updated function flow without significance

This commit is contained in:
Andy Eschbacher 2016-03-22 10:42:06 -04:00
parent 3eda8ecd16
commit 1578b17eb8

View File

@ -11,7 +11,51 @@ import plpy
# High level interface --------------------------------------- # High level interface ---------------------------------------
def moran_local(subquery, attr, significance, num_ngbrs, permutations, geom_column, id_col, w_type): def moran(subquery, attr_name, permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I (global)
Andy Eschbacher
"""
qvals = {"id_col": id_col,
"attr1": attr_name,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals)
plpy.notice('** Query: %s' % q)
try:
r = plpy.execute(q)
if (len(r) == 0) & (w_type != 'knn'):
plpy.notice('** Query returned with 0 rows, trying kNN weights')
q = get_query('knn', qvals)
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
except plpy.SPIError:
plpy.error('** Moran rate failed executing query to build weight object')
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function')
return zip([None], [None])
## if there are no neighbors, exit
if len(r) == 0:
return zip([None], [None])
## collect attributes
attr_vals = get_attributes(r, 1)
## calculate weights
weight = get_weight(r, w_type, num_ngbrs)
## calculate moran global
moran_global = ps.esda.moran.Moran(attr_vals, weight, permutations=permutations)
return zip([moran_global.I],[moran_global.EI])
def moran_local(subquery, attr, permutations, geom_col, id_col, w_type, num_ngbrs):
""" """
Moran's I implementation for PL/Python Moran's I implementation for PL/Python
Andy Eschbacher Andy Eschbacher
@ -25,8 +69,8 @@ def moran_local(subquery, attr, significance, num_ngbrs, permutations, geom_colu
# resulting in a collection of not as near neighbors # resulting in a collection of not as near neighbors
qvals = {"id_col": id_col, qvals = {"id_col": id_col,
"attr1": attr, "attr1": attr,
"geom_col": geom_column, "geom_col": geom_col,
"subquery": subquery, "subquery": subquery,
"num_ngbrs": num_ngbrs} "num_ngbrs": num_ngbrs}
@ -38,23 +82,68 @@ def moran_local(subquery, attr, significance, num_ngbrs, permutations, geom_colu
except plpy.SPIError: except plpy.SPIError:
plpy.notice('** Query failed: "%s"' % q) plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Exiting function') plpy.notice('** Exiting function')
return zip([None], [None], [None], [None]) return zip([None], [None], [None], [None], [None])
y = get_attributes(r, 1) y = get_attributes(r, 1)
w = get_weight(r, w_type) w = get_weight(r, w_type)
# calculate LISA values # calculate LISA values
lisa = ps.Moran_Local(y, w) lisa = ps.esda.moran.Moran_Local(y, w)
# find units of significance # find quadrants for each geometry
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance) quads = quad_position(lisa.q)
plpy.notice('** Finished calculations')
return zip(lisa.Is, quads, lisa.p_sim, w.id_order, lisa.y)
def moran_rate(subquery, numerator, denominator, permutations, geom_col, id_col, w_type, num_ngbrs):
"""
Moran's I Rate (global)
Andy Eschbacher
"""
qvals = {"id_col": id_col,
"attr1": numerator,
"attr2": denominator,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
q = get_query(w_type, qvals)
plpy.notice('** Query: %s' % q)
try:
r = plpy.execute(q)
if len(r) == 0:
plpy.notice('** Query returned with 0 rows, trying kNN weights')
q = get_query('knn', qvals)
r = plpy.execute(q)
plpy.notice('** Query returned with %d rows' % len(r))
except plpy.SPIError:
plpy.error('Moran rate failed executing query to build weight object')
plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function')
return zip([None], [None])
## if there are no values returned, exit
if len(r) == 0:
return zip([None], [None])
## collect attributes
numer = get_attributes(r, 1)
denom = get_attributes(r, 2)
w = get_weight(r, w_type, num_ngbrs)
## calculate moran global rate
mr = ps.esda.moran.Moran_Rate(numer, denom, w, permutations=permutations)
plpy.notice('** Finished calculations') plpy.notice('** Finished calculations')
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order) return zip([mr.I],[mr.EI])
def moran_local_rate(subquery, numerator, denominator, permutations, geom_col, id_col, w_type, num_ngbrs):
def moran_local_rate(subquery, numerator, denominator, significance, num_ngbrs, permutations, geom_column, id_col, w_type):
""" """
Moran's I Local Rate Moran's I Local Rate
Andy Eschbacher Andy Eschbacher
@ -68,7 +157,7 @@ def moran_local_rate(subquery, numerator, denominator, significance, num_ngbrs,
qvals = {"id_col": id_col, qvals = {"id_col": id_col,
"numerator": numerator, "numerator": numerator,
"denominator": denominator, "denominator": denominator,
"geom_col": geom_column, "geom_col": geom_col,
"subquery": subquery, "subquery": subquery,
"num_ngbrs": num_ngbrs} "num_ngbrs": num_ngbrs}
@ -81,7 +170,7 @@ def moran_local_rate(subquery, numerator, denominator, significance, num_ngbrs,
plpy.notice('** Query failed: "%s"' % q) plpy.notice('** Query failed: "%s"' % q)
plpy.notice('** Error: %s' % plpy.SPIError) plpy.notice('** Error: %s' % plpy.SPIError)
plpy.notice('** Exiting function') plpy.notice('** Exiting function')
