Correct upgrade for 0.5.1 version
This commit is contained in:
parent
161bb14c08
commit
021738d9f8
2070
release/crankshaft--0.5.0--0.5.1.sql
Normal file
2070
release/crankshaft--0.5.0--0.5.1.sql
Normal file
File diff suppressed because it is too large
Load Diff
2070
release/crankshaft--0.5.1.sql
Normal file
2070
release/crankshaft--0.5.1.sql
Normal file
File diff suppressed because it is too large
Load Diff
@ -1,5 +1,5 @@
|
||||
comment = 'CartoDB Spatial Analysis extension'
|
||||
default_version = '0.5.0'
|
||||
default_version = '0.5.1'
|
||||
requires = 'plpythonu, postgis'
|
||||
superuser = true
|
||||
schema = cdb_crankshaft
|
||||
|
6
release/python/0.5.1/crankshaft/crankshaft/__init__.py
Normal file
6
release/python/0.5.1/crankshaft/crankshaft/__init__.py
Normal file
@ -0,0 +1,6 @@
|
||||
"""Import all modules"""
|
||||
import crankshaft.random_seeds
|
||||
import crankshaft.clustering
|
||||
import crankshaft.space_time_dynamics
|
||||
import crankshaft.segmentation
|
||||
import analysis_data_provider
|
@ -0,0 +1,67 @@
|
||||
"""class for fetching data"""
|
||||
import plpy
|
||||
import pysal_utils as pu
|
||||
|
||||
|
||||
class AnalysisDataProvider:
|
||||
def get_getis(self, w_type, params):
|
||||
"""fetch data for getis ord's g"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
result = plpy.execute(query)
|
||||
# if there are no neighbors, exit
|
||||
if len(result) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
else:
|
||||
return result
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_markov(self, w_type, params):
|
||||
"""fetch data for spatial markov"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
data = plpy.execute(query)
|
||||
|
||||
if len(data) == 0:
|
||||
return pu.empty_zipped_array(4)
|
||||
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_moran(self, w_type, params):
|
||||
"""fetch data for moran's i analyses"""
|
||||
try:
|
||||
query = pu.construct_neighbor_query(w_type, params)
|
||||
data = plpy.execute(query)
|
||||
|
||||
# if there are no neighbors, exit
|
||||
if len(data) == 0:
|
||||
return pu.empty_zipped_array(2)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % e)
|
||||
return pu.empty_zipped_array(2)
|
||||
|
||||
def get_nonspatial_kmeans(self, query):
|
||||
"""fetch data for non-spatial kmeans"""
|
||||
try:
|
||||
data = plpy.execute(query)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
||||
|
||||
def get_spatial_kmeans(self, params):
|
||||
"""fetch data for spatial kmeans"""
|
||||
query = ("SELECT "
|
||||
"array_agg({id_col} ORDER BY {id_col}) as ids,"
|
||||
"array_agg(ST_X({geom_col}) ORDER BY {id_col}) As xs,"
|
||||
"array_agg(ST_Y({geom_col}) ORDER BY {id_col}) As ys "
|
||||
"FROM ({subquery}) As a "
|
||||
"WHERE {geom_col} IS NOT NULL").format(**params)
|
||||
try:
|
||||
data = plpy.execute(query)
|
||||
return data
|
||||
except plpy.SPIError, err:
|
||||
plpy.error('Analysis failed: %s' % err)
|
@ -0,0 +1,4 @@
|
||||
"""Import all functions from for clustering"""
|
||||
from moran import *
|
||||
from kmeans import *
|
||||
from getis import *
|
@ -0,0 +1,50 @@
|
||||
"""
|
||||
Getis-Ord's G geostatistics (hotspot/coldspot analysis)
|
||||
"""
|
||||
|
||||
import pysal as ps
|
||||
from collections import OrderedDict
|
||||
|
||||
# crankshaft modules
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
|
||||
class Getis:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def getis_ord(self, subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Getis-Ord's G*
|
||||
Implementation building neighbors with a PostGIS database and PySAL's
|
||||
Getis-Ord's G* hotspot/coldspot module.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors if kNN is chosen
|
||||
|
||||
qvals = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_getis(w_type, qvals)
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
# build PySAL weight object
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate Getis-Ord's G* z- and p-values
|
||||
getis = ps.esda.getisord.G_Local(attr_vals, weight,
|
||||
star=True, permutations=permutations)
|
||||
|
||||
return zip(getis.z_sim, getis.p_sim, getis.p_z_sim, weight.id_order)
|
@ -0,0 +1,32 @@
|
||||
from sklearn.cluster import KMeans
|
||||
import numpy as np
|
||||
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
|
||||
class Kmeans:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def spatial(self, query, no_clusters, no_init=20):
|
||||
"""
|
||||
find centers based on clusters of latitude/longitude pairs
|
||||
query: SQL query that has a WGS84 geometry (the_geom)
|
||||
"""
|
||||
params = {"subquery": query,
|
||||
"geom_col": "the_geom",
|
||||
"id_col": "cartodb_id"}
|
||||
|
||||
data = self.data_provider.get_spatial_kmeans(params)
|
||||
|
||||
# Unpack query response
|
||||
xs = data[0]['xs']
|
||||
ys = data[0]['ys']
|
||||
ids = data[0]['ids']
|
||||
|
||||
km = KMeans(n_clusters=no_clusters, n_init=no_init)
|
||||
labels = km.fit_predict(zip(xs, ys))
|
||||
return zip(ids, labels)
|
208
release/python/0.5.1/crankshaft/crankshaft/clustering/moran.py
Normal file
208
release/python/0.5.1/crankshaft/crankshaft/clustering/moran.py
Normal file
@ -0,0 +1,208 @@
|
||||
"""
|
||||
Moran's I geostatistics (global clustering & outliers presence)
|
||||
"""
|
||||
|
||||
# TODO: Fill in local neighbors which have null/NoneType values with the
|
||||
# average of the their neighborhood
|
||||
|
||||
import pysal as ps
|
||||
from collections import OrderedDict
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# crankshaft module
|
||||
import crankshaft.pysal_utils as pu
|
||||
|
||||
# High level interface ---------------------------------------
|
||||
|
||||
|
||||
class Moran:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def global_stat(self, subquery, attr_name,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I (global)
|
||||
Implementation building neighbors with a PostGIS database and Moran's I
|
||||
core clusters with PySAL.
|
||||
Andy Eschbacher
|
||||
"""
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr_name),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
attr_vals = pu.get_attributes(result)
|
||||
|
||||
# calculate weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate moran global
|
||||
moran_global = ps.esda.moran.Moran(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([moran_global.I], [moran_global.EI])
|
||||
|
||||
def local_stat(self, subquery, attr,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I implementation for PL/Python
|
||||
Andy Eschbacher
|
||||
"""
|
||||
|
||||
# geometries with attributes that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
attr_vals = pu.get_attributes(result)
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def global_rate_stat(self, subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Rate (global)
|
||||
Andy Eschbacher
|
||||
"""
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", numerator),
|
||||
("attr2", denominator)
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate moran global rate
|
||||
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
return zip([lisa_rate.I], [lisa_rate.EI])
|
||||
|
||||
def local_rate_stat(self, subquery, numerator, denominator,
|
||||
w_type, num_ngbrs, permutations, geom_col, id_col):
|
||||
"""
|
||||
Moran's I Local Rate
|
||||
Andy Eschbacher
|
||||
"""
|
||||
# geometries with values that are null are ignored
|
||||
# resulting in a collection of not as near neighbors
|
||||
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("numerator", numerator),
|
||||
("denominator", denominator),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
numer = pu.get_attributes(result, 1)
|
||||
denom = pu.get_attributes(result, 2)
|
||||
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find quadrants for each geometry
|
||||
quads = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
|
||||
|
||||
def local_bivariate_stat(self, subquery, attr1, attr2,
|
||||
permutations, geom_col, id_col,
|
||||
w_type, num_ngbrs):
|
||||
"""
|
||||
Moran's I (local) Bivariate (untested)
|
||||
"""
|
||||
|
||||
params = OrderedDict([("id_col", id_col),
|
||||
("attr1", attr1),
|
||||
("attr2", attr2),
|
||||
("geom_col", geom_col),
|
||||
("subquery", subquery),
|
||||
("num_ngbrs", num_ngbrs)])
|
||||
|
||||
result = self.data_provider.get_moran(w_type, params)
|
||||
|
||||
# collect attributes
|
||||
attr1_vals = pu.get_attributes(result, 1)
|
||||
attr2_vals = pu.get_attributes(result, 2)
|
||||
|
||||
# create weights
|
||||
weight = pu.get_weight(result, w_type, num_ngbrs)
|
||||
|
||||
# calculate LISA values
|
||||
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
|
||||
permutations=permutations)
|
||||
|
||||
# find clustering of significance
|
||||
lisa_sig = quad_position(lisa.q)
|
||||
|
||||
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
|
||||
|
||||
# Low level functions ----------------------------------------
|
||||
|
||||
|
||||
def map_quads(coord):
|
||||
"""
|
||||
Map a quadrant number to Moran's I designation
|
||||
HH=1, LH=2, LL=3, HL=4
|
||||
Input:
|
||||
@param coord (int): quadrant of a specific measurement
|
||||
Output:
|
||||
classification (one of 'HH', 'LH', 'LL', or 'HL')
|
||||
"""
|
||||
if coord == 1:
|
||||
return 'HH'
|
||||
elif coord == 2:
|
||||
return 'LH'
|
||||
elif coord == 3:
|
||||
return 'LL'
|
||||
elif coord == 4:
|
||||
return 'HL'
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
def quad_position(quads):
|
||||
"""
|
||||
Produce Moran's I classification based of n
|
||||
Input:
|
||||
@param quads ndarray: an array of quads classified by
|
||||
1-4 (PySAL default)
|
||||
Output:
|
||||
@param list: an array of quads classied by 'HH', 'LL', etc.
|
||||
"""
|
||||
return [map_quads(q) for q in quads]
|
@ -0,0 +1,2 @@
|
||||
"""Import all functions for pysal_utils"""
|
||||
from crankshaft.pysal_utils.pysal_utils import *
|
@ -0,0 +1,211 @@
|
||||
"""
|
||||
Utilities module for generic PySAL functionality, mainly centered on
|
||||
translating queries into numpy arrays or PySAL weights objects
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pysal as ps
|
||||
|
||||
|
||||
def construct_neighbor_query(w_type, query_vals):
|
||||
"""Return query (a string) used for finding neighbors
|
||||
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
|
||||
@param query_vals dict: values used to construct the query
|
||||
"""
|
||||
|
||||
if w_type.lower() == 'knn':
|
||||
return knn(query_vals)
|
||||
else:
|
||||
return queen(query_vals)
|
||||
|
||||
|
||||
# Build weight object
|
||||
def get_weight(query_res, w_type='knn', num_ngbrs=5):
|
||||
"""
|
||||
Construct PySAL weight from return value of query
|
||||
@param query_res dict-like: query results with attributes and neighbors
|
||||
"""
|
||||
# if w_type.lower() == 'knn':
|
||||
# row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
|
||||
# weights = {x['id']: row_normed_weights for x in query_res}
|
||||
# else:
|
||||
# weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
|
||||
# if len(x['neighbors']) > 0
|
||||
# else [] for x in query_res}
|
||||
|
||||
neighbors = {x['id']: x['neighbors'] for x in query_res}
|
||||
print 'len of neighbors: %d' % len(neighbors)
|
||||
|
||||
built_weight = ps.W(neighbors)
|
||||
built_weight.transform = 'r'
|
||||
|
||||
return built_weight
|
||||
|
||||
|
||||
def query_attr_select(params):
|
||||
"""
|
||||
Create portion of SELECT statement for attributes inolved in query.
