347 lines
10 KiB
PL/PgSQL
347 lines
10 KiB
PL/PgSQL
--
|
|
-- Determine the Jenks classifications from a numeric array
|
|
--
|
|
-- @param in_array A numeric array of numbers to determine the best
|
|
-- bins based on the Jenks method.
|
|
--
|
|
-- @param breaks The number of bins you want to find.
|
|
--
|
|
-- @param iterations The number of different starting positions to test.
|
|
--
|
|
-- @param invert Optional wheter to return the top of each bin (default)
|
|
-- or the bottom. BOOLEAN, default=FALSE.
|
|
--
|
|
--
|
|
|
|
CREATE OR REPLACE FUNCTION @extschema@.CDB_JenksBins(in_array NUMERIC[], breaks INT, iterations INT DEFAULT 0, invert BOOLEAN DEFAULT FALSE)
|
|
RETURNS NUMERIC[] as
|
|
$$
|
|
DECLARE
|
|
in_matrix NUMERIC[][];
|
|
in_unique_count BIGINT;
|
|
|
|
shuffles INT;
|
|
arr_mean NUMERIC;
|
|
sdam NUMERIC;
|
|
|
|
i INT;
|
|
bot INT;
|
|
top INT;
|
|
|
|
tops INT[];
|
|
classes INT[][];
|
|
j INT := 1;
|
|
curr_result NUMERIC[];
|
|
best_result NUMERIC[];
|
|
seedtarget TEXT;
|
|
|
|
BEGIN
|
|
-- We clean the input array (remove NULLs) and create 2 arrays
|
|
-- [1] contains the unique values in in_array
|
|
-- [2] contains the number of appearances of those unique values
|
|
SELECT ARRAY[array_agg(value), array_agg(count)] FROM
|
|
(
|
|
SELECT value, count(1)::numeric as count
|
|
FROM unnest(in_array) AS value
|
|
WHERE value is NOT NULL
|
|
GROUP BY value
|
|
ORDER BY value
|
|
) __clean_array_q INTO in_matrix;
|
|
|
|
-- Get the number of unique values
|
|
in_unique_count := array_length(in_matrix[1:1], 2);
|
|
|
|
IF in_unique_count IS NULL THEN
|
|
RETURN NULL;
|
|
END IF;
|
|
|
|
IF in_unique_count <= breaks THEN
|
|
-- There isn't enough distinct values for the requested breaks
|
|
RETURN ARRAY(Select unnest(in_matrix[1:1])) _a;
|
|
END IF;
|
|
|
|
-- If not declated explicitly we iterate based on the length of the array
|
|
IF iterations < 1 THEN
|
|
-- This is based on a 'looks fine' heuristic
|
|
iterations := log(in_unique_count)::integer + 1;
|
|
END IF;
|
|
|
|
-- We set the number of shuffles per iteration as the number of unique values but
|
|
-- this is just another 'looks fine' heuristic
|
|
shuffles := in_unique_count;
|
|
|
|
-- Get the mean value of the whole vector (already ignores NULLs)
|
|
SELECT avg(v) INTO arr_mean FROM ( SELECT unnest(in_array) as v ) x;
|
|
|
|
-- Calculate the sum of squared deviations from the array mean (SDAM).
|
|
SELECT sum(((arr_mean - v)^2) * w) INTO sdam FROM (
|
|
SELECT unnest(in_matrix[1:1]) as v, unnest(in_matrix[2:2]) as w
|
|
) x;
|
|
|
|
-- To start, we create ranges with approximately the same amount of different values
|
|
top := 0;
|
|
i := 1;
|
|
LOOP
|
|
bot := top + 1;
|
|
top := ROUND(i * in_unique_count::numeric / breaks::NUMERIC);
|
|
|
|
IF i = 1 THEN
|
|
classes = ARRAY[ARRAY[bot,top]];
|
|
ELSE
|
|
classes = ARRAY_CAT(classes, ARRAY[bot,top]);
|
|
END IF;
|
|
|
|
i := i + 1;
|
|
IF i > breaks THEN EXIT; END IF;
|
|
END LOOP;
|
|
|
|
best_result = @extschema@.CDB_JenksBinsIteration(in_matrix, breaks, classes, invert, sdam, shuffles);
|
|
|
|
--set the seed so we can ensure the same results
|
|
SELECT setseed(0.4567) INTO seedtarget;
|
|
--loop through random starting positions
|
|
LOOP
|
|
