Windshaft-cartodb/lib/cartodb/models/aggregation/aggregation-query.js
2018-01-31 17:46:13 +01:00

259 lines
9.0 KiB
JavaScript

const DEFAULT_PLACEMENT = 'point-sample';
/**
* Returns a template function (function that accepts template parameters and returns a string)
* to generate an aggregation query.
* Valid options to define the query template are:
* - placement
* - columns
* - dimensions*
* The query template parameters taken by the result template function are:
* - sourceQuery
* - res
* - columns
* - dimensions
*/
const templateForOptions = (options) => {
let templateFn = defaultAggregationQueryTemplate;
if (!options.isDefaultAggregation) {
templateFn = aggregationQueryTemplates[options.placement || DEFAULT_PLACEMENT];
if (!templateFn) {
throw new Error("Invalid Aggregation placement: '" + options.placement + "'");
}
}
return templateFn;
};
/**
* Generates an aggregation query given the aggregation options:
* - query
* - resolution - defined as in torque:
* aggregation cell is resolution*resolution pixels, where tiles are always 256x256 pixels
* - columns
* - placement
* - dimensions
*
* The default aggregation (when no explicit placement, columns or dimensions are present) returns
* a sample record (with all the original columns and _cdb_feature_count) for each aggregation group.
* When placement, columns or dimensions are specified, columns are aggregated as requested
* (by default only _cdb_feature_count) and with the_geom_webmercator as defined by placement.
*/
const queryForOptions = (options) => templateForOptions(options)({
sourceQuery: options.query,
res: 256/options.resolution,
columns: options.columns,
dimensions: options.dimensions
});
module.exports = queryForOptions;
const SUPPORTED_AGGREGATE_FUNCTIONS = {
'count': {
sql: (column_name, params) => `count(${params.aggregated_column || '*'})`
},
'avg': {
sql: (column_name, params) => `avg(${params.aggregated_column || column_name})`
},
'sum': {
sql: (column_name, params) => `sum(${params.aggregated_column || column_name})`
},
'min': {
sql: (column_name, params) => `min(${params.aggregated_column || column_name})`
},
'max': {
sql: (column_name, params) => `max(${params.aggregated_column || column_name})`
},
'mode': {
sql: (column_name, params) => `_cdb_mode(${params.aggregated_column || column_name})`
}
};
module.exports.SUPPORTED_AGGREGATE_FUNCTIONS = Object.keys(SUPPORTED_AGGREGATE_FUNCTIONS);
const sep = (list) => {
let expr = list.join(', ');
return expr ? ', ' + expr : expr;
};
const aggregateColumns = ctx => {
return Object.assign({
_cdb_feature_count: {
aggregate_function: 'count'
}
}, ctx.columns || {});
};
const aggregateColumnNames = (ctx, table) => {
let columns = aggregateColumns(ctx);
if (table) {
return sep(Object.keys(columns).map(
column_name => `${table}.${column_name}`
));
}
return sep(Object.keys(columns));
};
const aggregateColumnDefs = ctx => {
let columns = aggregateColumns(ctx);
return sep(Object.keys(columns).map(column_name => {
const aggregate_function = columns[column_name].aggregate_function || 'count';
const aggregate_definition = SUPPORTED_AGGREGATE_FUNCTIONS[aggregate_function];
if (!aggregate_definition) {
throw new Error("Invalid Aggregate function: '" + aggregate_function + "'");
}
const aggregate_expression = aggregate_definition.sql(column_name, columns[column_name]);
return `${aggregate_expression} AS ${column_name}`;
}));
};
const aggregateDimensions = ctx => ctx.dimensions || {};
const dimensionNames = (ctx, table) => {
let dimensions = aggregateDimensions(ctx);
if (table) {
return sep(Object.keys(dimensions).map(
dimension_name => `${table}.${dimension_name}`
));
}
return sep(Object.keys(dimensions));
};
const dimensionDefs = ctx => {
let dimensions = aggregateDimensions(ctx);
return sep(Object.keys(dimensions).map(dimension_name => {
const expression = dimensions[dimension_name];
return `${expression} AS ${dimension_name}`;
}));
};
// SQL expression to compute the aggregation resolution (grid cell size).
// This is equivalent to `${256/ctx.res}*CDB_XYZ_Resolution(CDB_ZoomFromScale(!scale_denominator!))`
// This is defined by the ctx.res parameter, which is the number of grid cells per tile linear dimension
// (i.e. each tile is divided into ctx.res*ctx.res cells).
const gridResolution = ctx => {
const factor = 256*0.00028/ctx.res;
const minimum_resolution = 2*Math.PI*6378137/Math.pow(2,38);
let minimum_scale_denominator = minimum_resolution/factor;
return `(${factor}*GREATEST(!scale_denominator!,${minimum_scale_denominator}))::double precision`;
};
// Notes:
// * We need to filter spatially using !bbox! to make the queries efficient because
// the filter added by Mapnik (wrapping the query)
// is only applied after the aggregation.