|
||||
Defaults to order in the params
|
||||
@param params: dict of information used in query (column names,
|
||||
table name, etc.)
|
||||
Example:
|
||||
OrderedDict([('numerator', 'price'),
|
||||
('denominator', 'sq_meters'),
|
||||
('subquery', 'SELECT * FROM interesting_data')])
|
||||
Output:
|
||||
"i.\"price\"::numeric As attr1, " \
|
||||
"i.\"sq_meters\"::numeric As attr2, "
|
||||
"""
|
||||
|
||||
attr_string = ""
|
||||
template = "i.\"%(col)s\"::numeric As attr%(alias_num)s, "
|
||||
|
||||
if 'time_cols' in params:
|
||||
# if markov analysis
|
||||
attrs = params['time_cols']
|
||||
|
||||
for idx, val in enumerate(attrs):
|
||||
attr_string += template % {"col": val, "alias_num": idx + 1}
|
||||
else:
|
||||
# if moran's analysis
|
||||
attrs = [k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')]
|
||||
|
||||
for idx, val in enumerate(attrs):
|
||||
attr_string += template % {"col": params[val],
|
||||
"alias_num": idx + 1}
|
||||
|
||||
return attr_string
|
||||
|
||||
|
||||
def query_attr_where(params):
|
||||
"""
|
||||
Construct where conditions when building neighbors query
|
||||
Create portion of WHERE clauses for weeding out NULL-valued geometries
|
||||
Input: dict of params:
|
||||
{'subquery': ...,
|
||||
'numerator': 'data1',
|
||||
'denominator': 'data2',
|
||||
'': ...}
|
||||
Output:
|
||||
'idx_replace."data1" IS NOT NULL AND idx_replace."data2" IS NOT NULL'
|
||||
Input:
|
||||
{'subquery': ...,
|
||||
'time_cols': ['time1', 'time2', 'time3'],
|
||||
'etc': ...}
|
||||
Output: 'idx_replace."time1" IS NOT NULL AND idx_replace."time2" IS NOT
|
||||
NULL AND idx_replace."time3" IS NOT NULL'
|
||||
"""
|
||||
attr_string = []
|
||||
template = "idx_replace.\"%s\" IS NOT NULL"
|
||||
|
||||
if 'time_cols' in params:
|
||||
# markov where clauses
|
||||
attrs = params['time_cols']
|
||||
# add values to template
|
||||
for attr in attrs:
|
||||
attr_string.append(template % attr)
|
||||
else:
|
||||
# moran where clauses
|
||||
|
||||
# get keys
|
||||
attrs = [k for k in params
|
||||
if k not in ('id_col', 'geom_col', 'subquery',
|
||||
'num_ngbrs', 'subquery')]
|
||||
|
||||
# add values to template
|
||||
for attr in attrs:
|
||||
attr_string.append(template % params[attr])
|
||||
|
||||
if 'denominator' in attrs:
|
||||
attr_string.append(
|
||||
"idx_replace.\"%s\" <> 0" % params['denominator'])
|
||||
|
||||
out = " AND ".join(attr_string)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def knn(params):
|
||||
"""SQL query for k-nearest neighbors.
|
||||
@param vars: dict of values to fill template
|
||||
"""
|
||||
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||
|
||||
query = "SELECT " \
|
||||
"i.\"{id_col}\" As id, " \
|
||||
"%(attr_select)s" \
|
||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||
"FROM ({subquery}) As j " \
|
||||
"WHERE " \
|
||||
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
|
||||
"%(attr_where_j)s " \
|
||||
"ORDER BY " \
|
||||
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
|
||||
"LIMIT {num_ngbrs})" \
|
||||
") As neighbors " \
|
||||
"FROM ({subquery}) As i " \
|
||||
"WHERE " \
|
||||
"%(attr_where_i)s " \
|
||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
|
||||
# SQL query for finding queens neighbors (all contiguous polygons)
|
||||
def queen(params):
|
||||
"""SQL query for queen neighbors.
|
||||
@param params dict: information to fill query
|
||||
"""
|
||||
attr_select = query_attr_select(params)
|
||||
attr_where = query_attr_where(params)
|
||||
|
||||
replacements = {"attr_select": attr_select,
|
||||
"attr_where_i": attr_where.replace("idx_replace", "i"),
|
||||
"attr_where_j": attr_where.replace("idx_replace", "j")}
|
||||
|
||||
query = "SELECT " \
|
||||
"i.\"{id_col}\" As id, " \
|
||||
"%(attr_select)s" \
|
||||
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
|
||||
"FROM ({subquery}) As j " \
|
||||
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
|
||||
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
|
||||
"%(attr_where_j)s)" \
|
||||
") As neighbors " \
|
||||
"FROM ({subquery}) As i " \
|
||||
"WHERE " \
|
||||
"%(attr_where_i)s " \
|
||||
"ORDER BY i.\"{id_col}\" ASC;" % replacements
|
||||
|
||||
return query.format(**params)
|
||||
|
||||
# to add more weight methods open a ticket or pull request
|
||||
|
||||
|
||||
def get_attributes(query_res, attr_num=1):
|
||||
"""
|
||||
@param query_res: query results with attributes and neighbors
|
||||
@param attr_num: attribute number (1, 2, ...)
|
||||
"""
|
||||
return np.array([x['attr' + str(attr_num)] for x in query_res],
|
||||
dtype=np.float)
|
||||
|
||||
|
||||
def empty_zipped_array(num_nones):
|
||||
"""
|
||||
prepare return values for cases of empty weights objects (no neighbors)
|
||||
Input:
|
||||
@param num_nones int: number of columns (e.g., 4)
|
||||
Output:
|
||||
[(None, None, None, None)]
|
||||
"""
|
||||
|
||||
return [tuple([None] * num_nones)]
|
11
release/python/0.5.1/crankshaft/crankshaft/random_seeds.py
Normal file
11
release/python/0.5.1/crankshaft/crankshaft/random_seeds.py
Normal file
@ -0,0 +1,11 @@
|
||||
"""Random seed generator used for non-deterministic functions in crankshaft"""
|
||||
import random
|
||||
import numpy
|
||||
|
||||
def set_random_seeds(value):
|
||||
"""
|
||||
Set the seeds of the RNGs (Random Number Generators)
|
||||
used internally.
|
||||
"""
|
||||
random.seed(value)
|
||||
numpy.random.seed(value)
|
@ -0,0 +1 @@
|
||||
from segmentation import *
|
@ -0,0 +1,176 @@
|
||||
"""
|
||||
Segmentation creation and prediction
|
||||
"""
|
||||
|
||||
import sklearn
|
||||
import numpy as np
|
||||
import plpy
|
||||
from sklearn.ensemble import GradientBoostingRegressor
|
||||
from sklearn import metrics
|
||||
from sklearn.cross_validation import train_test_split
|
||||
|
||||
# Lower level functions
|
||||
#----------------------
|
||||
|
||||
def replace_nan_with_mean(array):
|
||||
"""
|
||||
Input:
|
||||
@param array: an array of floats which may have null-valued entries
|
||||
Output:
|
||||
array with nans filled in with the mean of the dataset
|
||||
"""
|
||||
# returns an array of rows and column indices
|
||||
indices = np.where(np.isnan(array))
|
||||
|
||||
# iterate through entries which have nan values
|
||||
for row, col in zip(*indices):
|
||||
array[row, col] = np.mean(array[~np.isnan(array[:, col]), col])
|
||||
|
||||
return array
|
||||
|
||||
def get_data(variable, feature_columns, query):
|
||||
"""
|
||||
Fetch data from the database, clean, and package into
|
||||
numpy arrays
|
||||
Input:
|
||||
@param variable: name of the target variable
|
||||
@param feature_columns: list of column names
|
||||
@param query: subquery that data is pulled from for the packaging
|
||||
Output:
|
||||
prepared data, packaged into NumPy arrays
|
||||
"""
|
||||
|
||||
columns = ','.join(['array_agg("{col}") As "{col}"'.format(col=col) for col in feature_columns])
|
||||
|
||||
try:
|
||||
data = plpy.execute('''SELECT array_agg("{variable}") As target, {columns} FROM ({query}) As a'''.format(
|
||||
variable=variable,
|
||||
columns=columns,
|
||||
query=query))
|
||||
except Exception, e:
|
||||
plpy.error('Failed to access data to build segmentation model: %s' % e)
|
||||
|
||||
# extract target data from plpy object
|
||||
target = np.array(data[0]['target'])
|
||||
|
||||
# put n feature data arrays into an n x m array of arrays
|
||||
features = np.column_stack([np.array(data[0][col], dtype=float) for col in feature_columns])
|
||||
|
||||
return replace_nan_with_mean(target), replace_nan_with_mean(features)
|
||||
|
||||
# High level interface
|
||||
# --------------------
|
||||
|
||||
def create_and_predict_segment_agg(target, features, target_features, target_ids, model_parameters):
|
||||
"""
|
||||
Version of create_and_predict_segment that works on arrays that come stright form the SQL calling
|
||||
the function.
|
||||
|
||||
Input:
|
||||
@param target: The 1D array of lenth NSamples containing the target variable we want the model to predict
|
||||
@param features: Thw 2D array of size NSamples * NFeatures that form the imput to the model
|
||||
@param target_ids: A 1D array of target_ids that will be used to associate the results of the prediction with the rows which they come from
|
||||
@param model_parameters: A dictionary containing parameters for the model.
|
||||
"""
|
||||
|
||||
clean_target = replace_nan_with_mean(target)
|
||||
clean_features = replace_nan_with_mean(features)
|
||||
target_features = replace_nan_with_mean(target_features)
|
||||
|
||||
model, accuracy = train_model(clean_target, clean_features, model_parameters, 0.2)
|
||||
prediction = model.predict(target_features)
|
||||
accuracy_array = [accuracy]*prediction.shape[0]
|
||||
return zip(target_ids, prediction, np.full(prediction.shape, accuracy_array))
|
||||
|
||||
|
||||
|
||||
def create_and_predict_segment(query, variable, target_query, model_params):
|
||||
"""
|
||||
generate a segment with machine learning
|
||||
Stuart Lynn
|
||||
"""
|
||||
|
||||
## fetch column names
|
||||
try:
|
||||
columns = plpy.execute('SELECT * FROM ({query}) As a LIMIT 1 '.format(query=query))[0].keys()
|
||||
except Exception, e:
|
||||
plpy.error('Failed to build segmentation model: %s' % e)
|
||||
|
||||
## extract column names to be used in building the segmentation model
|
||||
feature_columns = set(columns) - set([variable, 'cartodb_id', 'the_geom', 'the_geom_webmercator'])
|
||||
## get data from database
|
||||
target, features = get_data(variable, feature_columns, query)
|
||||
|
||||
model, accuracy = train_model(target, features, model_params, 0.2)
|
||||
cartodb_ids, result = predict_segment(model, feature_columns, target_query)
|
||||
accuracy_array = [accuracy]*result.shape[0]
|
||||
return zip(cartodb_ids, result, accuracy_array)
|
||||
|
||||
|
||||
def train_model(target, features, model_params, test_split):
|
||||
"""
|
||||
Train the Gradient Boosting model on the provided data and calculate the accuracy of the model
|
||||
Input:
|
||||
@param target: 1D Array of the variable that the model is to be trianed to predict
|
||||
@param features: 2D Array NSamples * NFeatures to use in trining the model
|
||||
@param model_params: A dictionary of model parameters, the full specification can be found on the
|
||||
scikit learn page for [GradientBoostingRegressor](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)
|
||||
@parma test_split: The fraction of the data to be withheld for testing the model / calculating the accuray
|
||||
"""
|
||||
features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
|
||||
model = GradientBoostingRegressor(**model_params)
|
||||
model.fit(features_train, target_train)
|
||||
accuracy = calculate_model_accuracy(model, features, target)
|
||||
return model, accuracy
|
||||
|
||||
def calculate_model_accuracy(model, features, target):
|
||||
"""
|
||||
Calculate the mean squared error of the model prediction
|
||||
Input:
|
||||
@param model: model trained from input features
|
||||
@param features: features to make a prediction from
|
||||
@param target: target to compare prediction to
|
||||
Output:
|
||||
mean squared error of the model prection compared to the target
|
||||
"""
|
||||
prediction = model.predict(features)
|
||||
return metrics.mean_squared_error(prediction, target)
|
||||
|
||||
def predict_segment(model, features, target_query):
|
||||
"""
|
||||
Use the provided model to predict the values for the new feature set
|
||||
Input:
|
||||
@param model: The pretrained model
|
||||
@features: A list of features to use in the model prediction (list of column names)
|
||||
@target_query: The query to run to obtain the data to predict on and the cartdb_ids associated with it.