IF j > iterations-1 THEN EXIT; END IF;
|
|
i = 1;
|
|
tops = ARRAY[in_unique_count];
|
|
LOOP
|
|
IF i = breaks THEN EXIT; END IF;
|
|
SELECT array_agg(distinct e) INTO tops FROM (
|
|
SELECT unnest(array_cat(tops, ARRAY[trunc(random() * in_unique_count::float8)::int + 1])) as e ORDER BY e
|
|
) x;
|
|
i = array_length(tops, 1);
|
|
END LOOP;
|
|
top := 0;
|
|
i = 1;
|
|
LOOP
|
|
bot := top + 1;
|
|
top = tops[i];
|
|
IF i = 1 THEN
|
|
classes = ARRAY[ARRAY[bot,top]];
|
|
ELSE
|
|
classes = ARRAY_CAT(classes, ARRAY[bot,top]);
|
|
END IF;
|
|
|
|
i := i+1;
|
|
IF i > breaks THEN EXIT; END IF;
|
|
END LOOP;
|
|
|
|
curr_result = @extschema@.CDB_JenksBinsIteration(in_matrix, breaks, classes, invert, sdam, shuffles);
|
|
|
|
IF curr_result[1] > best_result[1] THEN
|
|
best_result = curr_result;
|
|
END IF;
|
|
|
|
j = j+1;
|
|
END LOOP;
|
|
|
|
RETURN (best_result)[2:array_upper(best_result, 1)];
|
|
END;
|
|
$$ LANGUAGE PLPGSQL IMMUTABLE PARALLEL RESTRICTED;
|
|
|
|
|
|
--
|
|
-- Perform a single iteration of the Jenks classification
|
|
--
|
|
-- Returns an array with:
|
|
-- - First element: gvf
|
|
-- - Second to 2+n: Category limits
|
|
DROP FUNCTION IF EXISTS @extschema@.CDB_JenksBinsIteration ( in_matrix NUMERIC[], breaks INT, classes INT[], invert BOOLEAN, element_count INT4, arr_mean NUMERIC, max_search INT); -- Old signature
|
|
|
|
CREATE OR REPLACE FUNCTION @extschema@.CDB_JenksBinsIteration ( in_matrix NUMERIC[], breaks INT, classes INT[], invert BOOLEAN, sdam NUMERIC, max_search INT DEFAULT 50) RETURNS NUMERIC[] as $$
|
|
DECLARE
|
|
i INT;
|
|
iterations INT = 0;
|
|
|
|
side INT := 2;
|
|
|
|
gvf numeric := 0.0;
|
|
new_gvf numeric;
|
|
arr_gvf numeric[];
|
|
arr_avg numeric[];
|
|
class_avg numeric;
|
|
class_dev numeric;
|
|
|
|
class_max_i INT = 0;
|
|
class_min_i INT = 0;
|
|
dev_max numeric;
|
|
dev_min numeric;
|
|
|
|
best_classes INT[] = classes;
|
|
best_gvf numeric[];
|
|
best_avg numeric[];
|
|
move_elements INT = 1;
|
|
|
|
reply numeric[];
|
|
|
|
BEGIN
|
|
|
|
-- We fill the arrays with the initial values
|
|
i = 0;
|
|
LOOP
|
|
IF i = breaks THEN EXIT; END IF;
|
|
i = i + 1;
|
|
|
|
-- Get class mean
|
|
SELECT (sum(v * w) / sum(w)) INTO class_avg FROM (
|
|
SELECT unnest(in_matrix[1:1][classes[i][1]:classes[i][2]]) as v,
|
|
unnest(in_matrix[2:2][classes[i][1]:classes[i][2]]) as w
|
|
) x;
|
|
|
|
-- Get class deviation
|
|
SELECT sum((class_avg - v)^2 * w) INTO class_dev FROM (
|
|
SELECT unnest(in_matrix[1:1][classes[i][1]:classes[i][2]]) as v,
|
|
unnest(in_matrix[2:2][classes[i][1]:classes[i][2]]) as w
|
|
) x;
|
|
|
|
|
|
IF i = 1 THEN
|
|
arr_avg = ARRAY[class_avg];
|
|
arr_gvf = ARRAY[class_dev];
|
|
ELSE
|
|
arr_avg = array_append(arr_avg, class_avg);
|
|
arr_gvf = array_append(arr_gvf, class_dev);
|
|
END IF;
|
|
END LOOP;
|
|
|
|
-- We copy the values to avoid recalculation when a failure happens
|
|
best_avg = arr_avg;
|
|
best_gvf = arr_gvf;
|
|
|
|
iterations = 0;
|
|
LOOP
|
|
IF iterations = max_search THEN EXIT; END IF;
|
|
iterations = iterations + 1;
|
|
|
|
-- calculate our new GVF
|
|
SELECT sdam - sum(e) INTO new_gvf FROM ( SELECT unnest(arr_gvf) as e ) x;
|
|
|
|
-- Check if any improvement was made
|
|
IF new_gvf <= gvf THEN
|
|
-- If we were moving too many elements, go back and move less
