467221160427542, "y2006": 0.8333891885768886, "y2007": 0.83511679264592342, "y2004": 0.81743586206088703, "y2005": 0.83550405700769481, "y2002": 0.84502402428191115, "y2003": 0.82645665158259707, "y2000": 0.84818516243622177, "y2001": 0.85265681182580899, "id": 41, "y2008": 0.82136617314598481, "y2009": 0.80921873783836296}, {"neighbors": [43, 40, 46, 37, 36], "y1995": 0.95118156405662746, "y1997": 0.94688098462868708, "y1996": 0.9466212002600608, "y1999": 0.95124410099780687, "y1998": 0.95085829660091703, "y2006": 0.96895367966714574, "y2007": 0.9700163384024274, "y2004": 0.97583768316642261, "y2005": 0.95571723704302525, "y2002": 0.96804411514198463, "y2003": 0.97136213864358201, "y2000": 0.95440787445922959, "y2001": 0.96364362764682376, "id": 42, "y2008": 0.97082732652905901, "y2009": 0.9878236640328002}, {"neighbors": [36, 42, 32, 27, 46], "y1995": 1.0891004415267045, "y1997": 1.0849289528525252, "y1996": 1.0824896838138709, "y1999": 1.0945424900391545, "y1998": 1.0865692335830259, "y2006": 1.1450297539219478, "y2007": 1.1447474729339102, "y2004": 1.1334273474293739, "y2005": 1.1468606844516303, "y2002": 1.1229257675733433, "y2003": 1.1302103089739621, "y2000": 1.1055818811158884, "y2001": 1.1214085953998059, "id": 43, "y2008": 1.1408403740471014, "y2009": 1.1614292649793569}, {"neighbors": [33, 41, 45, 35, 40], "y1995": 1.0633603345917013, "y1997": 1.0869149629649646, "y1996": 1.0736582323828732, "y1999": 1.1166986255755473, "y1998": 1.0976484597942771, "y2006": 1.0839806574563229, "y2007": 1.0983176831786272, "y2004": 1.0927882684985315, "y2005": 1.0700320368873319, "y2002": 1.0881584856466706, "y2003": 1.0804431312806149, "y2000": 1.1185670222649935, "y2001": 1.0976428286056732, "id": 44, "y2008": 1.0929823187788443, "y2009": 1.0917612486217978}, {"neighbors": [41, 44, 40, 35, 33], "y1995": 0.79772064970019041, "y1997": 0.7858115114280021, "y1996": 0.78829195801876151, "y1999": 0.77035744221561353, "y1998": 0.77615921755360906, "y2006": 0.79949806580432425, "y2007": 0.80172181625581262, "y2004": 0.79603865293896003, "y2005": 0.78966436120841943, "y2002": 0.81437881076636964, "y2003": 0.80788827809912023, "y2000": 0.77751193519846906, "y2001": 0.79902973574567659, "id": 45, "y2008": 0.82168154748053679, "y2009": 0.85587910681858015}, {"neighbors": [42, 43, 40, 36, 37], "y1995": 1.0052446952315301, "y1997": 1.0047589936197736, "y1996": 1.0000769567582628, "y1999": 1.0063956091903872, "y1998": 1.0061394183885444, "y2006": 0.97292595590233411, "y2007": 0.96519561197191939, "y2004": 0.99030032232474696, "y2005": 0.97682565346267858, "y2002": 1.0081498135355325, "y2003": 1.0057431552702318, "y2000": 1.0016297948675874, "y2001": 0.99860738542320637, "id": 46, "y2008": 0.9617340332161447, "y2009": 0.95890283625473927}, {"neighbors": [20, 6, 24, 25, 30], "y1995": 0.95808418788867844, "y1997": 0.9654440995572009, "y1996": 0.93825679674127938, "y1999": 0.96987289157318213, "y1998": 0.95561201303757848, "y2006": 1.1704973973021624, "y2007": 1.1702515395802287, "y2004": 1.0533361880299275, "y2005": 1.0983262971945267, "y2002": 1.0078119390756035, "y2003": 1.0348423554112989, "y2000": 0.96608031008233231, "y2001": 0.99727184521431422, "id": 47, "y2008": 1.1873055260044207, "y2009": 1.1424264534188653}] diff --git a/release/python/0.1.0/crankshaft/test/helper.py b/release/python/0.1.0/crankshaft/test/helper.py new file mode 100644 index 0000000..7d28b94 --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/helper.py @@ -0,0 +1,13 @@ +import unittest + +from mock_plpy import MockPlPy +plpy = MockPlPy() + +import sys +sys.modules['plpy'] = plpy + +import os + +def fixture_file(name): + dir = os.path.dirname(os.path.realpath(__file__)) + return os.path.join(dir, 'fixtures', name) diff --git a/release/python/0.1.0/crankshaft/test/mock_plpy.py b/release/python/0.1.0/crankshaft/test/mock_plpy.py new file mode 100644 index 0000000..a982ebe --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/mock_plpy.py @@ -0,0 +1,52 @@ +import re + +class MockCursor: + def __init__(self, data): + self.cursor_pos = 0 + self.data = data + + def fetch(self, batch_size): + batch = self.data[self.cursor_pos : self.cursor_pos + batch_size] + self.cursor_pos += batch_size + return batch + + +class MockPlPy: + def __init__(self): + self._reset() + + def _reset(self): + self.infos = [] + self.notices = [] + self.debugs = [] + self.logs = [] + self.warnings = [] + self.errors = [] + self.fatals = [] + self.executes = [] + self.results = [] + self.prepares = [] + self.results = [] + + def _define_result(self, query, result): + pattern = re.compile(query, re.IGNORECASE | re.MULTILINE) + self.results.append([pattern, result]) + + def notice(self, msg): + self.notices.append(msg) + + def debug(self, msg): + self.notices.append(msg) + + def info(self, msg): + self.infos.append(msg) + + def cursor(self, query): + data = self.execute(query) + return MockCursor(data) + + def execute(self, query): # TODO: additional arguments + for result in self.results: + if result[0].match(query): + return result[1] + return [] diff --git a/release/python/0.1.0/crankshaft/test/test_cluster_kmeans.py b/release/python/0.1.0/crankshaft/test/test_cluster_kmeans.py new file mode 100644 index 0000000..aba8e07 --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/test_cluster_kmeans.py @@ -0,0 +1,38 @@ +import unittest +import numpy as np + + +# from mock_plpy import MockPlPy +# plpy = MockPlPy() +# +# import sys +# sys.modules['plpy'] = plpy +from helper import plpy, fixture_file +import numpy as np +import crankshaft.clustering as cc +import crankshaft.pysal_utils as pu +from crankshaft import random_seeds +import json + +class KMeansTest(unittest.TestCase): + """Testing class for Moran's I functions""" + + def setUp(self): + plpy._reset() + self.cluster_data = json.loads(open(fixture_file('kmeans.json')).read()) + self.params = {"subquery": "select * from table", + "no_clusters": "10" + } + + def test_kmeans(self): + data = self.cluster_data + plpy._define_result('select' ,data) + clusters = cc.kmeans('subquery', 2) + labels = [a[1] for a in clusters] + c1 = [a for a in clusters if a[1]==0] + c2 = [a for a in clusters if a[1]==1] + + self.assertEqual(len(np.unique(labels)),2) + self.assertEqual(len(c1),20) + self.assertEqual(len(c2),20) + diff --git a/release/python/0.1.0/crankshaft/test/test_clustering_moran.py b/release/python/0.1.0/crankshaft/test/test_clustering_moran.py new file mode 100644 index 0000000..2b683cf --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/test_clustering_moran.py @@ -0,0 +1,88 @@ +import unittest +import numpy as np + + +# from mock_plpy import MockPlPy +# plpy = MockPlPy() +# +# import sys +# sys.modules['plpy'] = plpy +from helper import plpy, fixture_file + +import crankshaft.clustering as cc +import crankshaft.pysal_utils as pu +from crankshaft import random_seeds +import json + +class MoranTest(unittest.TestCase): + """Testing class for Moran's I functions""" + + def setUp(self): + plpy._reset() + self.params = {"id_col": "cartodb_id", + "attr1": "andy", + "attr2": "jay_z", + "subquery": "SELECT * FROM a_list", + "geom_col": "the_geom", + "num_ngbrs": 321} + self.params_markov = {"id_col": "cartodb_id", + "time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"], + "subquery": "SELECT * FROM a_list", + "geom_col": "the_geom", + "num_ngbrs": 321} + self.neighbors_data = json.loads(open(fixture_file('neighbors.json')).read()) + self.moran_data = json.loads(open(fixture_file('moran.json')).read()) + + def test_map_quads(self): + """Test map_quads""" + self.assertEqual(cc.map_quads(1), 'HH') + self.assertEqual(cc.map_quads(2), 'LH') + self.assertEqual(cc.map_quads(3), 'LL') + self.assertEqual(cc.map_quads(4), 'HL') + self.assertEqual(cc.map_quads(33), None) + self.assertEqual(cc.map_quads('andy'), None) + + def test_quad_position(self): + """Test lisa_sig_vals""" + + quads = np.array([1, 2, 3, 4], np.int) + + ans = np.array(['HH', 'LH', 'LL', 'HL']) + test_ans = cc.quad_position(quads) + + self.assertTrue((test_ans == ans).all()) + + def test_moran_local(self): + """Test Moran's I local""" + data = [ { 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data] + plpy._define_result('select', data) + random_seeds.set_random_seeds(1234) + result = cc.moran_local('subquery', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id') + result = [(row[0], row[1]) for row in result] + expected = self.moran_data + for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected): + self.assertAlmostEqual(res_val, exp_val) + self.assertEqual(res_quad, exp_quad) + + def test_moran_local_rate(self): + """Test Moran's I rate""" + data = [ { 'id': d['id'], 'attr1': d['value'], 'attr2': 1, 'neighbors': d['neighbors'] } for d in self.neighbors_data] + plpy._define_result('select', data) + random_seeds.set_random_seeds(1234) + result = cc.moran_local_rate('subquery', 'numerator', 'denominator', 'knn', 5, 99, 'the_geom', 'cartodb_id') + print 'result == None? ', result == None + result = [(row[0], row[1]) for row in result] + expected = self.moran_data + for ([res_val, res_quad], [exp_val, exp_quad]) in zip(result, expected): + self.assertAlmostEqual(res_val, exp_val) + + def test_moran(self): + """Test Moran's I global""" + data = [{ 'id': d['id'], 'attr1': d['value'], 'neighbors': d['neighbors'] } for d in self.neighbors_data] + plpy._define_result('select', data) + random_seeds.set_random_seeds(1235) + result = cc.moran('table', 'value', 'knn', 5, 99, 'the_geom', 'cartodb_id') + print 'result == None?', result == None + result_moran = result[0][0] + expected_moran = np.array([row[0] for row in self.moran_data]).mean() + self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2) diff --git a/release/python/0.1.0/crankshaft/test/test_pysal_utils.py b/release/python/0.1.0/crankshaft/test/test_pysal_utils.py new file mode 100644 index 0000000..171fdbc --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/test_pysal_utils.py @@ -0,0 +1,142 @@ +import unittest + +import crankshaft.pysal_utils as pu +from crankshaft import random_seeds + + +class PysalUtilsTest(unittest.TestCase): + """Testing class for utility functions related to PySAL integrations""" + + def setUp(self): + self.params = {"id_col": "cartodb_id", + "attr1": "andy", + "attr2": "jay_z", + "subquery": "SELECT * FROM a_list", + "geom_col": "the_geom", + "num_ngbrs": 321} + + self.params_array = {"id_col": "cartodb_id", + "time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"], + "subquery": "SELECT * FROM a_list", + "geom_col": "the_geom", + "num_ngbrs": 321} + + def test_query_attr_select(self): + """Test query_attr_select""" + + ans = "i.\"andy\"::numeric As attr1, " \ + "i.\"jay_z\"::numeric As attr2, " + + ans_array = "i.\"_2013_dec\"::numeric As attr1, " \ + "i.\"_2014_jan\"::numeric As attr2, " \ + "i.\"_2014_feb\"::numeric As attr3, " + + self.assertEqual(pu.query_attr_select(self.params), ans) + self.assertEqual(pu.query_attr_select(self.params_array), ans_array) + + def test_query_attr_where(self): + """Test pu.query_attr_where""" + + ans = "idx_replace.\"andy\" IS NOT NULL AND " \ + "idx_replace.\"jay_z\" IS NOT NULL AND " \ + "idx_replace.\"jay_z\" <> 0" + + ans_array = "idx_replace.\"_2013_dec\" IS NOT NULL AND " \ + "idx_replace.\"_2014_jan\" IS NOT NULL AND " \ + "idx_replace.\"_2014_feb\" IS NOT NULL" + + self.assertEqual(pu.query_attr_where(self.params), ans) + self.assertEqual(pu.query_attr_where(self.params_array), ans_array) + + def test_knn(self): + """Test knn neighbors constructor""" + + ans = "SELECT i.\"cartodb_id\" As id, " \ + "i.\"andy\"::numeric As attr1, " \ + "i.\"jay_z\"::numeric As attr2, " \ + "(SELECT ARRAY(SELECT j.\"cartodb_id\" " \ + "FROM (SELECT * FROM a_list) As j " \ + "WHERE " \ + "i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \ + "j.\"andy\" IS NOT NULL AND " \ + "j.\"jay_z\" IS NOT NULL AND " \ + "j.\"jay_z\" <> 0 " \ + "ORDER BY " \ + "j.\"the_geom\" <-> i.\"the_geom\" ASC " \ + "LIMIT 321)) As neighbors " \ + "FROM (SELECT * FROM a_list) As i " \ + "WHERE i.\"andy\" IS NOT NULL AND " \ + "i.\"jay_z\" IS NOT NULL AND " \ + "i.\"jay_z\" <> 0 " \ + "ORDER BY i.\"cartodb_id\" ASC;" + + ans_array = "SELECT i.\"cartodb_id\" As id, " \ + "i.\"_2013_dec\"::numeric As attr1, " \ + "i.\"_2014_jan\"::numeric As attr2, " \ + "i.\"_2014_feb\"::numeric As attr3, " \ + "(SELECT ARRAY(SELECT j.\"cartodb_id\" " \ + "FROM (SELECT * FROM a_list) As j " \ + "WHERE i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \ + "j.