|
||||
"""
|
||||
|
||||
batch_size = 1000
|
||||
joined_features = ','.join(['"{0}"::numeric'.format(a) for a in features])
|
||||
|
||||
try:
|
||||
cursor = plpy.cursor('SELECT Array[{joined_features}] As features FROM ({target_query}) As a'.format(
|
||||
joined_features=joined_features,
|
||||
target_query=target_query))
|
||||
except Exception, e:
|
||||
plpy.error('Failed to build segmentation model: %s' % e)
|
||||
|
||||
results = []
|
||||
|
||||
while True:
|
||||
rows = cursor.fetch(batch_size)
|
||||
if not rows:
|
||||
break
|
||||
batch = np.row_stack([np.array(row['features'], dtype=float) for row in rows])
|
||||
|
||||
#Need to fix this. Should be global mean. This will cause weird effects
|
||||
batch = replace_nan_with_mean(batch)
|
||||
prediction = model.predict(batch)
|
||||
results.append(prediction)
|
||||
|
||||
try:
|
||||
cartodb_ids = plpy.execute('''SELECT array_agg(cartodb_id ORDER BY cartodb_id) As cartodb_ids FROM ({0}) As a'''.format(target_query))[0]['cartodb_ids']
|
||||
except Exception, e:
|
||||
plpy.error('Failed to build segmentation model: %s' % e)
|
||||
|
||||
return cartodb_ids, np.concatenate(results)
|
@ -0,0 +1,2 @@
|
||||
"""Import all functions from clustering libraries."""
|
||||
from markov import *
|
@ -0,0 +1,194 @@
|
||||
"""
|
||||
Spatial dynamics measurements using Spatial Markov
|
||||
"""
|
||||
|
||||
# TODO: remove all plpy dependencies
|
||||
|
||||
import numpy as np
|
||||
import pysal as ps
|
||||
import plpy
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
|
||||
class Markov:
|
||||
def __init__(self, data_provider=None):
|
||||
if data_provider is None:
|
||||
self.data_provider = AnalysisDataProvider()
|
||||
else:
|
||||
self.data_provider = data_provider
|
||||
|
||||
def spatial_trend(self, subquery, time_cols, num_classes=7,
|
||||
w_type='knn', num_ngbrs=5, permutations=0,
|
||||
geom_col='the_geom', id_col='cartodb_id'):
|
||||
"""
|
||||
Predict the trends of a unit based on:
|
||||
1. history of its transitions to different classes (e.g., 1st
|
||||
quantile -> 2nd quantile)
|
||||
2. average class of its neighbors
|
||||
|
||||
Inputs:
|
||||
@param subquery string: e.g., SELECT the_geom, cartodb_id,
|
||||
interesting_time_column FROM table_name
|
||||
@param time_cols list of strings: list of strings of column names
|
||||
@param num_classes (optional): number of classes to break
|
||||
distribution of values into. Currently uses quantile bins.
|
||||
@param w_type string (optional): weight type ('knn' or 'queen')
|
||||
@param num_ngbrs int (optional): number of neighbors (if knn type)
|
||||
@param permutations int (optional): number of permutations for test
|
||||
stats
|
||||
@param geom_col string (optional): name of column which contains
|
||||
the geometries
|
||||
@param id_col string (optional): name of column which has the ids
|
||||
of the table
|
||||
|
||||
Outputs:
|
||||
@param trend_up float: probablity that a geom will move to a higher
|
||||
class
|
||||
@param trend_down float: probablity that a geom will move to a
|
||||
lower class
|
||||
@param trend float: (trend_up - trend_down) / trend_static
|
||||
@param volatility float: a measure of the volatility based on
|
||||
probability stddev(prob array)
|
||||
"""
|
||||
|
||||
if len(time_cols) < 2:
|
||||
plpy.error('More than one time column needs to be passed')
|
||||
|
||||
params = {"id_col": id_col,
|
||||
"time_cols": time_cols,
|
||||
"geom_col": geom_col,
|
||||
"subquery": subquery,
|
||||
"num_ngbrs": num_ngbrs}
|
||||
|
||||
query_result = self.data_provider.get_markov(w_type, params)
|
||||
|
||||
# build weight
|
||||
weights = pu.get_weight(query_result, w_type)
|
||||
weights.transform = 'r'
|
||||
|
||||
# prep time data
|
||||
t_data = get_time_data(query_result, time_cols)
|
||||
|
||||
sp_markov_result = ps.Spatial_Markov(t_data,
|
||||
weights,
|
||||
k=num_classes,
|
||||
fixed=False,
|
||||
permutations=permutations)
|
||||
|
||||
# get lag classes
|
||||
lag_classes = ps.Quantiles(
|
||||
ps.lag_spatial(weights, t_data[:, -1]),
|
||||
k=num_classes).yb
|
||||
|
||||
# look up probablity distribution for each unit according to class and
|
||||
# lag class
|
||||
prob_dist = get_prob_dist(sp_markov_result.P,
|
||||
lag_classes,
|
||||
sp_markov_result.classes[:, -1])
|
||||
|
||||
# find the ups and down and overall distribution of each cell
|
||||
trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist, sp_markov_result.classes[:, -1])
|
||||
|
||||
# output the results
|
||||
return zip(trend, trend_up, trend_down, volatility, weights.id_order)
|
||||
|
||||
|
||||
|
||||
def get_time_data(markov_data, time_cols):
|
||||
"""
|
||||
Extract the time columns and bin appropriately
|
||||
"""
|
||||
num_attrs = len(time_cols)
|
||||
return np.array([[x['attr' + str(i)] for x in markov_data]
|
||||
for i in range(1, num_attrs+1)], dtype=float).transpose()
|
||||
|
||||
|
||||
# not currently used
|
||||
def rebin_data(time_data, num_time_per_bin):
|
||||
"""
|
||||
Convert an n x l matrix into an (n/m) x l matrix where the values are
|
||||
reduced (averaged) for the intervening states:
|
||||
1 2 3 4 1.5 3.5
|
||||
5 6 7 8 -> 5.5 7.5
|
||||
9 8 7 6 8.5 6.5
|
||||
5 4 3 2 4.5 2.5
|
||||
|
||||
if m = 2, the 4 x 4 matrix is transformed to a 2 x 4 matrix.
|
||||
|
||||
This process effectively resamples the data at a longer time span n
|
||||
units longer than the input data.
|
||||
For cases when there is a remainder (remainder(5/3) = 2), the remaining
|
||||
two columns are binned together as the last time period, while the
|
||||
first three are binned together for the first period.
|
||||
|
||||
Input:
|
||||
@param time_data n x l ndarray: measurements of an attribute at
|
||||
different time intervals
|
||||
@param num_time_per_bin int: number of columns to average into a new
|
||||
column
|
||||
Output:
|
||||
ceil(n / m) x l ndarray of resampled time series
|
||||
"""
|
||||
|
||||
if time_data.shape[1] % num_time_per_bin == 0:
|
||||
# if fit is perfect, then use it
|
||||
n_max = time_data.shape[1] / num_time_per_bin
|
||||
else:
|
||||
# fit remainders into an additional column
|
||||
n_max = time_data.shape[1] / num_time_per_bin + 1
|
||||
|
||||
return np.array(
|
||||
[time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1)
|
||||
for i in range(n_max)]).T
|
||||
|
||||
|
||||
def get_prob_dist(transition_matrix, lag_indices, unit_indices):
|
||||
"""
|
||||
Given an array of transition matrices, look up the probability
|
||||
associated with the arrangements passed
|
||||
|
||||
Input:
|
||||
@param transition_matrix ndarray[k,k,k]:
|
||||
@param lag_indices ndarray:
|
||||
@param unit_indices ndarray:
|
||||
|
||||
Output:
|
||||
Array of probability distributions
|
||||
"""
|
||||
|
||||
return np.array([transition_matrix[(lag_indices[i], unit_indices[i])]
|
||||
for i in range(len(lag_indices))])
|
||||
|
||||
|
||||
def get_prob_stats(prob_dist, unit_indices):
|
||||
"""
|
||||
get the statistics of the probability distributions
|
||||
|
||||
Outputs:
|
||||
@param trend_up ndarray(float): sum of probabilities for upward
|
||||
movement (relative to the unit index of that prob)
|
||||
@param trend_down ndarray(float): sum of probabilities for downward
|
||||
movement (relative to the unit index of that prob)
|
||||
@param trend ndarray(float): difference of upward and downward
|
||||
movements
|
||||
"""
|
||||
|
||||
num_elements = len(unit_indices)
|
||||
trend_up = np.empty(num_elements, dtype=float)
|
||||
trend_down = np.empty(num_elements, dtype=float)
|
||||
trend = np.empty(num_elements, dtype=float)
|
||||
|
||||
for i in range(num_elements):
|
||||
trend_up[i] = prob_dist[i, (unit_indices[i]+1):].sum()
|
||||
trend_down[i] = prob_dist[i, :unit_indices[i]].sum()
|
||||
if prob_dist[i, unit_indices[i]] > 0.0:
|
||||
trend[i] = (trend_up[i] - trend_down[i]) / (
|
||||
prob_dist[i, unit_indices[i]])
|
||||
else:
|
||||
trend[i] = None
|
||||
|
||||
# calculate volatility of distribution
|
||||
volatility = prob_dist.std(axis=1)
|
||||
|
||||
return trend_up, trend_down, trend, volatility
|
5
release/python/0.5.1/crankshaft/requirements.txt
Normal file
5
release/python/0.5.1/crankshaft/requirements.txt
Normal file
@ -0,0 +1,5 @@
|
||||
joblib==0.8.3
|
||||
numpy==1.6.1
|
||||
scipy==0.14.0
|
||||
pysal==1.11.2
|
||||
scikit-learn==0.14.1
|
49
release/python/0.5.1/crankshaft/setup.py
Normal file
49
release/python/0.5.1/crankshaft/setup.py
Normal file
@ -0,0 +1,49 @@
|
||||
|
||||
"""
|
||||
CartoDB Spatial Analysis Python Library
|
||||
See:
|
||||
https://github.com/CartoDB/crankshaft
|
||||
"""
