fixing errors in documentatio
This commit is contained in:
parent
5f98735ce9
commit
068c80f369
@ -50,6 +50,12 @@ This function trains a [Gradient Boosting](http://scikit-learn.org/stable/module
|
||||
| train\_features| numeric[] | 1D array of length n features \* n\_rows + 1 with the first entry in the array being the number of features in each row. These are the features the model will be trained on. CDB\_Crankshaft.CDB_pyAgg(Array[feature1, feature2, feature3]::numeric[]) can be used to construct this. |
|
||||
| prediction\_features | numeric[] | 1D array of length nfeatures\* n\_rows\_ + 1 with the first entry in the array being the number of features in each row. These are the features that will be used to predict the target variable CDB\_Crankshaft.CDB\_pyAgg(Array[feature1, feature2, feature3]::numeric[]) can be used to construct this. |
|
||||
| prediction\_ids | numeric[] | 1D array of length n\_rows with the ids that can use used to re-join the data with inputs |
|
||||
| n\_estimators (optional) | INTEGER DEFAULT 1200 | Number of estimators to be used |
|
||||
| max\_depth (optional) | INTEGER DEFAULT 3 | Max tree depth |
|
||||
| subsample (optional) | DOUBLE PRECISION DEFAULT 0.5 | Subsample parameter for GradientBooster|
|
||||
| learning\_rate (optional) | DOUBLE PRECISION DEFAULT 0.01 | Learning rate for the GradientBooster |
|
||||
| min\_samples\_leaf (optional) | INTEGER DEFAULT 1 | Minimum samples to use per leaf |
|
||||
|
||||
|
||||
#### Returns
|
||||
|
||||
@ -60,11 +66,6 @@ A table with the following columns.
|
||||
| cartodb\_id | INTEGER | The CartoDB id of the row in the target\_query |
|
||||
| prediction | NUMERIC | The predicted value of the variable of interest |
|
||||
| accuracy | NUMERIC | The mean squared accuracy of the model. |
|
||||
| n\_estimators (optional) | INTEGER DEFAULT 1200 | Number of estimators to be used |
|
||||
| max\_depth (optional) | INTEGER DEFAULT 3 | Max tree depth |
|
||||
| subsample (optional) | DOUBLE PRECISION DEFAULT 0.5 | Subsample parameter for GradientBooster|
|
||||
| learning\_rate (optional) | DOUBLE PRECISION DEFAULT 0.01 | Learning rate for the GradientBooster |
|
||||
| min\_samples\_leaf (optional) | INTEGER DEFAULT 1 | Minimum samples to use per leaf |
|
||||
|
||||
#### Example Usage
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user