crankshaft/release/crankshaft--0.0.4--0.1.0.sql
2016-06-29 19:51:14 +02:00

259 lines
8.1 KiB
PL/PgSQL
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

--DO NOT MODIFY THIS FILE, IT IS GENERATED FROM SOURCES
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
--------------------------------------------------------------------------------
-- Version number of the extension release
CREATE OR REPLACE FUNCTION cdb_crankshaft_version()
RETURNS text AS $$
SELECT '0.1.0'::text;
$$ language 'sql' STABLE STRICT;
--------------------------------------------------------------------------------
-- PyAgg stuff
CREATE OR REPLACE FUNCTION
CDB_PyAggS(current_state Numeric[], current_row Numeric[])
returns NUMERIC[] as $$
BEGIN
if array_upper(current_state,1) is null then
RAISE NOTICE 'setting state %',array_upper(current_row,1);
current_state[1] = array_upper(current_row,1);
end if;
return array_cat(current_state,current_row) ;
END
$$ LANGUAGE plpgsql;
CREATE AGGREGATE CDB_PyAgg(NUMERIC[])(
SFUNC = CDB_PyAggS,
STYPE = Numeric[],
INITCOND = "{}"
);
--------------------------------------------------------------------------------
-- Segmentation stuff
CREATE OR REPLACE FUNCTION
CDB_CreateAndPredictSegment(
target NUMERIC[],
features NUMERIC[],
target_features NUMERIC[],
target_ids NUMERIC[],
n_estimators INTEGER DEFAULT 1200,
max_depth INTEGER DEFAULT 3,
subsample DOUBLE PRECISION DEFAULT 0.5,
learning_rate DOUBLE PRECISION DEFAULT 0.01,
min_samples_leaf INTEGER DEFAULT 1)
RETURNS TABLE(cartodb_id NUMERIC, prediction NUMERIC, accuracy NUMERIC)
AS $$
import numpy as np
import plpy
from crankshaft.segmentation import create_and_predict_segment_agg
model_params = {'n_estimators': n_estimators,
'max_depth': max_depth,
'subsample': subsample,
'learning_rate': learning_rate,
'min_samples_leaf': min_samples_leaf}
def unpack2D(data):
dimension = data.pop(0)
a = np.array(data, dtype=float)
return a.reshape(len(a)/dimension, dimension)
return create_and_predict_segment_agg(np.array(target, dtype=float),
unpack2D(features),
unpack2D(target_features),
target_ids,
model_params)
$$ LANGUAGE plpythonu;
CREATE OR REPLACE FUNCTION
CDB_CreateAndPredictSegment (
query TEXT,
variable_name TEXT,
target_table TEXT,
n_estimators INTEGER DEFAULT 1200,
max_depth INTEGER DEFAULT 3,
subsample DOUBLE PRECISION DEFAULT 0.5,
learning_rate DOUBLE PRECISION DEFAULT 0.01,
min_samples_leaf INTEGER DEFAULT 1)
RETURNS TABLE (cartodb_id TEXT, prediction NUMERIC, accuracy NUMERIC)
AS $$
from crankshaft.segmentation import create_and_predict_segment
model_params = {'n_estimators': n_estimators, 'max_depth':max_depth, 'subsample' : subsample, 'learning_rate': learning_rate, 'min_samples_leaf' : min_samples_leaf}
return create_and_predict_segment(query,variable_name,target_table, model_params)
$$ LANGUAGE plpythonu;
--------------------------------------------------------------------------------
-- Spatial interpolation
-- 0: nearest neighbor
-- 1: barymetric
-- 2: IDW
CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation(
IN query text,
IN point geometry,
IN method integer DEFAULT 1,
IN p1 numeric DEFAULT 0,
IN p2 numeric DEFAULT 0
)
RETURNS numeric AS
$$
DECLARE
gs geometry[];
vs numeric[];
output numeric;
BEGIN
EXECUTE 'WITH a AS('||query||') SELECT array_agg(the_geom), array_agg(attrib) FROM a' INTO gs, vs;
SELECT CDB_SpatialInterpolation(gs, vs, point, method, p1,p2) INTO output FROM a;
RETURN output;
END;
$$
language plpgsql IMMUTABLE;
CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation(