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
setup(
|
||||
name='crankshaft',
|
||||
|
||||
version='0.5.1',
|
||||
|
||||
description='CartoDB Spatial Analysis Python Library',
|
||||
|
||||
url='https://github.com/CartoDB/crankshaft',
|
||||
|
||||
author='Data Services Team - CartoDB',
|
||||
author_email='dataservices@cartodb.com',
|
||||
|
||||
license='MIT',
|
||||
|
||||
classifiers=[
|
||||
'Development Status :: 3 - Alpha',
|
||||
'Intended Audience :: Mapping comunity',
|
||||
'Topic :: Maps :: Mapping Tools',
|
||||
'License :: OSI Approved :: MIT License',
|
||||
'Programming Language :: Python :: 2.7',
|
||||
],
|
||||
|
||||
keywords='maps mapping tools spatial analysis geostatistics',
|
||||
|
||||
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
|
||||
|
||||
extras_require={
|
||||
'dev': ['unittest'],
|
||||
'test': ['unittest', 'nose', 'mock'],
|
||||
},
|
||||
|
||||
# The choice of component versions is dictated by what's
|
||||
# provisioned in the production servers.
|
||||
# IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation.
|
||||
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
|
||||
|
||||
requires=['pysal', 'numpy', 'sklearn'],
|
||||
|
||||
test_suite='test'
|
||||
)
|
1
release/python/0.5.1/crankshaft/test/fixtures/getis.json
vendored
Normal file
1
release/python/0.5.1/crankshaft/test/fixtures/getis.json
vendored
Normal file
@ -0,0 +1 @@
|
||||
[[0.004793783909323601, 0.17999999999999999, 0.49808756424021061], [-1.0701189472090842, 0.079000000000000001, 0.14228288580832316], [-0.67867750971877305, 0.42099999999999999, 0.24867110969448558], [-0.67407386707620487, 0.246, 0.25013217644612995], [-0.79495689068870035, 0.33200000000000002, 0.21331928959090596], [-0.49279481022182703, 0.058999999999999997, 0.31107878905057329], [-0.38075627530057132, 0.28399999999999997, 0.35169205342069643], [-0.86710921611314895, 0.23699999999999999, 0.19294108571294855], [-0.78618647240956485, 0.050000000000000003, 0.2158791250244505], [-0.76108527223116984, 0.064000000000000001, 0.22330306830813684], [-0.13340753531942209, 0.247, 0.44693554317763651], [-0.57584545722033043, 0.48999999999999999, 0.28235982246156488], [-0.78882694661192831, 0.433, 0.2151065788731219], [-0.38769767950046219, 0.375, 0.34911988661484239], [-0.56057819488052207, 0.41399999999999998, 0.28754255985169652], [-0.41354017495644935, 0.45500000000000002, 0.339605447117173], [-0.23993577722243081, 0.49099999999999999, 0.40519002230969337], [-0.1389080156677496, 0.40400000000000003, 0.44476141839645233], [-0.25485737510500855, 0.376, 0.39941662953554224], [-0.71218610582902353, 0.17399999999999999, 0.23817476979886087], [-0.54533105995872144, 0.13700000000000001, 0.2927629228714812], [-0.39547917847510977, 0.033000000000000002, 0.34624464252424236], [-0.43052658996257548, 0.35399999999999998, 0.33340631435564982], [-0.37296719193774736, 0.40300000000000002, 0.35458643102865428], [-0.66482612169465694, 0.31900000000000001, 0.25308085650392698], [-0.13772133540823422, 0.34699999999999998, 0.44523032843016275], [-0.6765304487868502, 0.20999999999999999, 0.24935196033890672], [-0.64518763494323472, 0.32200000000000001, 0.25940279912025543], [-0.5078622084312413, 0.41099999999999998, 0.30577498972600159], [-0.12652006733772059, 0.42899999999999999, 0.44966013262301163], [-0.32691133022814595, 0.498, 0.37186747562269029], [0.25533848511500978, 0.42399999999999999, 0.39923083899077472], [2.7045138116476508, 0.0050000000000000001, 0.0034202212972238577], [-0.1551614486076057, 0.44400000000000001, 0.43834701985429037], [1.9524487722567723, 0.012999999999999999, 0.025442473674991528], [-1.2055816465306763, 0.017000000000000001, 0.11398941970467646], [3.478472976017831, 0.002, 0.00025213964072468009], [-1.4621715757903719, 0.002, 0.071847099325659136], [-0.84010307600180256, 0.085000000000000006, 0.20042529779230778], [5.7097646237318243, 0.0030000000000000001, 5.6566262784940591e-09], [1.5082367956567375, 0.065000000000000002, 0.065746966514827365], [-0.58337270103430816, 0.44, 0.27982121546450034], [-0.083271860457022437, 0.45100000000000001, 0.46681768733385554], [-0.46872337815000953, 0.34599999999999997, 0.31963368715684204], [0.18490279849545319, 0.23799999999999999, 0.42665263797981101], [3.470424529947997, 0.012, 0.00025981817437825683], [-0.99942612137154796, 0.032000000000000001, 0.15879415560388499], [-1.3650387953594485, 0.034000000000000002, 0.08612042845912049], [1.8617160516432014, 0.081000000000000003, 0.03132156240215267], [1.1321188945775384, 0.11600000000000001, 0.12879222611766061], [0.064116686050580601, 0.27300000000000002, 0.4744386578180424], [-0.42032194540259099, 0.29999999999999999, 0.33712514016213468], [-0.79581215423980922, 0.123, 0.21307061309098785], [-0.42792753720906046, 0.45600000000000002, 0.33435193892883741], [-1.0629378527428395, 0.051999999999999998, 0.14390506780140866], [-0.54164761752225477, 0.33700000000000002, 0.29403064095211839], [1.0934778886820793, 0.13700000000000001, 0.13709201601893539], [-0.094068785378413719, 0.38200000000000001, 0.46252725802998929], [0.13482026574801856, 0.36799999999999999, 0.44637699118865737], [-0.13976995315653129, 0.34699999999999998, 0.44442087706276601], [-0.051047663924746682, 0.32000000000000001, 0.47964376985626245], [-0.21468297736730158, 0.41699999999999998, 0.41500724761906527], [-0.20873154637330626, 0.38800000000000001, 0.41732890604390893], [-0.32427876152583485, 0.49199999999999999, 0.37286349875557478], [-0.65254842943280977, 0.374, 0.25702372075306734], [-0.48611858196118796, 0.23300000000000001, 0.31344154643990074], [-0.14482354344529477, 0.32600000000000001, 0.44242509660469886], [-0.51052030974200002, 0.439, 0.30484349480873729], [0.56814382285283538, 0.14999999999999999, 0.28496865660103166], [0.58680919931668207, 0.161, 0.27866592887231878], [0.013390357044409013, 0.25800000000000001, 0.49465818005865647], [-0.19050728887961568, 0.41399999999999998, 0.4244558160399462], [-0.60531777422216049, 0.35199999999999998, 0.2724839368239631], [1.0899331115425805, 0.127, 0.13787130480311838], [0.17015055382651084, 0.36899999999999999, 0.43244586845546418], [-0.21738337124409801, 0.40600000000000003, 0.41395479459421991], [1.0329303331079593, 0.079000000000000001, 0.15081825117169467], [1.0218317101096221, 0.104, 0.15343027913308094]]
|
1
release/python/0.5.1/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
1
release/python/0.5.1/crankshaft/test/fixtures/kmeans.json
vendored
Normal file
@ -0,0 +1 @@
|
||||
[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}]
|
1
release/python/0.5.1/crankshaft/test/fixtures/markov.json
vendored
Normal file
1
release/python/0.5.1/crankshaft/test/fixtures/markov.json
vendored
Normal file
@ -0,0 +1 @@
|
||||
[[0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 0], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 1], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 2], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 3], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 4], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 5], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 6], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 7], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 8], [0.19047619047619049, 0.16, 0.0, 0.32594478059941379, 9], [-0.23529411764705882, 0.0, 0.19047619047619047, 0.31356338348865387, 10], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 11], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 12], [0.027777777777777783, 0.11111111111111112, 0.088888888888888892, 0.30339641183779581, 13], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 14], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 15], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 16], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 17], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 18], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 19], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 20], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 21], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 22], [-0.16666666666666663, 0.18181818181818182, 0.27272727272727271, 0.20246415864836445, 23], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 24], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 25], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 26], [-0.043478260869565216, 0.0, 0.041666666666666664, 0.37950991789118999, 27], [0.22222222222222221, 0.18181818181818182, 0.0, 0.31701083225750354, 28], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 29], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 30], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 31], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 32], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 33], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 34], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 35], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 36], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 37], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 38], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 39], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 40], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 41], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 42], [0.0, 0.0, 0.0, 0.40000000000000002, 43], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 44], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 45], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 46], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 47]]
|
52
release/python/0.5.1/crankshaft/test/fixtures/moran.json
vendored
Normal file
52
release/python/0.5.1/crankshaft/test/fixtures/moran.json
vendored
Normal file
@ -0,0 +1,52 @@
|
||||
[[0.9319096128346788, "HH"],
|
||||
[-1.135787401862846, "HL"],
|
||||
[0.11732030672508517, "LL"],
|
||||
[0.6152779669180425, "LL"],
|
||||
[-0.14657336660125297, "LH"],
|
||||
[0.6967858120189607, "LL"],
|
||||
[0.07949310115714454, "HH"],
|
||||
[0.4703198759258987, "HH"],
|
||||
[0.4421125200498064, "HH"],
|
||||
[0.5724288737143592, "LL"],
|
||||
[0.8970743435692062, "LL"],
|
||||
[0.18327334401918674, "LL"],
|
||||
[-0.01466729201304962, "HL"],
|
||||
[0.3481559372544409, "LL"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.15482141569329988, "HH"],
|
||||
[0.4373841193538136, "HH"],
|
||||
[0.15971286468915544, "LL"],
|
||||
[1.0543588860308968, "HH"],
|
||||
[1.7372866900020818, "HH"],
|
||||
[1.091998586053999, "LL"],
|
||||
[0.1171572584252222, "HH"],
|
||||
[0.08438455015300014, "LL"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.15482141569329985, "HH"],
|
||||
[1.1627044812890683, "HH"],
|
||||
[0.06547094736902978, "LL"],
|
||||
[0.795275137550483, "HH"],
|
||||
[0.18562939195219, "LL"],
|
||||
[0.3010757406693439, "LL"],
|
||||
[2.8205795942839376, "HH"],
|
||||
[0.11259190602909264, "LL"],
|
||||
[-0.07116352791516614, "HL"],
|
||||
[-0.09945240794119009, "LH"],
|
||||
[0.18562939195219, "LL"],
|
||||
[0.1832733440191868, "LL"],
|
||||
[-0.39054253768447705, "HL"],
|
||||
[-0.1672071289487642, "HL"],
|
||||
[0.3337669247916343, "HH"],
|
||||
[0.2584386102554792, "HH"],
|
||||
[-0.19733845476322634, "HL"],
|
||||