\"_2013_dec\" IS NOT NULL AND " \ + "j.\"_2014_jan\" IS NOT NULL AND " \ + "j.\"_2014_feb\" IS NOT NULL " \ + "ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC " \ + "LIMIT 321)) As neighbors " \ + "FROM (SELECT * FROM a_list) As i " \ + "WHERE i.\"_2013_dec\" IS NOT NULL AND " \ + "i.\"_2014_jan\" IS NOT NULL AND " \ + "i.\"_2014_feb\" IS NOT NULL "\ + "ORDER BY i.\"cartodb_id\" ASC;" + + self.assertEqual(pu.knn(self.params), ans) + self.assertEqual(pu.knn(self.params_array), ans_array) + + def test_queen(self): + """Test queen neighbors constructor""" + + ans = "SELECT i.\"cartodb_id\" As id, " \ + "i.\"andy\"::numeric As attr1, " \ + "i.\"jay_z\"::numeric As attr2, " \ + "(SELECT ARRAY(SELECT j.\"cartodb_id\" " \ + "FROM (SELECT * FROM a_list) As j " \ + "WHERE " \ + "i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \ + "ST_Touches(i.\"the_geom\", " \ + "j.\"the_geom\") AND " \ + "j.\"andy\" IS NOT NULL AND " \ + "j.\"jay_z\" IS NOT NULL AND " \ + "j.\"jay_z\" <> 0)" \ + ") As neighbors " \ + "FROM (SELECT * FROM a_list) As i " \ + "WHERE i.\"andy\" IS NOT NULL AND " \ + "i.\"jay_z\" IS NOT NULL AND " \ + "i.\"jay_z\" <> 0 " \ + "ORDER BY i.\"cartodb_id\" ASC;" + + self.assertEqual(pu.queen(self.params), ans) + + def test_construct_neighbor_query(self): + """Test construct_neighbor_query""" + + # Compare to raw knn query + self.assertEqual(pu.construct_neighbor_query('knn', self.params), + pu.knn(self.params)) + + def test_get_attributes(self): + """Test get_attributes""" + + ## need to add tests + + self.assertEqual(True, True) + + def test_get_weight(self): + """Test get_weight""" + + self.assertEqual(True, True) + + def test_empty_zipped_array(self): + """Test empty_zipped_array""" + ans2 = [(None, None)] + ans4 = [(None, None, None, None)] + self.assertEqual(pu.empty_zipped_array(2), ans2) + self.assertEqual(pu.empty_zipped_array(4), ans4) diff --git a/release/python/0.1.0/crankshaft/test/test_segmentation.py b/release/python/0.1.0/crankshaft/test/test_segmentation.py new file mode 100644 index 0000000..d02e8b1 --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/test_segmentation.py @@ -0,0 +1,64 @@ +import unittest +import numpy as np +from helper import plpy, fixture_file +import crankshaft.segmentation as segmentation +import json + +class SegmentationTest(unittest.TestCase): + """Testing class for Moran's I functions""" + + def setUp(self): + plpy._reset() + + def generate_random_data(self,n_samples,random_state, row_type=False): + x1 = random_state.uniform(size=n_samples) + x2 = random_state.uniform(size=n_samples) + x3 = random_state.randint(0, 4, size=n_samples) + + y = x1+x2*x2+x3 + cartodb_id = range(len(x1)) + + if row_type: + return [ {'features': vals} for vals in zip(x1,x2,x3)], y + else: + return [dict( zip(['x1','x2','x3','target', 'cartodb_id'],[x1,x2,x3,y,cartodb_id]))] + + def test_replace_nan_with_mean(self): + test_array = np.array([1.2, np.nan, 3.2, np.nan, np.nan]) + + def test_create_and_predict_segment(self): + n_samples = 1000 + + random_state_train = np.random.RandomState(13) + random_state_test = np.random.RandomState(134) + training_data = self.generate_random_data(n_samples, random_state_train) + test_data, test_y = self.generate_random_data(n_samples, random_state_test, row_type=True) + + + ids = [{'cartodb_ids': range(len(test_data))}] + rows = [{'x1': 0,'x2':0,'x3':0,'y':0,'cartodb_id':0}] + + plpy._define_result('select \* from \(select \* from training\) a limit 1',rows) + plpy._define_result('.*from \(select \* from training\) as a' ,training_data) + plpy._define_result('select array_agg\(cartodb\_id order by cartodb\_id\) as cartodb_ids from \(.*\) a',ids) + plpy._define_result('.*select \* from test.*' ,test_data) + + model_parameters = {'n_estimators': 1200, + 'max_depth': 3, + 'subsample' : 0.5, + 'learning_rate': 0.01, + 'min_samples_leaf': 1} + + result = segmentation.create_and_predict_segment( + 'select * from training', + 'target', + 'select * from test', + model_parameters) + + prediction = [r[1] for r in result] + + accuracy =np.sqrt(np.mean( np.square( np.array(prediction) - np.array(test_y)))) + + self.assertEqual(len(result),len(test_data)) + self.assertTrue( result[0][2] < 0.01) + self.assertTrue( accuracy < 0.5*np.mean(test_y) ) diff --git a/release/python/0.1.0/crankshaft/test/test_space_time_dynamics.py b/release/python/0.1.0/crankshaft/test/test_space_time_dynamics.py new file mode 100644 index 0000000..54ffc9d --- /dev/null +++ b/release/python/0.1.0/crankshaft/test/test_space_time_dynamics.py @@ -0,0 +1,324 @@ +import unittest +import numpy as np + +import unittest + + +# from mock_plpy import MockPlPy +# plpy = MockPlPy() +# +# import sys +# sys.modules['plpy'] = plpy +from helper import plpy, fixture_file + +import crankshaft.space_time_dynamics as std +from crankshaft import random_seeds +import json + +class SpaceTimeTests(unittest.TestCase): + """Testing class for Markov Functions.""" + + def setUp(self): + plpy._reset() + self.params = {"id_col": "cartodb_id", + "time_cols": ['dec_2013', 'jan_2014', 'feb_2014'], + "subquery": "SELECT * FROM a_list", + "geom_col": "the_geom", + "num_ngbrs": 321} + self.neighbors_data = json.loads(open(fixture_file('neighbors_markov.json')).read()) + self.markov_data = json.loads(open(fixture_file('markov.json')).read()) + + self.time_data = np.array([i * np.ones(10, dtype=float) for i in range(10)]).T + + self.transition_matrix = np.array([ + [[ 0.96341463, 0.0304878 , 0.00609756, 0. , 0. ], + [ 0.06040268, 0.83221477, 0.10738255, 0. , 0. ], + [ 0. , 0.14 , 0.74 , 0.12 , 0. ], + [ 0. , 0.03571429, 0.32142857, 0.57142857, 0.07142857], + [ 0. , 0. , 0. , 0.16666667, 0.83333333]], + [[ 0.79831933, 0.16806723, 0.03361345, 0. , 0. ], + [ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ], + [ 0.00537634, 0.06989247, 0.8655914 , 0.05913978, 0. ], + [ 0. , 0. , 0.06372549, 0.90196078, 0.03431373], + [ 0. , 0. , 0. , 0.19444444, 0.80555556]], + [[ 0.84693878, 0.15306122, 0. , 0. , 0. ], + [ 0.08133971, 0.78947368, 0.1291866 , 0. , 0. ], + [ 0.00518135, 0.0984456 , 0.79274611, 0.0984456 , 0.00518135], + [ 0. , 0. , 0.09411765, 0.87058824, 0.03529412], + [ 0. , 0. , 0. , 0.10204082, 0.89795918]], + [[ 0.8852459 , 0.09836066, 0. , 0.01639344, 