// * This queries are used for rendering and the_geom is omitted in the results for better performance
// The special default aggregation includes all the columns of a sample row per grid cell and
// the count (_cdb_feature_count) of the aggregated rows.
const defaultAggregationQueryTemplate = ctx => `
WITH
_cdb_params AS (
SELECT
${gridResolution(ctx)} AS res,
!bbox! AS bbox
),
_cdb_clusters AS (
SELECT
MIN(cartodb_id) AS cartodb_id
${dimensionDefs(ctx)}
${aggregateColumnDefs(ctx)}
FROM (${ctx.sourceQuery}) _cdb_query, _cdb_params
WHERE _cdb_query.the_geom_webmercator && _cdb_params.bbox
GROUP BY
Floor(ST_X(_cdb_query.the_geom_webmercator)/_cdb_params.res),
Floor(ST_Y(_cdb_query.the_geom_webmercator)/_cdb_params.res)
${dimensionNames(ctx)}
) SELECT
_cdb_query.*
${aggregateColumnNames(ctx)}
FROM
_cdb_clusters INNER JOIN (${ctx.sourceQuery}) _cdb_query
ON (_cdb_clusters.cartodb_id = _cdb_query.cartodb_id)
`;
const aggregationQueryTemplates = {
'centroid': ctx => `
WITH
_cdb_params AS (
SELECT
${gridResolution(ctx)} AS res,
!bbox! AS bbox
)
SELECT
row_number() over() AS cartodb_id,
ST_SetSRID(
ST_MakePoint(
AVG(ST_X(_cdb_query.the_geom_webmercator)),
AVG(ST_Y(_cdb_query.the_geom_webmercator))
), 3857
) AS the_geom_webmercator
${dimensionDefs(ctx)}
${aggregateColumnDefs(ctx)}
FROM (${ctx.sourceQuery}) _cdb_query, _cdb_params
WHERE _cdb_query.the_geom_webmercator && _cdb_params.bbox
GROUP BY
Floor(ST_X(_cdb_query.the_geom_webmercator)/_cdb_params.res),
Floor(ST_Y(_cdb_query.the_geom_webmercator)/_cdb_params.res)
${dimensionNames(ctx)}
`,
'point-grid': ctx => `
WITH
_cdb_params AS (
SELECT
${gridResolution(ctx)} AS res,
!bbox! AS bbox
),
_cdb_clusters AS (
SELECT
Floor(ST_X(_cdb_query.the_geom_webmercator)/_cdb_params.res)::int AS _cdb_gx,
Floor(ST_Y(_cdb_query.the_geom_webmercator)/_cdb_params.res)::int AS _cdb_gy
${dimensionDefs(ctx)}
${aggregateColumnDefs(ctx)}
FROM (${ctx.sourceQuery}) _cdb_query, _cdb_params
WHERE the_geom_webmercator && _cdb_params.bbox
GROUP BY _cdb_gx, _cdb_gy ${dimensionNames(ctx)}
)
SELECT
row_number() over() AS cartodb_id,
ST_SetSRID(ST_MakePoint((_cdb_gx+0.5)*res, (_cdb_gy+0.5)*res), 3857) AS the_geom_webmercator
${dimensionNames(ctx)}
${aggregateColumnNames(ctx)}
FROM _cdb_clusters, _cdb_params
`,
'point-sample': ctx => `
WITH
_cdb_params AS (
SELECT
${gridResolution(ctx)} AS res,
!bbox! AS bbox
),
_cdb_clusters AS (
SELECT
MIN(cartodb_id) AS cartodb_id
${dimensionDefs(ctx)}
${aggregateColumnDefs(ctx)}
FROM (${ctx.sourceQuery}) _cdb_query, _cdb_params
WHERE _cdb_query.the_geom_webmercator && _cdb_params.bbox
GROUP BY
Floor(ST_X(_cdb_query.the_geom_webmercator)/_cdb_params.res),
Floor(ST_Y(_cdb_query.the_geom_webmercator)/_cdb_params.res)
${dimensionNames(ctx)}
)
SELECT
_cdb_clusters.cartodb_id,
the_geom, the_geom_webmercator
${dimensionNames(ctx, '_cdb_query')}
${aggregateColumnNames(ctx, '_cdb_clusters')}
FROM
_cdb_clusters INNER JOIN (${ctx.sourceQuery}) _cdb_query
ON (_cdb_clusters.cartodb_id = _cdb_query.cartodb_id)
`
};
module.exports.SUPPORTED_PLACEMENTS = Object.keys(aggregationQueryTemplates);
module.exports.GEOMETRY_COLUMN = 'the_geom_webmercator';