[-0.9379282899805409, "LH"],
|
||||
[-0.028770969951095866, "LH"],
|
||||
[0.051367269430983485, "LL"],
|
||||
[-0.2172548045913472, "LH"],
|
||||
[0.05136726943098351, "LL"],
|
||||
[0.04191046803899837, "LL"],
|
||||
[0.7482357030403517, "HH"],
|
||||
[-0.014585767863118111, "LH"],
|
||||
[0.5410013139159929, "HH"],
|
||||
[1.0223932668429925, "LL"],
|
||||
[1.4179402898927476, "LL"]]
|
54
release/python/0.5.1/crankshaft/test/fixtures/neighbors.json
vendored
Normal file
54
release/python/0.5.1/crankshaft/test/fixtures/neighbors.json
vendored
Normal file
@ -0,0 +1,54 @@
|
||||
[
|
||||
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
|
||||
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
|
||||
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
|
||||
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
|
||||
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
|
||||
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
|
||||
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
|
||||
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
|
||||
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
|
||||
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
|
||||
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
|
||||
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
|
||||
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
|
||||
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
|
||||
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
|
||||
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
|
||||
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
|
||||
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
|
||||
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
|
||||
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
|
||||
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
|
||||
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
|
||||
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
|
||||
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
|
||||
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
|
||||
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
|
||||
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
|
||||
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
|
||||
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
|
||||
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
|
||||
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
|
||||
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
|
||||
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
|
||||
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
|
||||
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
|
||||
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
|
||||
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
|
||||
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
|
||||
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
|
||||
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
|
||||
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
|
||||
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
|
||||
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
|
||||
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
|
||||
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
|
||||
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
|
||||
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
|
||||
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
|
||||
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
|
||||
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
|
||||
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
|
||||
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
|
||||
]
|
1
release/python/0.5.1/crankshaft/test/fixtures/neighbors_getis.json
vendored
Normal file
1
release/python/0.5.1/crankshaft/test/fixtures/neighbors_getis.json
vendored
Normal file
File diff suppressed because one or more lines are too long
1
release/python/0.5.1/crankshaft/test/fixtures/neighbors_markov.json
vendored
Normal file
1
release/python/0.5.1/crankshaft/test/fixtures/neighbors_markov.json
vendored
Normal file
File diff suppressed because one or more lines are too long
13
release/python/0.5.1/crankshaft/test/helper.py
Normal file
13
release/python/0.5.1/crankshaft/test/helper.py
Normal file
@ -0,0 +1,13 @@
|
||||
import unittest
|
||||
|
||||
from mock_plpy import MockPlPy
|
||||
plpy = MockPlPy()
|
||||
|
||||
import sys
|
||||
sys.modules['plpy'] = plpy
|
||||
|
||||
import os
|
||||
|
||||
def fixture_file(name):
|
||||
dir = os.path.dirname(os.path.realpath(__file__))
|
||||
return os.path.join(dir, 'fixtures', name)
|
54
release/python/0.5.1/crankshaft/test/mock_plpy.py
Normal file
54
release/python/0.5.1/crankshaft/test/mock_plpy.py
Normal file
@ -0,0 +1,54 @@
|
||||
import re
|
||||
|
||||
|
||||
class MockCursor:
|
||||
def __init__(self, data):
|
||||
self.cursor_pos = 0
|
||||
self.data = data
|
||||
|
||||
def fetch(self, batch_size):
|
||||
batch = self.data[self.cursor_pos:self.cursor_pos + batch_size]
|
||||
self.cursor_pos += batch_size
|
||||
return batch
|
||||
|
||||
|
||||
class MockPlPy:
|
||||
def __init__(self):
|
||||
self._reset()
|
||||
|
||||
def _reset(self):
|
||||
self.infos = []
|
||||
self.notices = []
|
||||
self.debugs = []
|
||||
self.logs = []
|
||||
self.warnings = []
|
||||
self.errors = []
|
||||
self.fatals = []
|
||||
self.executes = []
|
||||
self.results = []
|
||||
self.prepares = []
|
||||
self.results = []
|
||||
|
||||
def _define_result(self, query, result):
|
||||
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
|
||||
self.results.append([pattern, result])
|
||||
|
||||
def notice(self, msg):
|
||||
self.notices.append(msg)
|
||||
|
||||
def debug(self, msg):
|
||||
self.notices.append(msg)
|
||||
|
||||
def info(self, msg):
|
||||
self.infos.append(msg)
|
||||
|
||||
def cursor(self, query):
|
||||
data = self.execute(query)
|
||||
return MockCursor(data)
|
||||
|
||||
# TODO: additional arguments
|
||||
def execute(self, query):
|
||||
for result in self.results:
|
||||
if result[0].match(query):
|
||||
return result[1]
|
||||
return []
|
@ -0,0 +1,78 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from helper import fixture_file
|
||||
|
||||
from crankshaft.clustering import Getis
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
|
||||
# Fixture files produced as follows
|
||||
#
|
||||
# import pysal as ps
|
||||
# import numpy as np
|
||||
# import random
|
||||
#
|
||||
# # setup variables
|
||||
# f = ps.open(ps.examples.get_path("stl_hom.dbf"))
|
||||
# y = np.array(f.by_col['HR8893'])
|
||||
# w_queen = ps.queen_from_shapefile(ps.examples.get_path("stl_hom.shp"))
|
||||
#
|
||||
# out_queen = [{"id": index + 1,
|
||||
# "neighbors": [x+1 for x in w_queen.neighbors[index]],
|
||||
# "value": val} for index, val in enumerate(y)]
|
||||
#
|
||||
# with open('neighbors_queen_getis.json', 'w') as f:
|
||||
# f.write(str(out_queen))
|
||||
#
|
||||
# random.seed(1234)
|
||||
# np.random.seed(1234)
|
||||
# lgstar_queen = ps.esda.getisord.G_Local(y, w_queen, star=True,
|
||||
# permutations=999)
|
||||
#
|
||||
# with open('getis_queen.json', 'w') as f:
|
||||
# f.write(str(zip(lgstar_queen.z_sim,
|
||||
# lgstar_queen.p_sim, lgstar_queen.p_z_sim)))
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, mock_data):
|
||||
self.mock_result = mock_data
|
||||
|
||||
def get_getis(self, w_type, param):
|
||||
return self.mock_result
|
||||
|
||||
|
||||
class GetisTest(unittest.TestCase):
|
||||
"""Testing class for Getis-Ord's G* funtion
|
||||
This test replicates the work done in PySAL documentation:
|
||||
https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/autocorrelation.html#local-g-and-g
|
||||
"""
|
||||
|
||||
def setUp(self):
|
||||
# load raw data for analysis
|
||||
self.neighbors_data = json.loads(
|
||||
open(fixture_file('neighbors_getis.json')).read())
|
||||
|
||||
# load pre-computed/known values
|
||||
self.getis_data = json.loads(
|
||||
open(fixture_file('getis.json')).read())
|
||||
|
||||
def test_getis_ord(self):
|
||||
"""Test Getis-Ord's G*"""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
|
||||
random_seeds.set_random_seeds(1234)
|
||||
getis = Getis(FakeDataProvider(data))
|
||||
|
||||
result = getis.getis_ord('subquery', 'value',
|
||||
'queen', None, 999, 'the_geom',
|
||||
'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
expected = np.array(self.getis_data)[:, 0:2]
|
||||
for ([res_z, res_p], [exp_z, exp_p]) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_z, exp_z, delta=1e-2)
|
@ -0,0 +1,56 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
|
||||
# from mock_plpy import MockPlPy
|
||||
# plpy = MockPlPy()
|
||||
#
|
||||
# import sys
|
||||
# sys.modules['plpy'] = plpy
|
||||
from helper import fixture_file
|
||||
from crankshaft.clustering import Kmeans
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
import crankshaft.clustering as cc
|
||||
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, mocked_result):
|
||||
self.mocked_result = mocked_result
|
||||
|
||||
def get_spatial_kmeans(self, query):
|
||||
return self.mocked_result
|
||||
|
||||
def get_nonspatial_kmeans(self, query, standarize):
|
||||
return self.mocked_result
|
||||
|
||||
|
||||
class KMeansTest(unittest.TestCase):
|
||||
"""Testing class for k-means spatial"""
|
||||
|
||||
def setUp(self):
|
||||
self.cluster_data = json.loads(
|
||||
open(fixture_file('kmeans.json')).read())
|
||||
self.params = {"subquery": "select * from table",
|
||||
"no_clusters": "10"}
|
||||
|
||||
def test_kmeans(self):
|
||||
"""
|
||||
"""
|
||||
data = [{'xs': d['xs'],
|
||||
'ys': d['ys'],
|
||||
'ids': d['ids']} for d in self.cluster_data]
|
||||
|
||||
random_seeds.set_random_seeds(1234)
|
||||
kmeans = Kmeans(FakeDataProvider(data))
|
||||
clusters = kmeans.spatial('subquery', 2)
|
||||
labels = [a[1] for a in clusters]
|
||||
c1 = [a for a in clusters if a[1] == 0]
|
||||
c2 = [a for a in clusters if a[1] == 1]
|
||||
|
||||
self.assertEqual(len(np.unique(labels)), 2)
|
||||
self.assertEqual(len(c1), 20)
|
||||
self.assertEqual(len(c2), 20)
|
112
release/python/0.5.1/crankshaft/test/test_clustering_moran.py
Normal file
112
release/python/0.5.1/crankshaft/test/test_clustering_moran.py
Normal file
@ -0,0 +1,112 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
from helper import fixture_file
|
||||
from crankshaft.clustering import Moran
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
import json
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, mock_data):
|
||||
self.mock_result = mock_data
|
||||
|
||||
def get_moran(self, w_type, params):
|
||||
return self.mock_result
|
||||
|
||||
|
||||
class MoranTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"attr1": "andy",
|
||||
"attr2": "jay_z",
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.params_markov = {"id_col": "cartodb_id",
|
||||
"time_cols": ["_2013_dec", "_2014_jan",
|
||||
"_2014_feb"],
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.neighbors_data = json.loads(
|
||||
open(fixture_file('neighbors.json')).read())
|
||||
self.moran_data = json.loads(
|
||||
open(fixture_file('moran.json')).read())