0. ], + [ 0.03875969, 0.81395349, 0.13953488, 0. , 0.00775194], + [ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ], + [ 0. , 0.02339181, 0.12865497, 0.75438596, 0.09356725], + [ 0. , 0. , 0. , 0.09661836, 0.90338164]], + [[ 0.33333333, 0.66666667, 0. , 0. , 0. ], + [ 0.0483871 , 0.77419355, 0.16129032, 0.01612903, 0. ], + [ 0.01149425, 0.16091954, 0.74712644, 0.08045977, 0. ], + [ 0. , 0.01036269, 0.06217617, 0.89637306, 0.03108808], + [ 0. , 0. , 0. , 0.02352941, 0.97647059]]] + ) + + def test_spatial_markov(self): + """Test Spatial Markov.""" + data = [ { 'id': d['id'], + 'attr1': d['y1995'], + 'attr2': d['y1996'], + 'attr3': d['y1997'], + 'attr4': d['y1998'], + 'attr5': d['y1999'], + 'attr6': d['y2000'], + 'attr7': d['y2001'], + 'attr8': d['y2002'], + 'attr9': d['y2003'], + 'attr10': d['y2004'], + 'attr11': d['y2005'], + 'attr12': d['y2006'], + 'attr13': d['y2007'], + 'attr14': d['y2008'], + 'attr15': d['y2009'], + 'neighbors': d['neighbors'] } for d in self.neighbors_data] + print(str(data[0])) + plpy._define_result('select', data) + random_seeds.set_random_seeds(1234) + + result = std.spatial_markov_trend('subquery', ['y1995', 'y1996', 'y1997', 'y1998', 'y1999', 'y2000', 'y2001', 'y2002', 'y2003', 'y2004', 'y2005', 'y2006', 'y2007', 'y2008', 'y2009'], 5, 'knn', 5, 0, 'the_geom', 'cartodb_id') + + self.assertTrue(result != None) + result = [(row[0], row[1], row[2], row[3], row[4]) for row in result] + print result[0] + expected = self.markov_data + for ([res_trend, res_up, res_down, res_vol, res_id], + [exp_trend, exp_up, exp_down, exp_vol, exp_id] + ) in zip(result, expected): + self.assertAlmostEqual(res_trend, exp_trend) + + def test_get_time_data(self): + """Test get_time_data""" + data = [ { 'attr1': d['y1995'], + 'attr2': d['y1996'], + 'attr3': d['y1997'], + 'attr4': d['y1998'], + 'attr5': d['y1999'], + 'attr6': d['y2000'], + 'attr7': d['y2001'], + 'attr8': d['y2002'], + 'attr9': d['y2003'], + 'attr10': d['y2004'], + 'attr11': d['y2005'], + 'attr12': d['y2006'], + 'attr13': d['y2007'], + 'attr14': d['y2008'], + 'attr15': d['y2009'] } for d in self.neighbors_data] + + result = std.get_time_data(data, ['y1995', 'y1996', 'y1997', 'y1998', 'y1999', 'y2000', 'y2001', 'y2002', 'y2003', 'y2004', 'y2005', 'y2006', 'y2007', 'y2008', 'y2009']) + + ## expected was prepared from PySAL example: + ### f = ps.open(ps.examples.get_path("usjoin.csv")) + ### pci = np.array([f.by_col[str(y)] for y in range(1995, 2010)]).transpose() + ### rpci = pci / (pci.mean(axis = 0)) + + expected = np.array([[ 0.87654416, 0.863147, 0.85637567, 0.84811668, 0.8446154, 0.83271652 + , 0.83786314, 0.85012593, 0.85509656, 0.86416612, 0.87119375, 0.86302631 + , 0.86148267, 0.86252252, 0.86746356], + [ 0.9188951, 0.91757931, 0.92333258, 0.92517289, 0.92552388, 0.90746978 + , 0.89830489, 0.89431991, 0.88924794, 0.89815176, 0.91832091, 0.91706054 + , 0.90139505, 0.87897455, 0.86216858], + [ 0.82591007, 0.82548596, 0.81989793, 0.81503235, 0.81731522, 0.78964559 + , 0.80584442, 0.8084998, 0.82258551, 0.82668196, 0.82373724, 0.81814804 + , 0.83675961, 0.83574199, 0.84647177], + [ 1.09088176, 1.08537689, 1.08456418, 1.08415404, 1.09898841, 1.14506948 + , 1.12151133, 1.11160697, 1.10888621, 1.11399806, 1.12168029, 1.13164797 + , 1.12958508, 1.11371818, 1.09936775], + [ 1.10731446, 1.11373944, 1.13283638, 1.14472559, 1.15910025, 1.16898201 + , 1.17212488, 1.14752303, 1.11843284, 1.11024964, 1.11943471, 1.11736468 + , 1.10863242, 1.09642516, 1.07762337], + [ 1.42269757, 1.42118434, 1.44273502, 1.43577571, 1.44400684, 1.44184737 + , 1.44782832, 1.41978227, 1.39092208, 1.4059372, 1.40788646, 1.44052766 + , 1.45241216, 1.43306098, 1.4174431 ], + [ 1.13073885, 1.13110513, 1.11074708, 1.13364636, 1.13088149, 1.10888138 + , 1.11856629, 1.13062931, 1.11944984, 1.12446239, 1.11671008, 1.10880034 + , 1.08401709, 1.06959206, 1.07875225], + [ 1.04706124, 1.04516831, 1.04253372, 1.03239987, 1.02072545, 0.99854316 + , 0.9880258, 0.99669587, 0.99327676, 1.01400905, 1.03176742, 1.040511 + , 1.01749645, 0.9936394, 0.98279746], + [ 0.98996986, 1.00143564, 0.99491, 1.00188408, 1.00455845, 0.99127006 + , 0.97925917, 0.9683482, 0.95335147, 0.93694787, 0.94308213, 0.92232874 + , 0.91284091, 0.89689833, 0.88928858], + [ 0.87418391, 0.86416601, 0.84425695, 0.8404494, 0.83903044, 0.8578708 + , 0.86036185, 0.86107306, 0.8500772, 0.86981998, 0.86837929, 0.87204141 + , 0.86633032, 0.84946077, 0.83287146], + [ 1.14196118, 1.14660262, 1.14892712, 1.14909594, 1.14436624, 1.14450183 + , 1.12349752, 1.12596664, 1.12213996, 1.1119989, 1.10257792, 1.10491258 + , 1.11059842, 1.10509795, 1.10020097], + [ 0.97282463, 0.96700147, 0.96252588, 0.9653878, 0.96057687, 0.95831051 + , 0.94480909, 0.94804195, 0.95430286, 0.94103989, 0.92122519, 0.91010201 + , 0.89280392, 0.89298243, 0.89165385], + [ 0.94325468, 0.96436902, 0.96455242, 0.95243009, 0.94117647, 0.9480927 + , 0.93539182, 0.95388718, 0.94597005, 0.96918424, 0.94781281, 0.93466815 + , 0.94281559, 0.96520315, 0.96715441], + [ 0.97478408, 0.98169225, 0.98712809, 0.98474769, 0.98559897, 0.98687073 + , 0.99237486, 0.98209969, 0.9877653, 0.97399471, 0.96910087, 0.98416665 + , 0.98423613, 0.99823861, 0.99545704], + [ 0.85570269, 0.85575915, 0.85986132, 0.85693406, 0.8538012, 0.86191535 + , 0.84981451, 0.85472102, 0.84564835, 0.83998883, 0.83478547, 0.82803648 + , 0.8198736, 0.82265395, 0.8399404 ], + [ 0.87022047, 0.85996258, 0.85961813, 0.85689572, 0.83947136, 0.82785597 + , 0.86008789, 0.86776298, 0.86720209, 0.8676334, 0.89179317, 0.94202108 + , 0.9422231, 0.93902708, 0.94479184], + [ 0.90134907, 0.90407738, 0.90403991, 0.90201769, 0.90399238, 0.90906632 + , 0.92693339, 0.93695966, 0.94242697, 0.94338265, 0.91981796, 0.91108804 + , 0.90543476, 0.91737138, 0.94793657], + [ 1.1977611, 1.18222564, 1.18439158, 1.18267865, 1.19286723, 1.20172869 + , 1.21328691, 1.22624778, 1.22397075, 1.23857042, 1.24419893, 1.23929384 + , 1.23418676, 1.23626739, 1.26754398], + [ 1.24919678, 1.25754773, 1.26991161, 1.28020651, 1.30625667, 1.34790023 + , 1.34399863, 1.32575181, 1.30795492, 1.30544841, 1.30303302, 1.32107766 + , 1.32936244, 1.33001241, 1.33288462], + [ 1.06768004, 1.03799276, 1.03637303, 1.02768449, 1.03296093, 1.05059016 + , 1.03405057, 1.02747623, 1.03162734, 0.9961416, 