return zip([None], [None], [None], [None]) return zip([None], [None], [None], [None], [None])
plpy.notice('r.nrows() = %d' % r.nrows()) plpy.notice('r.nrows() = %d' % r.nrows())
@ -95,21 +184,20 @@ def moran_local_rate(subquery, numerator, denominator, significance, num_ngbrs,
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, w, permutations=permutations) lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, w, permutations=permutations)
# find units of significance # find units of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance) quads = quad_position(lisa.q)
plpy.notice('** Finished calculations') plpy.notice('** Finished calculations')
## TODO: Decide on which return values here return zip(lisa.Is, quads, lisa.p_sim, w.id_order, lisa.y)
return zip(lisa.Is, lisa_sig, lisa.p_sim, w.id_order, lisa.y)
def moran_local_bv(t, attr1, attr2, significance, num_ngbrs, permutations, geom_column, id_col, w_type): def moran_local_bv(subquery, attr1, attr2, permutations, geom_col, id_col, w_type, num_ngbrs):
plpy.notice('** Constructing query') plpy.notice('** Constructing query')
qvals = {"num_ngbrs": num_ngbrs, qvals = {"num_ngbrs": num_ngbrs,
"attr1": attr1, "attr1": attr1,
"attr2": attr2, "attr2": attr2,
"table": t, "subquery": subquery,
"geom_col": geom_column, "geom_col": geom_col,
"id_col": id_col} "id_col": id_col}
q = get_query(w_type, qvals) q = get_query(w_type, qvals)
@ -136,7 +224,7 @@ def moran_local_bv(t, attr1, attr2, significance, num_ngbrs, permutations, geom_
plpy.notice("len of Is: %d" % len(lisa.Is)) plpy.notice("len of Is: %d" % len(lisa.Is))
# find clustering of significance # find clustering of significance
lisa_sig = lisa_sig_vals(lisa.p_sim, lisa.q, significance) lisa_sig = quad_position(lisa.q)
plpy.notice('** Finished calculations') plpy.notice('** Finished calculations')
@ -171,7 +259,7 @@ def query_attr_select(params):
""" """
attrs = [k for k in params attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs', 'subquery')] if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')]
template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, " template = "i.\"{%(col)s}\"::numeric As attr%(alias_num)s, "
@ -187,7 +275,7 @@ def query_attr_where(params):
Create portion of WHERE clauses for weeding out NULL-valued geometries Create portion of WHERE clauses for weeding out NULL-valued geometries
""" """
attrs = sorted([k for k in params attrs = sorted([k for k in params
if k not in ('id_col', 'geom_col', 'table', 'num_ngbrs', 'subquery')]) if k not in ('id_col', 'geom_col', 'subquery', 'num_ngbrs')])
attr_string = [] attr_string = []
@ -217,12 +305,12 @@ def knn(params):
"i.\"{id_col}\" As id, " \ "i.\"{id_col}\" As id, " \
"%(attr_select)s" \ "%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \ "(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"({subquery})\" As j " \ "FROM ({subquery}) As j " \
"WHERE %(attr_where_j)s " \ "WHERE %(attr_where_j)s " \
"ORDER BY j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \ "ORDER BY j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs} OFFSET 1 ) " \ "LIMIT {num_ngbrs} OFFSET 1 ) " \
") As neighbors " \ ") As neighbors " \
"FROM \"({subquery})\" As i " \ "FROM ({subquery}) As i " \
"WHERE " \ "WHERE " \
"%(attr_where_i)s " \ "%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements "ORDER BY i.\"{id_col}\" ASC;" % replacements
@ -245,11 +333,11 @@ def queen(params):
"i.\"{id_col}\" As id, " \ "i.\"{id_col}\" As id, " \
"%(attr_select)s" \ "%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \ "(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM \"({subquery})\" As j " \ "FROM ({subquery}) As j " \
"WHERE ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \ "WHERE ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \ "%(attr_where_j)s)" \
") As neighbors " \ ") As neighbors " \
"FROM \"({subquery})\" As i " \ "FROM ({subquery}) As i " \
"WHERE " \ "WHERE " \
"%(attr_where_i)s " \ "%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements "ORDER BY i.\"{id_col}\" ASC;" % replacements
@ -285,10 +373,10 @@ def get_weight(query_res, w_type='queen', num_ngbrs=5):
if w_type == 'knn': if w_type == 'knn':
row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
weights = {x['id']: row_normed_weights for x in query_res} weights = {x['id']: row_normed_weights for x in query_res}
elif w_type == 'queen': else:
weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors']) weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
if len(x['neighbors']) > 0 if len(x['neighbors']) > 0
else [] for x in query_res} else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res} neighbors = {x['id']: x['neighbors'] for x in query_res}
@ -302,20 +390,3 @@ def quad_position(quads):
lisa_sig = np.array([map_quads(q) for q in quads]) lisa_sig = np.array([map_quads(q) for q in quads])
return lisa_sig return lisa_sig
def lisa_sig_vals(pvals, quads, threshold):
"""
Produce Moran's I classification based of n
"""
sig = (pvals <= threshold)
lisa_sig = np.empty(len(sig), np.chararray)
for idx, val in enumerate(sig):
if val:
lisa_sig[idx] = map_quads(quads[idx])
else:
lisa_sig[idx] = 'Not significant'
return lisa_sig