|
||||
|
||||
def test_map_quads(self):
|
||||
"""Test map_quads"""
|
||||
from crankshaft.clustering import map_quads
|
||||
self.assertEqual(map_quads(1), 'HH')
|
||||
self.assertEqual(map_quads(2), 'LH')
|
||||
self.assertEqual(map_quads(3), 'LL')
|
||||
self.assertEqual(map_quads(4), 'HL')
|
||||
self.assertEqual(map_quads(33), None)
|
||||
self.assertEqual(map_quads('andy'), None)
|
||||
|
||||
def test_quad_position(self):
|
||||
"""Test lisa_sig_vals"""
|
||||
from crankshaft.clustering import quad_position
|
||||
|
||||
quads = np.array([1, 2, 3, 4], np.int)
|
||||
|
||||
ans = np.array(['HH', 'LH', 'LL', 'HL'])
|
||||
test_ans = quad_position(quads)
|
||||
|
||||
self.assertTrue((test_ans == ans).all())
|
||||
|
||||
def test_local_stat(self):
|
||||
"""Test Moran's I local"""
|
||||
data = [OrderedDict([('id', d['id']),
|
||||
('attr1', d['value']),
|
||||
('neighbors', d['neighbors'])])
|
||||
for d in self.neighbors_data]
|
||||
|
||||
moran = Moran(FakeDataProvider(data))
|
||||
random_seeds.set_random_seeds(1234)
|
||||
result = moran.local_stat('subquery', 'value',
|
||||
'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
zipped_values = zip(result, self.moran_data)
|
||||
|
||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zipped_values:
|
||||
self.assertAlmostEqual(res_val, exp_val)
|
||||
self.assertEqual(res_quad, exp_quad)
|
||||
|
||||
def test_moran_local_rate(self):
|
||||
"""Test Moran's I rate"""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'attr2': 1,
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
|
||||
random_seeds.set_random_seeds(1234)
|
||||
moran = Moran(FakeDataProvider(data))
|
||||
result = moran.local_rate_stat('subquery', 'numerator', 'denominator',
|
||||
'knn', 5, 99, 'the_geom', 'cartodb_id')
|
||||
result = [(row[0], row[1]) for row in result]
|
||||
|
||||
zipped_values = zip(result, self.moran_data)
|
||||
|
||||
for ([res_val, res_quad], [exp_val, exp_quad]) in zipped_values:
|
||||
self.assertAlmostEqual(res_val, exp_val)
|
||||
|
||||
def test_moran(self):
|
||||
"""Test Moran's I global"""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['value'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
random_seeds.set_random_seeds(1235)
|
||||
moran = Moran(FakeDataProvider(data))
|
||||
result = moran.global_stat('table', 'value',
|
||||
'knn', 5, 99, 'the_geom',
|
||||
'cartodb_id')
|
||||
|
||||
result_moran = result[0][0]
|
||||
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
|
||||
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)
|
160
release/python/0.5.1/crankshaft/test/test_pysal_utils.py
Normal file
160
release/python/0.5.1/crankshaft/test/test_pysal_utils.py
Normal file
@ -0,0 +1,160 @@
|
||||
import unittest
|
||||
|
||||
import crankshaft.pysal_utils as pu
|
||||
from crankshaft import random_seeds
|
||||
from collections import OrderedDict
|
||||
|
||||
|
||||
class PysalUtilsTest(unittest.TestCase):
|
||||
"""Testing class for utility functions related to PySAL integrations"""
|
||||
|
||||
def setUp(self):
|
||||
self.params1 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("attr1", "andy"),
|
||||
("attr2", "jay_z"),
|
||||
("subquery", "SELECT * FROM a_list"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params2 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("numerator", "price"),
|
||||
("denominator", "sq_meters"),
|
||||
("subquery", "SELECT * FROM pecan"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params3 = OrderedDict([("id_col", "cartodb_id"),
|
||||
("numerator", "sq_meters"),
|
||||
("denominator", "price"),
|
||||
("subquery", "SELECT * FROM pecan"),
|
||||
("geom_col", "the_geom"),
|
||||
("num_ngbrs", 321)])
|
||||
|
||||
self.params_array = {"id_col": "cartodb_id",
|
||||
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
|
||||
def test_query_attr_select(self):
|
||||
"""Test query_attr_select"""
|
||||
|
||||
ans1 = ("i.\"andy\"::numeric As attr1, "
|
||||
"i.\"jay_z\"::numeric As attr2, ")
|
||||
|
||||
ans2 = ("i.\"price\"::numeric As attr1, "
|
||||
"i.\"sq_meters\"::numeric As attr2, ")
|
||||
|
||||
ans3 = ("i.\"sq_meters\"::numeric As attr1, "
|
||||
"i.\"price\"::numeric As attr2, ")
|
||||
|
||||
ans_array = ("i.\"_2013_dec\"::numeric As attr1, "
|
||||
"i.\"_2014_jan\"::numeric As attr2, "
|
||||
"i.\"_2014_feb\"::numeric As attr3, ")
|
||||
|
||||
self.assertEqual(pu.query_attr_select(self.params1), ans1)
|
||||
self.assertEqual(pu.query_attr_select(self.params2), ans2)
|
||||
self.assertEqual(pu.query_attr_select(self.params3), ans3)
|
||||
self.assertEqual(pu.query_attr_select(self.params_array), ans_array)
|
||||
|
||||
def test_query_attr_where(self):
|
||||
"""Test pu.query_attr_where"""
|
||||
|
||||
ans1 = ("idx_replace.\"andy\" IS NOT NULL AND "
|
||||
"idx_replace.\"jay_z\" IS NOT NULL")
|
||||
|
||||
ans_array = ("idx_replace.\"_2013_dec\" IS NOT NULL AND "
|
||||
"idx_replace.\"_2014_jan\" IS NOT NULL AND "
|
||||
"idx_replace.\"_2014_feb\" IS NOT NULL")
|
||||
|
||||
self.assertEqual(pu.query_attr_where(self.params1), ans1)
|
||||
self.assertEqual(pu.query_attr_where(self.params_array), ans_array)
|
||||
|
||||
def test_knn(self):
|
||||
"""Test knn neighbors constructor"""
|
||||
|
||||
ans1 = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY " \
|
||||
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
|
||||
"LIMIT 321)) As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
ans_array = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"_2013_dec\"::numeric As attr1, " \
|
||||
"i.\"_2014_jan\"::numeric As attr2, " \
|
||||
"i.\"_2014_feb\"::numeric As attr3, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"j.\"_2013_dec\" IS NOT NULL AND " \
|
||||
"j.\"_2014_jan\" IS NOT NULL AND " \
|
||||
"j.\"_2014_feb\" IS NOT NULL " \
|
||||
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC " \
|
||||
"LIMIT 321)) As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"_2013_dec\" IS NOT NULL AND " \
|
||||
"i.\"_2014_jan\" IS NOT NULL AND " \
|
||||
"i.\"_2014_feb\" IS NOT NULL "\
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.knn(self.params1), ans1)
|
||||
self.assertEqual(pu.knn(self.params_array), ans_array)
|
||||
|
||||
def test_queen(self):
|
||||
"""Test queen neighbors constructor"""
|
||||
|
||||
ans1 = "SELECT i.\"cartodb_id\" As id, " \
|
||||
"i.\"andy\"::numeric As attr1, " \
|
||||
"i.\"jay_z\"::numeric As attr2, " \
|
||||
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
|
||||
"FROM (SELECT * FROM a_list) As j " \
|
||||
"WHERE " \
|
||||
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
|
||||
"ST_Touches(i.\"the_geom\", " \
|
||||
"j.\"the_geom\") AND " \
|
||||
"j.\"andy\" IS NOT NULL AND " \
|
||||
"j.\"jay_z\" IS NOT NULL)" \
|
||||
") As neighbors " \
|
||||
"FROM (SELECT * FROM a_list) As i " \
|
||||
"WHERE i.\"andy\" IS NOT NULL AND " \
|
||||
"i.\"jay_z\" IS NOT NULL " \
|
||||
"ORDER BY i.\"cartodb_id\" ASC;"
|
||||
|
||||
self.assertEqual(pu.queen(self.params1), ans1)
|
||||
|
||||
def test_construct_neighbor_query(self):
|
||||
"""Test construct_neighbor_query"""
|
||||
|
||||
# Compare to raw knn query
|
||||
self.assertEqual(pu.construct_neighbor_query('knn', self.params1),
|
||||
pu.knn(self.params1))
|
||||
|
||||
def test_get_attributes(self):
|
||||
"""Test get_attributes"""
|
||||
|
||||
## need to add tests
|
||||
|
||||
self.assertEqual(True, True)
|
||||
|
||||
def test_get_weight(self):
|
||||
"""Test get_weight"""
|
||||
|
||||
self.assertEqual(True, True)
|
||||
|
||||
def test_empty_zipped_array(self):
|
||||
"""Test empty_zipped_array"""
|
||||
ans2 = [(None, None)]
|
||||
ans4 = [(None, None, None, None)]
|
||||
self.assertEqual(pu.empty_zipped_array(2), ans2)
|
||||
self.assertEqual(pu.empty_zipped_array(4), ans4)
|
64
release/python/0.5.1/crankshaft/test/test_segmentation.py
Normal file
64
release/python/0.5.1/crankshaft/test/test_segmentation.py
Normal file
@ -0,0 +1,64 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from helper import plpy, fixture_file
|
||||
import crankshaft.segmentation as segmentation
|
||||
import json
|
||||
|
||||
class SegmentationTest(unittest.TestCase):
|
||||
"""Testing class for Moran's I functions"""
|
||||
|
||||
def setUp(self):
|
||||
plpy._reset()
|
||||
|
||||
def generate_random_data(self,n_samples,random_state, row_type=False):
|
||||
x1 = random_state.uniform(size=n_samples)
|
||||
x2 = random_state.uniform(size=n_samples)
|
||||
x3 = random_state.randint(0, 4, size=n_samples)
|
||||
|
||||
y = x1+x2*x2+x3
|
||||
cartodb_id = range(len(x1))
|
||||
|
||||
if row_type:
|
||||
return [ {'features': vals} for vals in zip(x1,x2,x3)], y
|
||||
else:
|
||||
return [dict( zip(['x1','x2','x3','target', 'cartodb_id'],[x1,x2,x3,y,cartodb_id]))]
|
||||
|
||||
def test_replace_nan_with_mean(self):
|
||||
test_array = np.array([1.2, np.nan, 3.2, np.nan, np.nan])
|
||||
|
||||
def test_create_and_predict_segment(self):
|
||||
n_samples = 1000
|
||||
|
||||
random_state_train = np.random.RandomState(13)
|
||||
random_state_test = np.random.RandomState(134)
|
||||
training_data = self.generate_random_data(n_samples, random_state_train)
|
||||
test_data, test_y = self.generate_random_data(n_samples, random_state_test, row_type=True)
|
||||
|
||||
|
||||
ids = [{'cartodb_ids': range(len(test_data))}]
|
||||
rows = [{'x1': 0,'x2':0,'x3':0,'y':0,'cartodb_id':0}]
|
||||
|
||||
plpy._define_result('select \* from \(select \* from training\) a limit 1',rows)
|
||||
plpy._define_result('.*from \(select \* from training\) as a' ,training_data)
|
||||
plpy._define_result('select array_agg\(cartodb\_id order by cartodb\_id\) as cartodb_ids from \(.*\) a',ids)
|
||||
plpy._define_result('.*select \* from test.*' ,test_data)
|
||||
|
||||
model_parameters = {'n_estimators': 1200,
|
||||
'max_depth': 3,
|
||||
'subsample' : 0.5,
|
||||
'learning_rate': 0.01,
|
||||
'min_samples_leaf': 1}
|
||||
|
||||
result = segmentation.create_and_predict_segment(
|
||||
'select * from training',
|
||||
'target',
|
||||
'select * from test',
|
||||
model_parameters)
|
||||
|
||||
prediction = [r[1] for r in result]
|
||||
|
||||
accuracy =np.sqrt(np.mean( np.square( np.array(prediction) - np.array(test_y))))
|
||||
|
||||
self.assertEqual(len(result),len(test_data))
|
||||
self.assertTrue( result[0][2] < 0.01)
|
||||
self.assertTrue( accuracy < 0.5*np.mean(test_y) )
|
349
release/python/0.5.1/crankshaft/test/test_space_time_dynamics.py
Normal file
349
release/python/0.5.1/crankshaft/test/test_space_time_dynamics.py
Normal file
@ -0,0 +1,349 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import unittest
|
||||
|
||||
|
||||
from helper import fixture_file
|
||||
|
||||
from crankshaft.space_time_dynamics import Markov
|
||||
import crankshaft.space_time_dynamics as std
|
||||
from crankshaft import random_seeds
|
||||
from crankshaft.analysis_data_provider import AnalysisDataProvider
|
||||
import json
|
||||
|
||||
|
||||
class FakeDataProvider(AnalysisDataProvider):
|
||||
def __init__(self, data):
|
||||
self.mock_result = data
|
||||
|
||||
def get_markov(self, w_type, params):
|
||||
return self.mock_result
|
||||
|
||||
|
||||
class SpaceTimeTests(unittest.TestCase):
|
||||
"""Testing class for Markov Functions."""