0.97356208, 0.94241549 + , 0.92754547, 0.92549227, 0.92138102], + [ 1.09475614, 1.11526796, 1.11654299, 1.13103948, 1.13143264, 1.13889622 + , 1.12442212, 1.13367018, 1.13982256, 1.14029944, 1.11979401, 1.10905389 + , 1.10577769, 1.11166825, 1.09985155], + [ 0.76530058, 0.76612841, 0.76542451, 0.76722683, 0.76014284, 0.74480073 + , 0.76098396, 0.76156903, 0.76651952, 0.76533288, 0.78205934, 0.76842416 + , 0.77487118, 0.77768683, 0.78801192], + [ 0.98391336, 0.98075816, 0.98295341, 0.97386015, 0.96913803, 0.97370819 + , 0.96419154, 0.97209861, 0.97441313, 0.96356162, 0.94745352, 0.93965462 + , 0.93069645, 0.94020973, 0.94358232], + [ 0.83561828, 0.82298088, 0.81738502, 0.81748588, 0.80904801, 0.80071489 + , 0.83358256, 0.83451613, 0.85175032, 0.85954307, 0.86790024, 0.87170334 + , 0.87863799, 0.87497981, 0.87888675], + [ 0.98845573, 1.02092428, 0.99665283, 0.99141823, 0.99386619, 0.98733195 + , 0.99644997, 0.99669587, 1.02559097, 1.01116651, 0.99988024, 0.97906749 + , 0.99323123, 1.00204939, 0.99602148], + [ 1.14930913, 1.15241949, 1.14300962, 1.14265542, 1.13984683, 1.08312397 + , 1.05192626, 1.04230892, 1.05577278, 1.08569751, 1.12443486, 1.08891079 + , 1.08603695, 1.05997314, 1.02160943], + [ 1.11368269, 1.1057147, 1.11893431, 1.13778669, 1.1432272, 1.18257029 + , 1.16226243, 1.16009196, 1.14467789, 1.14820235, 1.12386598, 1.12680236 + , 1.12357937, 1.1159258, 1.12570828], + [ 1.30379431, 1.30752186, 1.31206366, 1.31532267, 1.30625667, 1.31210239 + , 1.29989156, 1.29203193, 1.27183516, 1.26830786, 1.2617743, 1.28656675 + , 1.29734097, 1.29390205, 1.29345446], + [ 0.83953719, 0.82701448, 0.82006005, 0.81188876, 0.80294864, 0.78772975 + , 0.82848011, 0.8259679, 0.82435705, 0.83108634, 0.84373784, 0.83891093 + , 0.84349247, 0.85637272, 0.86539395], + [ 1.23450087, 1.2426022, 1.23537935, 1.23581293, 1.24522626, 1.2256767 + , 1.21126648, 1.19377804, 1.18355337, 1.19674434, 1.21536573, 1.23653297 + , 1.27962009, 1.27968392, 1.25907738], + [ 0.9769662, 0.97400719, 0.98035944, 0.97581531, 0.95543282, 0.96480308 + , 0.94686376, 0.93679073, 0.92540049, 0.92988835, 0.93442917, 0.92100464 + , 0.91475304, 0.90249622, 0.9021363 ], + [ 0.84986886, 0.8986851, 0.84295997, 0.87280534, 0.85659368, 0.88937573 + , 0.894401, 0.90448993, 0.95495898, 0.92698333, 0.94745352, 0.92562488 + , 0.96635366, 1.02520312, 1.0394296 ], + [ 1.01922808, 1.00258203, 1.00974428, 1.00303417, 0.99765073, 1.00759019 + , 0.99192968, 0.99747298, 0.99550759, 0.97583768, 0.9610168, 0.94779638 + , 0.93759089, 0.93353431, 0.94121705], + [ 0.86367411, 0.85558932, 0.85544346, 0.85103025, 0.84336613, 0.83434854 + , 0.85813595, 0.84667961, 0.84374558, 0.85951183, 0.87194227, 0.89455097 + , 0.88283929, 0.90349491, 0.90600675], + [ 1.00947534, 1.00411055, 1.00698819, 0.99513687, 0.99291086, 1.00581626 + , 0.98850522, 0.99291168, 0.98983209, 0.97511924, 0.96134615, 0.96382634 + , 0.95011401, 0.9434686, 0.94637765], + [ 1.05712571, 1.05459419, 1.05753012, 1.04880786, 1.05103857, 1.04800023 + , 1.03024941, 1.04200483, 1.0402554, 1.03296979, 1.02191682, 1.02476275 + , 1.02347523, 1.02517684, 1.04359571], + [ 1.07084189, 1.06669497, 1.07937623, 1.07387988, 1.0794043, 1.0531801 + , 1.07452771, 1.09383478, 1.1052447, 1.10322136, 1.09167939, 1.08772756 + , 1.08859544, 1.09177338, 1.1096083 ], + [ 0.86719222, 0.86628896, 0.86675156, 0.86425632, 0.86511809, 0.86287327 + , 0.85169796, 0.85411285, 0.84886336, 0.84517414, 0.84843858, 0.84488343 + , 0.83374329, 0.82812044, 0.82878599], + [ 0.88389211, 0.92288667, 0.90282398, 0.91229186, 0.92023286, 0.92652175 + , 0.94278865, 0.93682452, 0.98655146, 0.992237, 0.9798497, 0.93869677 + , 0.96947771, 1.00362626, 0.98102351], + [ 0.97082064, 0.95320233, 0.94534081, 0.94215593, 0.93967, 0.93092109 + , 0.92662519, 0.93412152, 0.93501274, 0.92879506, 0.92110542, 0.91035556 + , 0.90430364, 0.89994694, 0.90073864], + [ 0.95861858, 0.95774543, 0.98254811, 0.98919472, 0.98684824, 0.98882205 + , 0.97662234, 0.95601578, 0.94905385, 0.94934888, 0.97152609, 0.97163004 + , 0.9700702, 0.97158948, 0.95884908], + [ 0.83980439, 0.84726737, 0.85747, 0.85467221, 0.8556751, 0.84818516 + , 0.85265681, 0.84502402, 0.82645665, 0.81743586, 0.83550406, 0.83338919 + , 0.83511679, 0.82136617, 0.80921874], + [ 0.95118156, 0.9466212, 0.94688098, 0.9508583, 0.9512441, 0.95440787 + , 0.96364363, 0.96804412, 0.97136214, 0.97583768, 0.95571724, 0.96895368 + , 0.97001634, 0.97082733, 0.98782366], + [ 1.08910044, 1.08248968, 1.08492895, 1.08656923, 1.09454249, 1.10558188 + , 1.1214086, 1.12292577, 1.13021031, 1.13342735, 1.14686068, 1.14502975 + , 1.14474747, 1.14084037, 1.16142926], + [ 1.06336033, 1.07365823, 1.08691496, 1.09764846, 1.11669863, 1.11856702 + , 1.09764283, 1.08815849, 1.08044313, 1.09278827, 1.07003204, 1.08398066 + , 1.09831768, 1.09298232, 1.09176125], + [ 0.79772065, 0.78829196, 0.78581151, 0.77615922, 0.77035744, 0.77751194 + , 0.79902974, 0.81437881, 0.80788828, 0.79603865, 0.78966436, 0.79949807 + , 0.80172182, 0.82168155, 0.85587911], + [ 1.0052447, 1.00007696, 1.00475899, 1.00613942, 1.00639561, 1.00162979 + , 0.99860739, 1.00814981, 1.00574316, 0.99030032, 0.97682565, 0.97292596 + , 0.96519561, 0.96173403, 0.95890284], + [ 0.95808419, 0.9382568, 0.9654441, 0.95561201, 0.96987289, 0.96608031 + , 0.99727185, 1.00781194, 1.03484236, 1.05333619, 1.0983263, 1.1704974 + , 1.17025154, 1.18730553, 1.14242645]]) + + self.assertTrue(np.allclose(result, expected)) + self.assertTrue(type(result) == type(expected)) + self.assertTrue(result.shape == expected.shape) + + def test_rebin_data(self): + """Test rebin_data""" + ## sample in double the time (even case since 10 % 2 = 0): + ## (0+1)/2, (2+3)/2, (4+5)/2, (6+7)/2, (8+9)/2 + ## = 0.5, 2.5, 4.5, 6.5, 8.5 + ans_even = np.array([(i + 0.5) * np.ones(10, dtype=float) + for i in range(0, 10, 2)]).T + + self.assertTrue(np.array_equal(std.rebin_data(self.time_data, 2), ans_even)) + + ## sample in triple the time (uneven since 10 % 3 = 1): + ## (0+1+2)/3, (3+4+5)/3, (6+7+8)/3, (9)/1 + ## = 1, 4, 7, 9 + ans_odd = np.array([i * np.ones(10, dtype=float) + for i in (1, 4, 7, 9)]).T + self.assertTrue(np.array_equal(std.rebin_data(self.time_data, 3), ans_odd)) + + def test_get_prob_dist(self): + """Test get_prob_dist""" + lag_indices = np.array([1, 