|
|
IF move_elements <= 2 OR class_max_i = class_min_i THEN
|
|
EXIT;
|
|
END IF;
|
|
|
|
move_elements = GREATEST(move_elements / 8, 1);
|
|
|
|
-- Rollback from saved statuses
|
|
classes = best_classes;
|
|
new_gvf = gvf;
|
|
|
|
i = class_min_i;
|
|
LOOP
|
|
arr_avg[i] = best_avg[i];
|
|
arr_gvf[i] = best_gvf[i];
|
|
|
|
IF i = class_max_i THEN EXIT; END IF;
|
|
i = i + 1;
|
|
END LOOP;
|
|
END IF;
|
|
|
|
-- We search for the classes with the min and max deviation
|
|
i = 1;
|
|
class_min_i = 1;
|
|
class_max_i = 1;
|
|
dev_max = arr_gvf[1];
|
|
dev_min = arr_gvf[1];
|
|
LOOP
|
|
IF i = breaks THEN EXIT; END IF;
|
|
i = i + 1;
|
|
|
|
IF arr_gvf[i] < dev_min THEN
|
|
dev_min = arr_gvf[i];
|
|
class_min_i = i;
|
|
ELSE
|
|
IF arr_gvf[i] > dev_max THEN
|
|
dev_max = arr_gvf[i];
|
|
class_max_i = i;
|
|
END IF;
|
|
END IF;
|
|
END LOOP;
|
|
|
|
|
|
-- Save best values for comparison and output
|
|
gvf = new_gvf;
|
|
best_classes = classes;
|
|
|
|
-- Limit the moved elements as to not remove everything from class_max_i
|
|
move_elements = LEAST(move_elements, classes[class_max_i][2] - classes[class_max_i][1]);
|
|
|
|
-- Move `move_elements` from class_max_i to class_min_i
|
|
IF class_min_i < class_max_i THEN
|
|
i := class_min_i;
|
|
LOOP
|
|
IF i = class_max_i THEN EXIT; END IF;
|
|
classes[i][2] = classes[i][2] + move_elements;
|
|
i := i + 1;
|
|
END LOOP;
|
|
|
|
i := class_max_i;
|
|
LOOP
|
|
IF i = class_min_i THEN EXIT; END IF;
|
|
classes[i][1] = classes[i][1] + move_elements;
|
|
i := i - 1;
|
|
END LOOP;
|
|
ELSE
|
|
i := class_min_i;
|
|
LOOP
|
|
IF i = class_max_i THEN EXIT; END IF;
|
|
classes[i][1] = classes[i][1] - move_elements;
|
|
i := i - 1;
|
|
END LOOP;
|
|
|
|
i := class_max_i;
|
|
LOOP
|
|
IF i = class_min_i THEN EXIT; END IF;
|
|
classes[i][2] = classes[i][2] - move_elements;
|
|
i := i + 1;
|
|
END LOOP;
|
|
END IF;
|
|
|
|
-- Recalculate avg and deviation ONLY for the affected classes
|
|
i = LEAST(class_min_i, class_max_i);
|
|
class_max_i = GREATEST(class_min_i, class_max_i);
|
|
class_min_i = i;
|
|
LOOP
|
|
SELECT (sum(v * w) / sum(w)) INTO class_avg FROM (
|
|
SELECT unnest(in_matrix[1:1][classes[i][1]:classes[i][2]]) as v,
|
|
unnest(in_matrix[2:2][classes[i][1]:classes[i][2]]) as w
|
|
) x;
|
|
|
|
SELECT sum((class_avg - v)^2 * w) INTO class_dev FROM (
|
|
SELECT unnest(in_matrix[1:1][classes[i][1]:classes[i][2]]) as v,
|
|
unnest(in_matrix[2:2][classes[i][1]:classes[i][2]]) as w
|
|
) x;
|
|
|
|
-- Save status (in case it's needed for rollback) and store the new one
|
|
best_avg[i] = arr_avg[i];
|
|
arr_avg[i] = class_avg;
|
|
|
|
best_gvf[i] = arr_gvf[i];
|
|
arr_gvf[i] = class_dev;
|
|
|
|
IF i = class_max_i THEN EXIT; END IF;
|
|
i = i + 1;
|
|
END LOOP;
|
|
|
|
move_elements = move_elements * 2;
|
|
|
|
END LOOP;
|
|
|
|
i = 1;
|
|
LOOP
|
|
IF invert = TRUE THEN
|
|
side = 1; --default returns bottom side of breaks, invert returns top side
|
|
END IF;
|
|
reply = array_append(reply, unnest(in_matrix[1:1][best_classes[i][side]:best_classes[i][side]]));
|
|
i = i+1;
|
|
IF i > breaks THEN EXIT; END IF;
|
|
END LOOP;
|
|
|
|
reply = array_prepend(gvf, reply);
|
|
RETURN reply;
|
|
|
|
END;
|
|
$$ LANGUAGE PLPGSQL IMMUTABLE PARALLEL SAFE;
|