|
||||
|
||||
def setUp(self):
|
||||
self.params = {"id_col": "cartodb_id",
|
||||
"time_cols": ['dec_2013', 'jan_2014', 'feb_2014'],
|
||||
"subquery": "SELECT * FROM a_list",
|
||||
"geom_col": "the_geom",
|
||||
"num_ngbrs": 321}
|
||||
self.neighbors_data = json.loads(
|
||||
open(fixture_file('neighbors_markov.json')).read())
|
||||
self.markov_data = json.loads(open(fixture_file('markov.json')).read())
|
||||
|
||||
self.time_data = np.array([i * np.ones(10, dtype=float)
|
||||
for i in range(10)]).T
|
||||
|
||||
self.transition_matrix = np.array([
|
||||
[[0.96341463, 0.0304878, 0.00609756, 0., 0.],
|
||||
[0.06040268, 0.83221477, 0.10738255, 0., 0.],
|
||||
[0., 0.14, 0.74, 0.12, 0.],
|
||||
[0., 0.03571429, 0.32142857, 0.57142857, 0.07142857],
|
||||
[0., 0., 0., 0.16666667, 0.83333333]],
|
||||
[[0.79831933, 0.16806723, 0.03361345, 0., 0.],
|
||||
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
|
||||
[0.00537634, 0.06989247, 0.8655914, 0.05913978, 0.],
|
||||
[0., 0., 0.06372549, 0.90196078, 0.03431373],
|
||||
[0., 0., 0., 0.19444444, 0.80555556]],
|
||||
[[0.84693878, 0.15306122, 0., 0., 0.],
|
||||
[0.08133971, 0.78947368, 0.1291866, 0., 0.],
|
||||
[0.00518135, 0.0984456, 0.79274611, 0.0984456, 0.00518135],
|
||||
[0., 0., 0.09411765, 0.87058824, 0.03529412],
|
||||
[0., 0., 0., 0.10204082, 0.89795918]],
|
||||
[[0.8852459, 0.09836066, 0., 0.01639344, 0.],
|
||||
[0.03875969, 0.81395349, 0.13953488, 0., 0.00775194],
|
||||
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
|
||||
[0., 0.02339181, 0.12865497, 0.75438596, 0.09356725],
|
||||
[0., 0., 0., 0.09661836, 0.90338164]],
|
||||
[[0.33333333, 0.66666667, 0., 0., 0.],
|
||||
[0.0483871, 0.77419355, 0.16129032, 0.01612903, 0.],
|
||||
[0.01149425, 0.16091954, 0.74712644, 0.08045977, 0.],
|
||||
[0., 0.01036269, 0.06217617, 0.89637306, 0.03108808],
|
||||
[0., 0., 0., 0.02352941, 0.97647059]]]
|
||||
)
|
||||
|
||||
def test_spatial_markov(self):
|
||||
"""Test Spatial Markov."""
|
||||
data = [{'id': d['id'],
|
||||
'attr1': d['y1995'],
|
||||
'attr2': d['y1996'],
|
||||
'attr3': d['y1997'],
|
||||
'attr4': d['y1998'],
|
||||
'attr5': d['y1999'],
|
||||
'attr6': d['y2000'],
|
||||
'attr7': d['y2001'],
|
||||
'attr8': d['y2002'],
|
||||
'attr9': d['y2003'],
|
||||
'attr10': d['y2004'],
|
||||
'attr11': d['y2005'],
|
||||
'attr12': d['y2006'],
|
||||
'attr13': d['y2007'],
|
||||
'attr14': d['y2008'],
|
||||
'attr15': d['y2009'],
|
||||
'neighbors': d['neighbors']} for d in self.neighbors_data]
|
||||
# print(str(data[0]))
|
||||
markov = Markov(FakeDataProvider(data))
|
||||
random_seeds.set_random_seeds(1234)
|
||||
|
||||
result = markov.spatial_trend('subquery',
|
||||
['y1995', 'y1996', 'y1997', 'y1998',
|
||||
'y1999', 'y2000', 'y2001', 'y2002',
|
||||
'y2003', 'y2004', 'y2005', 'y2006',
|
||||
'y2007', 'y2008', 'y2009'],
|
||||
5, 'knn', 5, 0, 'the_geom',
|
||||
'cartodb_id')
|
||||
|
||||
self.assertTrue(result is not None)
|
||||
result = [(row[0], row[1], row[2], row[3], row[4]) for row in result]
|
||||
print result[0]
|
||||
expected = self.markov_data
|
||||
for ([res_trend, res_up, res_down, res_vol, res_id],
|
||||
[exp_trend, exp_up, exp_down, exp_vol, exp_id]
|
||||
) in zip(result, expected):
|
||||
self.assertAlmostEqual(res_trend, exp_trend)
|
||||
|
||||
def test_get_time_data(self):
|
||||
"""Test get_time_data"""
|
||||
data = [{'attr1': d['y1995'],
|
||||
'attr2': d['y1996'],
|
||||
'attr3': d['y1997'],
|
||||
'attr4': d['y1998'],
|
||||
'attr5': d['y1999'],
|
||||
'attr6': d['y2000'],
|
||||
'attr7': d['y2001'],
|
||||
'attr8': d['y2002'],
|
||||
'attr9': d['y2003'],
|
||||
'attr10': d['y2004'],
|
||||
'attr11': d['y2005'],
|
||||
'attr12': d['y2006'],
|
||||
'attr13': d['y2007'],
|
||||
'attr14': d['y2008'],
|
||||
'attr15': d['y2009']} for d in self.neighbors_data]
|
||||
|
||||
result = std.get_time_data(data, ['y1995', 'y1996', 'y1997', 'y1998',
|
||||
'y1999', 'y2000', 'y2001', 'y2002',
|
||||
'y2003', 'y2004', 'y2005', 'y2006',
|
||||
'y2007', 'y2008', 'y2009'])
|
||||
|
||||
# expected was prepared from PySAL example:
|
||||
# f = ps.open(ps.examples.get_path("usjoin.csv"))
|
||||
# pci = np.array([f.by_col[str(y)]
|
||||
# for y in range(1995, 2010)]).transpose()
|
||||
# rpci = pci / (pci.mean(axis = 0))
|
||||
|
||||
expected = np.array(
|
||||
[[0.87654416, 0.863147, 0.85637567, 0.84811668, 0.8446154,
|
||||
0.83271652, 0.83786314, 0.85012593, 0.85509656, 0.86416612,
|
||||
0.87119375, 0.86302631, 0.86148267, 0.86252252, 0.86746356],
|
||||
[0.9188951, 0.91757931, 0.92333258, 0.92517289, 0.92552388,
|
||||
0.90746978, 0.89830489, 0.89431991, 0.88924794, 0.89815176,
|
||||
0.91832091, 0.91706054, 0.90139505, 0.87897455, 0.86216858],
|
||||
[0.82591007, 0.82548596, 0.81989793, 0.81503235, 0.81731522,
|
||||
0.78964559, 0.80584442, 0.8084998, 0.82258551, 0.82668196,
|
||||
0.82373724, 0.81814804, 0.83675961, 0.83574199, 0.84647177],
|
||||
[1.09088176, 1.08537689, 1.08456418, 1.08415404, 1.09898841,
|
||||
1.14506948, 1.12151133, 1.11160697, 1.10888621, 1.11399806,
|
||||
1.12168029, 1.13164797, 1.12958508, 1.11371818, 1.09936775],
|
||||
[1.10731446, 1.11373944, 1.13283638, 1.14472559, 1.15910025,
|
||||
1.16898201, 1.17212488, 1.14752303, 1.11843284, 1.11024964,
|
||||
1.11943471, 1.11736468, 1.10863242, 1.09642516, 1.07762337],
|
||||
[1.42269757, 1.42118434, 1.44273502, 1.43577571, 1.44400684,
|
||||
1.44184737, 1.44782832, 1.41978227, 1.39092208, 1.4059372,
|
||||
1.40788646, 1.44052766, 1.45241216, 1.43306098, 1.4174431],
|
||||
[1.13073885, 1.13110513, 1.11074708, 1.13364636, 1.13088149,
|
||||
1.10888138, 1.11856629, 1.13062931, 1.11944984, 1.12446239,
|
||||
1.11671008, 1.10880034, 1.08401709, 1.06959206, 1.07875225],
|
||||
[1.04706124, 1.04516831, 1.04253372, 1.03239987, 1.02072545,
|
||||
0.99854316, 0.9880258, 0.99669587, 0.99327676, 1.01400905,
|
||||
1.03176742, 1.040511, 1.01749645, 0.9936394, 0.98279746],
|
||||
[0.98996986, 1.00143564, 0.99491, 1.00188408, 1.00455845,
|
||||
0.99127006, 0.97925917, 0.9683482, 0.95335147, 0.93694787,
|
||||
0.94308213, 0.92232874, 0.91284091, 0.89689833, 0.88928858],
|
||||
[0.87418391, 0.86416601, 0.84425695, 0.8404494, 0.83903044,
|
||||
0.8578708, 0.86036185, 0.86107306, 0.8500772, 0.86981998,
|
||||
0.86837929, 0.87204141, 0.86633032, 0.84946077, 0.83287146],
|
||||
[1.14196118, 1.14660262, 1.14892712, 1.14909594, 1.14436624,
|
||||
1.14450183, 1.12349752, 1.12596664, 1.12213996, 1.1119989,
|
||||
1.10257792, 1.10491258, 1.11059842, 1.10509795, 1.10020097],
|
||||
[0.97282463, 0.96700147, 0.96252588, 0.9653878, 0.96057687,
|
||||
0.95831051, 0.94480909, 0.94804195, 0.95430286, 0.94103989,
|
||||
0.92122519, 0.91010201, 0.89280392, 0.89298243, 0.89165385],
|
||||
[0.94325468, 0.96436902, 0.96455242, 0.95243009, 0.94117647,
|
||||
0.9480927, 0.93539182, 0.95388718, 0.94597005, 0.96918424,
|
||||
0.94781281, 0.93466815, 0.94281559, 0.96520315, 0.96715441],
|
||||
[0.97478408, 0.98169225, 0.98712809, 0.98474769, 0.98559897,
|
||||
0.98687073, 0.99237486, 0.98209969, 0.9877653, 0.97399471,
|
||||
0.96910087, 0.98416665, 0.98423613, 0.99823861, 0.99545704],
|
||||
[0.85570269, 0.85575915, 0.85986132, 0.85693406, 0.8538012,
|
||||
0.86191535, 0.84981451, 0.85472102, 0.84564835, 0.83998883,
|
||||
0.83478547, 0.82803648, 0.8198736, 0.82265395, 0.8399404],
|
||||
[0.87022047, 0.85996258, 0.85961813, 0.85689572, 0.83947136,
|
||||
0.82785597, 0.86008789, 0.86776298, 0.86720209, 0.8676334,
|
||||
0.89179317, 0.94202108, 0.9422231, 0.93902708, 0.94479184],
|
||||
[0.90134907, 0.90407738, 0.90403991, 0.90201769, 0.90399238,
|
||||
0.90906632, 0.92693339, 0.93695966, 0.94242697, 0.94338265,
|
||||
0.91981796, 0.91108804, 0.90543476, 0.91737138, 0.94793657],
|
||||
[1.1977611, 1.18222564, 1.18439158, 1.18267865, 1.19286723,
|
||||
1.20172869, 1.21328691, 1.22624778, 1.22397075, 1.23857042,
|
||||
1.24419893, 1.23929384, 1.23418676, 1.23626739, 1.26754398],
|
||||
[1.24919678, 1.25754773, 1.26991161, 1.28020651, 1.30625667,
|
||||
1.34790023, 1.34399863, 1.32575181, 1.30795492, 1.30544841,
|
||||
1.30303302, 1.32107766, 1.32936244, 1.33001241, 1.33288462],
|
||||
[1.06768004, 1.03799276, 1.03637303, 1.02768449, 1.03296093,
|
||||
1.05059016, 1.03405057, 1.02747623, 1.03162734, 0.9961416,
|
||||
0.97356208, 0.94241549, 0.92754547, 0.92549227, 0.92138102],
|
||||
[1.09475614, 1.11526796, 1.11654299, 1.13103948, 1.13143264,
|
||||
1.13889622, 1.12442212, 1.13367018, 1.13982256, 1.14029944,
|
||||