2, 3, 4]) + unit_indices = np.array([1, 3, 2, 4]) + answer = np.array([ + [ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ], + [ 0. , 0. , 0.09411765, 0.87058824, 0.03529412], + [ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ], + [ 0. , 0. , 0. , 0.02352941, 0.97647059] + ]) + result = std.get_prob_dist(self.transition_matrix, lag_indices, unit_indices) + + self.assertTrue(np.array_equal(result, answer)) + + def test_get_prob_stats(self): + """Test get_prob_stats""" + + probs = np.array([ + [ 0.0754717 , 0.88207547, 0.04245283, 0. , 0. ], + [ 0. , 0. , 0.09411765, 0.87058824, 0.03529412], + [ 0.0049505 , 0.09405941, 0.77722772, 0.11881188, 0.0049505 ], + [ 0. , 0. , 0. , 0.02352941, 0.97647059] + ]) + unit_indices = np.array([1, 3, 2, 4]) + answer_up = np.array([0.04245283, 0.03529412, 0.12376238, 0.]) + answer_down = np.array([0.0754717, 0.09411765, 0.0990099, 0.02352941]) + answer_trend = np.array([-0.03301887 / 0.88207547, -0.05882353 / 0.87058824, 0.02475248 / 0.77722772, -0.02352941 / 0.97647059]) + answer_volatility = np.array([ 0.34221495, 0.33705421, 0.29226542, 0.38834223]) + + result = std.get_prob_stats(probs, unit_indices) + result_up = result[0] + result_down = result[1] + result_trend = result[2] + result_volatility = result[3] + + self.assertTrue(np.allclose(result_up, answer_up)) + self.assertTrue(np.allclose(result_down, answer_down)) + self.assertTrue(np.allclose(result_trend, answer_trend)) + self.assertTrue(np.allclose(result_volatility, answer_volatility)) diff --git a/src/pg/crankshaft.control b/src/pg/crankshaft.control index 01088b1..876fadc 100644 --- a/src/pg/crankshaft.control +++ b/src/pg/crankshaft.control @@ -1,5 +1,5 @@ comment = 'CartoDB Spatial Analysis extension' -default_version = '0.0.4' +default_version = '0.1.0' requires = 'plpythonu, postgis' superuser = true schema = cdb_crankshaft From 3d99d1f9bf97136b530306780c838eed2f00a5a5 Mon Sep 17 00:00:00 2001 From: Rafa de la Torre Date: Wed, 29 Jun 2016 17:39:57 +0000 Subject: [PATCH 7/9] Add upgrade and downgrade files for 0.1.0 --- release/crankshaft--0.0.4--0.1.0.sql | 258 +++++++++++++++++++++++++++ release/crankshaft--0.1.0--0.0.4.sql | 81 +++++++++ 2 files changed, 339 insertions(+) create mode 100644 release/crankshaft--0.0.4--0.1.0.sql create mode 100644 release/crankshaft--0.1.0--0.0.4.sql diff --git a/release/crankshaft--0.0.4--0.1.0.sql b/release/crankshaft--0.0.4--0.1.0.sql new file mode 100644 index 0000000..5a67163 --- /dev/null +++ b/release/crankshaft--0.0.4--0.1.0.sql @@ -0,0 +1,258 @@ +--DO NOT MODIFY THIS FILE, IT IS GENERATED FROM SOURCES + +-- Complain if script is sourced in psql, rather than via CREATE EXTENSION +\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit + +-------------------------------------------------------------------------------- + +-- Version number of the extension release +CREATE OR REPLACE FUNCTION cdb_crankshaft_version() +RETURNS text AS $$ + SELECT '0.1.0'::text; +$$ language 'sql' STABLE STRICT; + +-------------------------------------------------------------------------------- + +-- PyAgg stuff +CREATE OR REPLACE FUNCTION + CDB_PyAggS(current_state Numeric[], current_row Numeric[]) + returns NUMERIC[] as $$ + BEGIN + if array_upper(current_state,1) is null then + RAISE NOTICE 'setting state %',array_upper(current_row,1); + current_state[1] = array_upper(current_row,1); + end if; + return array_cat(current_state,current_row) ; + END + $$ LANGUAGE plpgsql; + + +CREATE AGGREGATE CDB_PyAgg(NUMERIC[])( + SFUNC = CDB_PyAggS, + STYPE = Numeric[], + INITCOND = "{}" +); + +-------------------------------------------------------------------------------- + +-- Segmentation stuff +CREATE OR REPLACE FUNCTION + CDB_CreateAndPredictSegment( + target NUMERIC[], + features NUMERIC[], + target_features NUMERIC[], + target_ids NUMERIC[], + n_estimators INTEGER DEFAULT 1200, + max_depth INTEGER DEFAULT 3, + subsample DOUBLE PRECISION DEFAULT 0.5, + learning_rate DOUBLE PRECISION DEFAULT 0.01, + min_samples_leaf INTEGER DEFAULT 1) +RETURNS TABLE(cartodb_id NUMERIC, prediction NUMERIC, accuracy NUMERIC) +AS $$ + import numpy as np + import plpy + + from crankshaft.segmentation import create_and_predict_segment_agg + model_params = {'n_estimators': n_estimators, + 'max_depth': max_depth, + 'subsample': subsample, + 'learning_rate': learning_rate, + 'min_samples_leaf': min_samples_leaf} + + def unpack2D(data): + dimension = data.pop(0) + a = np.array(data, dtype=float) + return a.reshape(len(a)/dimension, dimension) + + return create_and_predict_segment_agg(np.array(target, dtype=float), + unpack2D(features), + unpack2D(target_features), + target_ids, + model_params) + +$$ LANGUAGE plpythonu; + +CREATE OR REPLACE FUNCTION + CDB_CreateAndPredictSegment ( + query TEXT, + variable_name TEXT, + target_table TEXT, + n_estimators INTEGER DEFAULT 1200, + max_depth INTEGER DEFAULT 3, + subsample DOUBLE PRECISION DEFAULT 0.5, + learning_rate DOUBLE PRECISION DEFAULT 0.01, + min_samples_leaf INTEGER DEFAULT 1) +RETURNS TABLE (cartodb_id TEXT, prediction NUMERIC, accuracy NUMERIC) +AS $$ + from crankshaft.segmentation import create_and_predict_segment + model_params = {'n_estimators': n_estimators, 'max_depth':max_depth, 'subsample' : subsample, 'learning_rate': learning_rate, 'min_samples_leaf' : min_samples_leaf} + return create_and_predict_segment(query,variable_name,target_table, model_params) +$$ LANGUAGE plpythonu; + +-------------------------------------------------------------------------------- + +-- Spatial interpolation + +-- 0: nearest neighbor +-- 1: barymetric +-- 2: IDW + +CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation( + IN query text, + IN point geometry, + IN method integer DEFAULT 1, + IN p1 numeric DEFAULT 0, + IN p2 numeric DEFAULT 0 + ) +RETURNS numeric AS +$$ +DECLARE + gs geometry[]; + vs numeric[]; + output numeric; +BEGIN + EXECUTE 'WITH a AS('||query||') SELECT array_agg(the_geom), array_agg(attrib) FROM a' INTO gs, vs; + SELECT CDB_SpatialInterpolation(gs, vs, point, method, p1,p2) INTO output FROM a; + + RETURN output; +END; +$$ +language plpgsql IMMUTABLE; + +CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation( + IN geomin geometry[], + IN colin numeric[], + IN point geometry, + IN