IN geomin geometry[],
IN colin numeric[],
IN point geometry,
IN method integer DEFAULT 1,
IN p1 numeric DEFAULT 0,
IN p2 numeric DEFAULT 0
)
RETURNS numeric AS
$$
DECLARE
gs geometry[];
vs numeric[];
gs2 geometry[];
vs2 numeric[];
g geometry;
vertex geometry[];
sg numeric;
sa numeric;
sb numeric;
sc numeric;
va numeric;
vb numeric;
vc numeric;
output numeric;
BEGIN
output := -999.999;
-- nearest
IF method = 0 THEN
WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v)
SELECT a.v INTO output FROM a ORDER BY point<->a.g LIMIT 1;
RETURN output;
-- barymetric
ELSIF method = 1 THEN
WITH a as (SELECT unnest(geomin) AS e),
b as (SELECT ST_DelaunayTriangles(ST_Collect(a.e),0.001, 0) AS t FROM a),
c as (SELECT (ST_Dump(t)).geom as v FROM b),
d as (SELECT v FROM c WHERE ST_Within(point, v))
SELECT v INTO g FROM d;
IF g is null THEN
-- out of the realm of the input data
RETURN -888.888;
END IF;
-- vertex of the selected cell
WITH a AS (SELECT (ST_DumpPoints(g)).geom AS v)
SELECT array_agg(v) INTO vertex FROM a;
-- retrieve the value of each vertex
WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c)
SELECT c INTO va FROM a WHERE ST_Equals(geo, vertex[1]);
WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c)
SELECT c INTO vb FROM a WHERE ST_Equals(geo, vertex[2]);
WITH a AS(SELECT unnest(vertex) as geo, unnest(colin) as c)
SELECT c INTO vc FROM a WHERE ST_Equals(geo, vertex[3]);
SELECT ST_area(g), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[2], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[1], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point,vertex[1],vertex[2], point]))) INTO sg, sa, sb, sc;
output := (coalesce(sa,0) * coalesce(va,0) + coalesce(sb,0) * coalesce(vb,0) + coalesce(sc,0) * coalesce(vc,0)) / coalesce(sg);
RETURN output;
-- IDW
-- p1: limit the number of neighbors, 0->no limit
-- p2: order of distance decay, 0-> order 1
ELSIF method = 2 THEN
IF p2 = 0 THEN
p2 := 1;
END IF;
WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v),
b as (SELECT a.g, a.v FROM a ORDER BY point<->a.g)
SELECT array_agg(b.g), array_agg(b.v) INTO gs, vs FROM b;
IF p1::integer>0 THEN
gs2:=gs;
vs2:=vs;
FOR i IN 1..p1
LOOP
gs2 := gs2 || gs[i];
vs2 := vs2 || vs[i];
END LOOP;
ELSE
gs2:=gs;
vs2:=vs;
END IF;
WITH a as (SELECT unnest(gs2) as g, unnest(vs2) as v),
b as (
SELECT
(1/ST_distance(point, a.g)^p2::integer) as k,
(a.v/ST_distance(point, a.g)^p2::integer) as f
FROM a
)
SELECT sum(b.f)/sum(b.k) INTO output FROM b;
RETURN output;
END IF;
RETURN -777.777;
END;
$$
language plpgsql IMMUTABLE;
--------------------------------------------------------------------------------
-- Spatial Markov
-- input table format:
-- id | geom | date_1 | date_2 | date_3
-- 1 | Pt1 | 12.3 | 13.1 | 14.2
-- 2 | Pt2 | 11.0 | 13.2 | 12.5
-- ...
-- Sample Function call:
-- SELECT CDB_SpatialMarkov('SELECT * FROM real_estate',
-- Array['date_1', 'date_2', 'date_3'])
CREATE OR REPLACE FUNCTION
CDB_SpatialMarkovTrend (
subquery TEXT,
time_cols TEXT[],
num_classes INT DEFAULT 7,
w_type TEXT DEFAULT 'knn',
num_ngbrs INT DEFAULT 5,
permutations INT DEFAULT 99,
geom_col TEXT DEFAULT 'the_geom',
id_col TEXT DEFAULT 'cartodb_id')
RETURNS TABLE (trend NUMERIC, trend_up NUMERIC, trend_down NUMERIC, volatility NUMERIC, rowid INT)
AS $$
from crankshaft.space_time_dynamics import spatial_markov_trend
## TODO: use named parameters or a dictionary
return spatial_markov_trend(subquery, time_cols, num_classes, w_type, num_ngbrs, permutations, geom_col, id_col)
$$ LANGUAGE plpythonu;