1.11979401, 1.10905389, 1.10577769, 1.11166825, 1.09985155],
|
||||
[0.76530058, 0.76612841, 0.76542451, 0.76722683, 0.76014284,
|
||||
0.74480073, 0.76098396, 0.76156903, 0.76651952, 0.76533288,
|
||||
0.78205934, 0.76842416, 0.77487118, 0.77768683, 0.78801192],
|
||||
[0.98391336, 0.98075816, 0.98295341, 0.97386015, 0.96913803,
|
||||
0.97370819, 0.96419154, 0.97209861, 0.97441313, 0.96356162,
|
||||
0.94745352, 0.93965462, 0.93069645, 0.94020973, 0.94358232],
|
||||
[0.83561828, 0.82298088, 0.81738502, 0.81748588, 0.80904801,
|
||||
0.80071489, 0.83358256, 0.83451613, 0.85175032, 0.85954307,
|
||||
0.86790024, 0.87170334, 0.87863799, 0.87497981, 0.87888675],
|
||||
[0.98845573, 1.02092428, 0.99665283, 0.99141823, 0.99386619,
|
||||
0.98733195, 0.99644997, 0.99669587, 1.02559097, 1.01116651,
|
||||
0.99988024, 0.97906749, 0.99323123, 1.00204939, 0.99602148],
|
||||
[1.14930913, 1.15241949, 1.14300962, 1.14265542, 1.13984683,
|
||||
1.08312397, 1.05192626, 1.04230892, 1.05577278, 1.08569751,
|
||||
1.12443486, 1.08891079, 1.08603695, 1.05997314, 1.02160943],
|
||||
[1.11368269, 1.1057147, 1.11893431, 1.13778669, 1.1432272,
|
||||
1.18257029, 1.16226243, 1.16009196, 1.14467789, 1.14820235,
|
||||
1.12386598, 1.12680236, 1.12357937, 1.1159258, 1.12570828],
|
||||
[1.30379431, 1.30752186, 1.31206366, 1.31532267, 1.30625667,
|
||||
1.31210239, 1.29989156, 1.29203193, 1.27183516, 1.26830786,
|
||||
1.2617743, 1.28656675, 1.29734097, 1.29390205, 1.29345446],
|
||||
[0.83953719, 0.82701448, 0.82006005, 0.81188876, 0.80294864,
|
||||
0.78772975, 0.82848011, 0.8259679, 0.82435705, 0.83108634,
|
||||
0.84373784, 0.83891093, 0.84349247, 0.85637272, 0.86539395],
|
||||
[1.23450087, 1.2426022, 1.23537935, 1.23581293, 1.24522626,
|
||||
1.2256767, 1.21126648, 1.19377804, 1.18355337, 1.19674434,
|
||||
1.21536573, 1.23653297, 1.27962009, 1.27968392, 1.25907738],
|
||||
[0.9769662, 0.97400719, 0.98035944, 0.97581531, 0.95543282,
|
||||
0.96480308, 0.94686376, 0.93679073, 0.92540049, 0.92988835,
|
||||
0.93442917, 0.92100464, 0.91475304, 0.90249622, 0.9021363],
|
||||
[0.84986886, 0.8986851, 0.84295997, 0.87280534, 0.85659368,
|
||||
0.88937573, 0.894401, 0.90448993, 0.95495898, 0.92698333,
|
||||
0.94745352, 0.92562488, 0.96635366, 1.02520312, 1.0394296],
|
||||
[1.01922808, 1.00258203, 1.00974428, 1.00303417, 0.99765073,
|
||||
1.00759019, 0.99192968, 0.99747298, 0.99550759, 0.97583768,
|
||||
0.9610168, 0.94779638, 0.93759089, 0.93353431, 0.94121705],
|
||||
[0.86367411, 0.85558932, 0.85544346, 0.85103025, 0.84336613,
|
||||
0.83434854, 0.85813595, 0.84667961, 0.84374558, 0.85951183,
|
||||
0.87194227, 0.89455097, 0.88283929, 0.90349491, 0.90600675],
|
||||
[1.00947534, 1.00411055, 1.00698819, 0.99513687, 0.99291086,
|
||||
1.00581626, 0.98850522, 0.99291168, 0.98983209, 0.97511924,
|
||||
0.96134615, 0.96382634, 0.95011401, 0.9434686, 0.94637765],
|
||||
[1.05712571, 1.05459419, 1.05753012, 1.04880786, 1.05103857,
|
||||
1.04800023, 1.03024941, 1.04200483, 1.0402554, 1.03296979,
|
||||
1.02191682, 1.02476275, 1.02347523, 1.02517684, 1.04359571],
|
||||
[1.07084189, 1.06669497, 1.07937623, 1.07387988, 1.0794043,
|
||||
1.0531801, 1.07452771, 1.09383478, 1.1052447, 1.10322136,
|
||||
1.09167939, 1.08772756, 1.08859544, 1.09177338, 1.1096083],
|
||||
[0.86719222, 0.86628896, 0.86675156, 0.86425632, 0.86511809,
|
||||
0.86287327, 0.85169796, 0.85411285, 0.84886336, 0.84517414,
|
||||
0.84843858, 0.84488343, 0.83374329, 0.82812044, 0.82878599],
|
||||
[0.88389211, 0.92288667, 0.90282398, 0.91229186, 0.92023286,
|
||||
0.92652175, 0.94278865, 0.93682452, 0.98655146, 0.992237,
|
||||
0.9798497, 0.93869677, 0.96947771, 1.00362626, 0.98102351],
|
||||
[0.97082064, 0.95320233, 0.94534081, 0.94215593, 0.93967,
|
||||
0.93092109, 0.92662519, 0.93412152, 0.93501274, 0.92879506,
|
||||
0.92110542, 0.91035556, 0.90430364, 0.89994694, 0.90073864],
|
||||
[0.95861858, 0.95774543, 0.98254811, 0.98919472, 0.98684824,
|
||||
0.98882205, 0.97662234, 0.95601578, 0.94905385, 0.94934888,
|
||||
0.97152609, 0.97163004, 0.9700702, 0.97158948, 0.95884908],
|
||||
[0.83980439, 0.84726737, 0.85747, 0.85467221, 0.8556751,
|
||||
0.84818516, 0.85265681, 0.84502402, 0.82645665, 0.81743586,
|
||||
0.83550406, 0.83338919, 0.83511679, 0.82136617, 0.80921874],
|
||||
[0.95118156, 0.9466212, 0.94688098, 0.9508583, 0.9512441,
|
||||
0.95440787, 0.96364363, 0.96804412, 0.97136214, 0.97583768,
|
||||
0.95571724, 0.96895368, 0.97001634, 0.97082733, 0.98782366],
|
||||
[1.08910044, 1.08248968, 1.08492895, 1.08656923, 1.09454249,
|
||||
1.10558188, 1.1214086, 1.12292577, 1.13021031, 1.13342735,
|
||||
1.14686068, 1.14502975, 1.14474747, 1.14084037, 1.16142926],
|
||||
[1.06336033, 1.07365823, 1.08691496, 1.09764846, 1.11669863,
|
||||
1.11856702, 1.09764283, 1.08815849, 1.08044313, 1.09278827,
|
||||
1.07003204, 1.08398066, 1.09831768, 1.09298232, 1.09176125],
|
||||
[0.79772065, 0.78829196, 0.78581151, 0.77615922, 0.77035744,
|
||||
0.77751194, 0.79902974, 0.81437881, 0.80788828, 0.79603865,
|
||||
0.78966436, 0.79949807, 0.80172182, 0.82168155, 0.85587911],
|
||||
[1.0052447, 1.00007696, 1.00475899, 1.00613942, 1.00639561,
|
||||
1.00162979, 0.99860739, 1.00814981, 1.00574316, 0.99030032,
|
||||
0.97682565, 0.97292596, 0.96519561, 0.96173403, 0.95890284],
|
||||
[0.95808419, 0.9382568, 0.9654441, 0.95561201, 0.96987289,
|
||||
0.96608031, 0.99727185, 1.00781194, 1.03484236, 1.05333619,
|
||||
1.0983263, 1.1704974, 1.17025154, 1.18730553, 1.14242645]])
|
||||
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
self.assertTrue(type(result) == type(expected))
|
||||
self.assertTrue(result.shape == expected.shape)
|
||||
|
||||
def test_rebin_data(self):
|
||||
"""Test rebin_data"""
|
||||
# sample in double the time (even case since 10 % 2 = 0):
|
||||
# (0+1)/2, (2+3)/2, (4+5)/2, (6+7)/2, (8+9)/2
|
||||
# = 0.5, 2.5, 4.5, 6.5, 8.5
|
||||
ans_even = np.array([(i + 0.5) * np.ones(10, dtype=float)
|
||||
for i in range(0, 10, 2)]).T
|
||||
|
||||
self.assertTrue(
|
||||
np.array_equal(std.rebin_data(self.time_data, 2), ans_even))
|
||||
|
||||
# sample in triple the time (uneven since 10 % 3 = 1):
|
||||
# (0+1+2)/3, (3+4+5)/3, (6+7+8)/3, (9)/1
|
||||
# = 1, 4, 7, 9
|
||||
ans_odd = np.array([i * np.ones(10, dtype=float)
|
||||
for i in (1, 4, 7, 9)]).T
|
||||
self.assertTrue(
|
||||
np.array_equal(std.rebin_data(self.time_data, 3), ans_odd))
|
||||
|
||||
def test_get_prob_dist(self):
|
||||
"""Test get_prob_dist"""
|
||||
lag_indices = np.array([1, 2, 3, 4])
|
||||
unit_indices = np.array([1, 3, 2, 4])
|
||||
answer = np.array([
|
||||
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
|
||||
[0., 0., 0.09411765, 0.87058824, 0.03529412],
|
||||
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
|
||||
[0., 0., 0., 0.02352941, 0.97647059]
|
||||
])
|
||||
result = std.get_prob_dist(self.transition_matrix,
|
||||
lag_indices, unit_indices)
|
||||
|
||||
self.assertTrue(np.array_equal(result, answer))
|
||||
|
||||
def test_get_prob_stats(self):
|
||||
"""Test get_prob_stats"""
|
||||
|
||||
probs = np.array([
|
||||
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
|
||||
[0., 0., 0.09411765, 0.87058824, 0.03529412],
|
||||
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
|
||||
[0., 0., 0., 0.02352941, 0.97647059]
|
||||
])
|
||||
unit_indices = np.array([1, 3, 2, 4])
|
||||
answer_up = np.array([0.04245283, 0.03529412, 0.12376238, 0.])
|
||||
answer_down = np.array([0.0754717, 0.09411765, 0.0990099, 0.02352941])
|
||||
answer_trend = np.array([-0.03301887 / 0.88207547,
|
||||
-0.05882353 / 0.87058824,
|
||||
0.02475248 / 0.77722772,
|
||||
-0.02352941 / 0.97647059])
|
||||
answer_volatility = np.array([0.34221495, 0.33705421,
|
||||
0.29226542, 0.38834223])
|
||||
|
||||
result = std.get_prob_stats(probs, unit_indices)
|
||||
result_up = result[0]
|
||||
result_down = result[1]
|
||||
result_trend = result[2]
|
||||
result_volatility = result[3]
|
||||
|
||||
self.assertTrue(np.allclose(result_up, answer_up))
|
||||
self.assertTrue(np.allclose(result_down, answer_down))
|
||||
self.assertTrue(np.allclose(result_trend, answer_trend))
|
||||
self.assertTrue(np.allclose(result_volatility, answer_volatility))
|
@ -1,5 +1,5 @@
|
||||
comment = 'CartoDB Spatial Analysis extension'
|
||||
default_version = '0.5.0'
|
||||
default_version = '0.5.1'
|
||||
requires = 'plpythonu, postgis'
|
||||
superuser = true
|
||||
schema = cdb_crankshaft
|
||||
|
Loading…
Reference in New Issue
Block a user