method integer DEFAULT 1, + IN p1 numeric DEFAULT 0, + IN p2 numeric DEFAULT 0 + ) +RETURNS numeric AS +$$ +DECLARE + gs geometry[]; + vs numeric[]; + gs2 geometry[]; + vs2 numeric[]; + g geometry; + vertex geometry[]; + sg numeric; + sa numeric; + sb numeric; + sc numeric; + va numeric; + vb numeric; + vc numeric; + output numeric; +BEGIN + output := -999.999; + -- nearest + IF method = 0 THEN + + WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v) + SELECT a.v INTO output FROM a ORDER BY point<->a.g LIMIT 1; + RETURN output; + + -- barymetric + ELSIF method = 1 THEN + WITH a as (SELECT unnest(geomin) AS e), + b as (SELECT ST_DelaunayTriangles(ST_Collect(a.e),0.001, 0) AS t FROM a), + c as (SELECT (ST_Dump(t)).geom as v FROM b), + d as (SELECT v FROM c WHERE ST_Within(point, v)) + SELECT v INTO g FROM d; + IF g is null THEN + -- out of the realm of the input data + RETURN -888.888; + END IF; + -- vertex of the selected cell + WITH a AS (SELECT (ST_DumpPoints(g)).geom AS v) + SELECT array_agg(v) INTO vertex FROM a; + + -- retrieve the value of each vertex + WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c) + SELECT c INTO va FROM a WHERE ST_Equals(geo, vertex[1]); + WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c) + SELECT c INTO vb FROM a WHERE ST_Equals(geo, vertex[2]); + WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c) + SELECT c INTO vc FROM a WHERE ST_Equals(geo, vertex[3]); + + SELECT ST_area(g), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[2], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[1], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point,vertex[1],vertex[2], point]))) INTO sg, sa, sb, sc; + + output := (coalesce(sa,0) * coalesce(va,0) + coalesce(sb,0) * coalesce(vb,0) + coalesce(sc,0) * coalesce(vc,0)) / coalesce(sg); + RETURN output; + + -- IDW + -- p1: limit the number of neighbors, 0->no limit + -- p2: order of distance decay, 0-> order 1 + ELSIF method = 2 THEN + + IF p2 = 0 THEN + p2 := 1; + END IF; + + WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v), + b as (SELECT a.g, a.v FROM a ORDER BY point<->a.g) + SELECT array_agg(b.g), array_agg(b.v) INTO gs, vs FROM b; + IF p1::integer>0 THEN + gs2:=gs; + vs2:=vs; + FOR i IN 1..p1 + LOOP + gs2 := gs2 || gs[i]; + vs2 := vs2 || vs[i]; + END LOOP; + ELSE + gs2:=gs; + vs2:=vs; + END IF; + + WITH a as (SELECT unnest(gs2) as g, unnest(vs2) as v), + b as ( + SELECT + (1/ST_distance(point, a.g)^p2::integer) as k, + (a.v/ST_distance(point, a.g)^p2::integer) as f + FROM a + ) + SELECT sum(b.f)/sum(b.k) INTO output FROM b; + RETURN output; + + END IF; + + RETURN -777.777; + +END; +$$ +language plpgsql IMMUTABLE; + + +-------------------------------------------------------------------------------- + +-- Spatial Markov + +-- input table format: +-- id | geom | date_1 | date_2 | date_3 +-- 1 | Pt1 | 12.3 | 13.1 | 14.2 +-- 2 | Pt2 | 11.0 | 13.2 | 12.5 +-- ... +-- Sample Function call: +-- SELECT CDB_SpatialMarkov('SELECT * FROM real_estate', +-- Array['date_1', 'date_2', 'date_3']) + +CREATE OR REPLACE FUNCTION + CDB_SpatialMarkovTrend ( + subquery TEXT, + time_cols TEXT[], + num_classes INT DEFAULT 7, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id') +RETURNS TABLE (trend NUMERIC, trend_up NUMERIC, trend_down NUMERIC, volatility NUMERIC, rowid INT) +AS $$ + + from crankshaft.space_time_dynamics import spatial_markov_trend + + ## TODO: use named parameters or a dictionary + return spatial_markov_trend(subquery, time_cols, num_classes, w_type, num_ngbrs, permutations, geom_col, id_col) +$$ LANGUAGE plpythonu; diff --git a/release/crankshaft--0.1.0--0.0.4.sql b/release/crankshaft--0.1.0--0.0.4.sql new file mode 100644 index 0000000..4e53dee --- /dev/null +++ b/release/crankshaft--0.1.0--0.0.4.sql @@ -0,0 +1,81 @@ +--DO NOT MODIFY THIS FILE, IT IS GENERATED FROM SOURCES + +-- Complain if script is sourced in psql, rather than via CREATE EXTENSION +\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit + +-------------------------------------------------------------------------------- + +-- Version number of the extension release +CREATE OR REPLACE FUNCTION cdb_crankshaft_version() +RETURNS text AS $$ + SELECT '0.0.4'::text; +$$ language 'sql' STABLE STRICT; + +-------------------------------------------------------------------------------- + +-- PyAgg stuff +DROP FUNCTION CDB_PyAggS(Numeric[], Numeric[]); +DROP AGGREGATE CDB_PyAgg(NUMERIC[]); + +-------------------------------------------------------------------------------- + +-- Segmentation stuff + +DROP FUNCTION + CDB_CreateAndPredictSegment( + target NUMERIC[], + features NUMERIC[], + target_features NUMERIC[], + target_ids NUMERIC[], + n_estimators INTEGER DEFAULT 1200, + max_depth INTEGER DEFAULT 3, + subsample DOUBLE PRECISION DEFAULT 0.5, + learning_rate DOUBLE PRECISION DEFAULT 0.01, + min_samples_leaf INTEGER DEFAULT 1); + +DROP FUNCTION + CDB_CreateAndPredictSegment ( + query TEXT, + variable_name TEXT, + target_table TEXT, + n_estimators INTEGER DEFAULT 1200, + max_depth INTEGER DEFAULT 3, + subsample DOUBLE PRECISION DEFAULT 0.5, + learning_rate DOUBLE PRECISION DEFAULT 0.01, + min_samples_leaf INTEGER DEFAULT 1); + +-------------------------------------------------------------------------------- + +-- Spatial interpolation + +DROP FUNCTION CDB_SpatialInterpolation( + IN query text, + IN point geometry, + IN method integer DEFAULT 1, + IN p1 numeric DEFAULT 0, + IN p2 numeric DEFAULT 0 + ); + +DROP FUNCTION CDB_SpatialInterpolation( + IN geomin geometry[], + IN colin numeric[], + IN point geometry, + IN method integer DEFAULT 1, + IN p1 numeric DEFAULT 0, + IN p2 numeric DEFAULT 0 + ); + +-------------------------------------------------------------------------------- + +-- Spatial Markov + +DROP FUNCTION + CDB_SpatialMarkovTrend ( + subquery TEXT, + time_cols TEXT[], + num_classes INT DEFAULT 7, + w_type TEXT DEFAULT 'knn', + num_ngbrs INT DEFAULT 5, + permutations INT DEFAULT 99, + geom_col TEXT DEFAULT 'the_geom', + id_col TEXT DEFAULT 'cartodb_id'); From c8871a55475c7d0e514a9670967e3ee0dee06e8a Mon Sep 17 00:00:00 2001 From: Rafa de la Torre Date: Wed, 29 Jun 2016 19:52:01 +0200 Subject: [PATCH 8/9] Remove the DEFAULT values in DROP FUNCTION's --- release/crankshaft--0.1.0--0.0.4.sql | 44 ++++++++++++++-------------- 1 file changed, 22 insertions(+), 22 deletions(-) diff --git a/release/crankshaft--0.1.0--0.0.4.sql b/release/crankshaft--0.1.0--0.0.4.sql index 4e53dee..01bb059 100644 --- a/release/crankshaft--0.1.0--0.0.4.sql +++ b/release/crankshaft--0.1.0--0.0.4.sql @@ -27,22 +27,22 @@ DROP FUNCTION features NUMERIC[], target_features NUMERIC[], target_ids NUMERIC[], - n_estimators INTEGER DEFAULT 1200, - max_depth INTEGER DEFAULT 3, - subsample DOUBLE PRECISION DEFAULT 0.5, - learning_rate DOUBLE PRECISION DEFAULT 0.01, - min_samples_leaf INTEGER DEFAULT 1); + n_estimators INTEGER, + max_depth INTEGER, + subsample DOUBLE PRECISION, + learning_rate DOUBLE PRECISION, + min_samples_leaf INTEGER); DROP FUNCTION CDB_CreateAndPredictSegment ( query TEXT, variable_name TEXT, target_table TEXT, - n_estimators INTEGER DEFAULT 1200, - max_depth INTEGER DEFAULT 3, - subsample DOUBLE PRECISION DEFAULT 0.5, - learning_rate DOUBLE PRECISION DEFAULT 0.01, - min_samples_leaf INTEGER DEFAULT 1); + n_estimators INTEGER, + max_depth INTEGER, + subsample DOUBLE PRECISION, + learning_rate DOUBLE PRECISION, + min_samples_leaf INTEGER); -------------------------------------------------------------------------------- @@ -51,18 +51,18 @@ DROP FUNCTION DROP FUNCTION CDB_SpatialInterpolation( IN query text, IN point geometry, - IN method integer DEFAULT 1, - IN p1 numeric DEFAULT 0, - IN p2 numeric DEFAULT 0 + IN method integer, + IN p1 numeric, + IN p2 numeric ); DROP FUNCTION CDB_SpatialInterpolation( IN geomin geometry[], IN colin numeric[], IN point geometry, - IN method integer DEFAULT 1, - IN p1 numeric DEFAULT 0, - IN p2 numeric DEFAULT 0 + IN method integer, + IN p1 numeric, + IN p2 numeric ); -------------------------------------------------------------------------------- @@ -73,9 +73,9 @@ DROP FUNCTION CDB_SpatialMarkovTrend ( subquery TEXT, time_cols TEXT[], - num_classes INT DEFAULT 7, - w_type TEXT DEFAULT 'knn', - num_ngbrs INT DEFAULT 5, - permutations INT DEFAULT 99, - geom_col TEXT DEFAULT 'the_geom', - id_col TEXT DEFAULT 'cartodb_id'); + num_classes INT, + w_type TEXT, + num_ngbrs INT, + permutations INT, + geom_col TEXT, + id_col TEXT); From c21fcdf69a29d7363ee8c667d5c3f5503b0600d6 Mon Sep 17 00:00:00 2001 From: Rafa de la Torre Date: Wed, 29 Jun 2016 20:01:40 +0200 Subject: [PATCH 9/9] Drop objects in reverse order in downgrade script Otherwise it fails downgrading, despite it is supposed to run everything in the context of a transaction: ``` tests=# alter extension crankshaft update to '0.0.4'; ERROR: cannot drop function cdb_pyaggs(numeric[],numeric[]) because other objects depend on it DETAIL: extension crankshaft depends on function cdb_pyaggs(numeric[],numeric[]) HINT: Use DROP ... CASCADE to drop the dependent objects too. ``` --- release/crankshaft--0.1.0--0.0.4.sql | 112 +++++++++++++-------------- 1 file changed, 56 insertions(+), 56 deletions(-) diff --git a/release/crankshaft--0.1.0--0.0.4.sql b/release/crankshaft--0.1.0--0.0.4.sql index 01bb059..983dbce 100644 --- a/release/crankshaft--0.1.0--0.0.4.sql +++ b/release/crankshaft--0.1.0--0.0.4.sql @@ -3,8 +3,6 @@ -- Complain if script is sourced in psql, rather than via CREATE EXTENSION \echo Use "CREATE EXTENSION crankshaft" to load this file. \quit --------------------------------------------------------------------------------- - -- Version number of the extension release CREATE OR REPLACE FUNCTION cdb_crankshaft_version() RETURNS text AS $$ @@ -13,60 +11,6 @@ $$ language 'sql' STABLE STRICT; -------------------------------------------------------------------------------- --- PyAgg stuff -DROP FUNCTION CDB_PyAggS(Numeric[], Numeric[]); -DROP AGGREGATE CDB_PyAgg(NUMERIC[]); - --------------------------------------------------------------------------------- - --- Segmentation stuff - -DROP FUNCTION - CDB_CreateAndPredictSegment( - target NUMERIC[], - features NUMERIC[], - target_features NUMERIC[], - target_ids NUMERIC[], - n_estimators INTEGER, - max_depth INTEGER, - subsample DOUBLE PRECISION, - learning_rate DOUBLE PRECISION, - min_samples_leaf INTEGER); - -DROP FUNCTION - CDB_CreateAndPredictSegment ( - query TEXT, - variable_name TEXT, - target_table TEXT, - n_estimators INTEGER, - max_depth INTEGER, - subsample DOUBLE PRECISION, - learning_rate DOUBLE PRECISION, - min_samples_leaf INTEGER); - --------------------------------------------------------------------------------- - --- Spatial interpolation - -DROP FUNCTION CDB_SpatialInterpolation( - IN query text, - IN point geometry, - IN method integer, - IN p1 numeric, - IN p2 numeric - ); - -DROP FUNCTION CDB_SpatialInterpolation( - IN geomin geometry[], - IN colin numeric[], - IN point geometry, - IN method integer, - IN p1 numeric, - IN p2 numeric - ); - --------------------------------------------------------------------------------- - -- Spatial Markov DROP FUNCTION @@ -79,3 +23,59 @@ DROP FUNCTION permutations INT, geom_col TEXT, id_col TEXT); + + +-------------------------------------------------------------------------------- + +-- Spatial interpolation + +DROP FUNCTION CDB_SpatialInterpolation( + IN geomin geometry[], + IN colin numeric[], + IN point geometry, + IN method integer, + IN p1 numeric, + IN p2 numeric + ); + +DROP FUNCTION CDB_SpatialInterpolation( + IN query text, + IN point geometry, + IN method integer, + IN p1 numeric, + IN p2 numeric + ); + +-------------------------------------------------------------------------------- + +-- Segmentation stuff + +DROP FUNCTION + CDB_CreateAndPredictSegment ( + query TEXT, + variable_name TEXT, + target_table TEXT, + n_estimators INTEGER, + max_depth INTEGER, + subsample DOUBLE PRECISION, + learning_rate DOUBLE PRECISION, + min_samples_leaf INTEGER); + +DROP FUNCTION + CDB_CreateAndPredictSegment( + target NUMERIC[], + features NUMERIC[], + target_features NUMERIC[], + target_ids NUMERIC[], + n_estimators INTEGER, + max_depth INTEGER, + subsample DOUBLE PRECISION, + learning_rate DOUBLE PRECISION, + min_samples_leaf INTEGER); + +-------------------------------------------------------------------------------- + +-- PyAgg stuff + +DROP AGGREGATE CDB_PyAgg(NUMERIC[]); +DROP FUNCTION CDB_PyAggS(Numeric[], Numeric[]); \ No newline at end of file