Windshaft-cartodb/lib/cartodb/models/aggregation/aggregation-query.js

150 lines
5.2 KiB
JavaScript
Raw Normal View History

/**
* Returns a template function (function that accepts template parameters and returns a string)
* to generate an aggregation query.
* Valid options to define the query template are:
* - placement
* The query template parameters taken by the result template function are:
* - sourceQuery
* - res
* - columns
*/
const templateForOptions = (options) => {
let templateFn = aggregationQueryTemplates[options.placement];
if (!templateFn) {
throw new Error("Invalid Aggregation placement: '" + options.placement + "'");
}
return templateFn;
};
/**
* Generates an aggregation query given the aggregation options:
* - query
* - resolution
* - columns
* - placement
*/
const queryForOptions = (options) => templateForOptions(options)({
sourceQuery: options.query,
res: options.resolution,
columns: options.columns
});
module.exports = queryForOptions;
const SUPPORTED_AGGREGATE_FUNCTIONS = {
'count': {
sql: (column_name, params) => `count(${params.aggregated_column || '*'})`
},
'avg': {
sql: (column_name, params) => `avg(${params.aggregated_column || column_name})`
},
'sum': {
sql: (column_name, params) => `sum(${params.aggregated_column || column_name})`
},
'min': {
sql: (column_name, params) => `min(${params.aggregated_column || column_name})`
},
'max': {
sql: (column_name, params) => `max(${params.aggregated_column || column_name})`
}
};
const aggregateColumns = ctx => {
2017-12-14 19:12:43 +08:00
// TODO: always add count
2017-12-12 18:18:18 +08:00
let columns = ctx.columns || {};
2017-12-12 22:53:35 +08:00
if (Object.keys(columns).length === 0) {
2017-12-12 18:18:18 +08:00
// default aggregation
columns = {
_cdb_feature_count: {
aggregate_function: 'count'
}
2017-12-12 22:53:35 +08:00
};
2017-12-12 18:18:18 +08:00
}
return Object.keys(columns).map(column_name => {
const aggregate_function = columns[column_name].aggregate_function || 'count';
const aggregate_definition = SUPPORTED_AGGREGATE_FUNCTIONS[aggregate_function];
if (!aggregate_definition) {
throw new Error("Invalid Aggregate function: '" + aggregate_function + "'");
2017-12-12 18:18:18 +08:00
}
const aggregate_expression = aggregate_definition.sql(column_name, columns[column_name]);
2017-12-12 18:18:18 +08:00
return `${aggregate_expression} AS ${column_name}`;
}).join(', ');
};
// Notes:
// * ${256*0.00028/ctx.res}*!scale_denominator! is equivalent to
// ${256/ctx.res}*CDB_XYZ_Resolution(CDB_ZoomFromScale(!scale_denominator!))
// * We need to filter spatially using !bbox! to make the queries efficient because
// the filter added by Mapnik (wrapping the query)
// is only applied after the aggregation.
// * This queries are used for rendering and the_geom is omitted in the results for better performance
const aggregationQueryTemplates = {
2017-12-12 22:53:35 +08:00
'centroid': ctx => `
WITH _cdb_params AS (
SELECT
(${256*0.00028/ctx.res}*!scale_denominator!)::double precision AS res,
2017-12-12 22:53:35 +08:00
!bbox! AS bbox
)
SELECT
row_number() over() AS cartodb_id,
ST_SetSRID(
ST_MakePoint(
AVG(ST_X(_cdb_query.the_geom_webmercator)),
AVG(ST_Y(_cdb_query.the_geom_webmercator))
), 3857
) AS the_geom_webmercator,
${aggregateColumns(ctx)}
2017-12-12 22:53:35 +08:00
FROM (${ctx.sourceQuery}) _cdb_query, _cdb_params
WHERE _cdb_query.the_geom_webmercator && _cdb_params.bbox
GROUP BY
Floor(ST_X(_cdb_query.the_geom_webmercator)/_cdb_params.res),
Floor(ST_Y(_cdb_query.the_geom_webmercator)/_cdb_params.res)
`,
2017-12-12 22:53:35 +08:00
'point-grid': ctx => `
2017-12-13 00:38:39 +08:00
WITH _cdb_params AS (
2017-12-12 22:53:35 +08:00
SELECT
(${256*0.00028/ctx.res}*!scale_denominator!)::double precision AS res,
2017-12-13 00:38:39 +08:00
!bbox! AS bbox
),
_cdb_clusters AS (
SELECT
Floor(ST_X(_cdb_query.the_geom_webmercator)/_cdb_params.res)::int AS _cdb_gx,
Floor(ST_Y(_cdb_query.the_geom_webmercator)/_cdb_params.res)::int AS _cdb_gy,
${aggregateColumns(ctx)}
FROM (${ctx.sourceQuery}) _cdb_query, _cdb_params
WHERE the_geom_webmercator && _cdb_params.bbox
GROUP BY _cdb_gx, _cdb_gy
)
SELECT
2017-12-14 19:12:43 +08:00
ST_SetSRID(ST_MakePoint(_cdb_gx*(res+0.5), _cdb_gy*(res+0.5)), 3857) AS the_geom_webmercator,
2017-12-13 00:38:39 +08:00
_cdb_feature_count
FROM _cdb_clusters, _cdb_params
2017-12-12 22:53:35 +08:00
`,
2017-12-12 22:54:36 +08:00
'point-sample': ctx => `
2017-12-12 22:53:35 +08:00
WITH _cdb_params AS (
SELECT
(${256*0.00028/ctx.res}*!scale_denominator!)::double precision AS res,
2017-12-12 22:53:35 +08:00
!bbox! AS bbox
), _cdb_clusters AS (
SELECT
MIN(cartodb_id) AS cartodb_id,
${aggregateColumns(ctx)}
2017-12-12 22:53:35 +08:00
FROM (${ctx.sourceQuery}) _cdb_query, _cdb_params
WHERE _cdb_query.the_geom_webmercator && _cdb_params.bbox
GROUP BY
Floor(ST_X(_cdb_query.the_geom_webmercator)/_cdb_params.res),
Floor(ST_Y(_cdb_query.the_geom_webmercator)/_cdb_params.res)
) SELECT
_cdb_clusters.cartodb_id,
the_geom, the_geom_webmercator,
_cdb_feature_count
FROM
_cdb_clusters INNER JOIN (${ctx.sourceQuery}) _cdb_query
ON (_cdb_clusters.cartodb_id = _cdb_query.cartodb_id)
`
};