mirror of
https://github.com/CartoDB/crankshaft.git
synced 2024-11-01 10:20:48 +08:00
2107 lines
64 KiB
PL/PgSQL
2107 lines
64 KiB
PL/PgSQL
--DO NOT MODIFY THIS FILE, IT IS GENERATED AUTOMATICALLY FROM SOURCES
|
||
-- Complain if script is sourced in psql, rather than via CREATE EXTENSION
|
||
\echo Use "CREATE EXTENSION crankshaft" to load this file. \quit
|
||
-- Version number of the extension release
|
||
CREATE OR REPLACE FUNCTION cdb_crankshaft_version()
|
||
RETURNS text AS $$
|
||
SELECT '0.6.0'::text;
|
||
$$ language 'sql' STABLE STRICT;
|
||
|
||
-- Internal identifier of the installed extension instence
|
||
-- e.g. 'dev' for current development version
|
||
CREATE OR REPLACE FUNCTION _cdb_crankshaft_internal_version()
|
||
RETURNS text AS $$
|
||
SELECT installed_version FROM pg_available_extensions where name='crankshaft' and pg_available_extensions IS NOT NULL;
|
||
$$ language 'sql' STABLE STRICT;
|
||
-- Internal function.
|
||
-- Set the seeds of the RNGs (Random Number Generators)
|
||
-- used internally.
|
||
CREATE OR REPLACE FUNCTION
|
||
_cdb_random_seeds (seed_value INTEGER) RETURNS VOID
|
||
AS $$
|
||
from crankshaft import random_seeds
|
||
random_seeds.set_random_seeds(seed_value)
|
||
$$ LANGUAGE plpythonu;
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_PyAggS(current_state Numeric[], current_row Numeric[])
|
||
returns NUMERIC[] as $$
|
||
BEGIN
|
||
if array_upper(current_state,1) is null then
|
||
RAISE NOTICE 'setting state %',array_upper(current_row,1);
|
||
current_state[1] = array_upper(current_row,1);
|
||
end if;
|
||
return array_cat(current_state,current_row) ;
|
||
END
|
||
$$ LANGUAGE plpgsql;
|
||
|
||
-- Create aggregate if it did not exist
|
||
DO $$
|
||
BEGIN
|
||
IF NOT EXISTS (
|
||
SELECT *
|
||
FROM pg_catalog.pg_proc p
|
||
LEFT JOIN pg_catalog.pg_namespace n ON n.oid = p.pronamespace
|
||
WHERE n.nspname = 'cdb_crankshaft'
|
||
AND p.proname = 'cdb_pyagg'
|
||
AND p.proisagg)
|
||
THEN
|
||
CREATE AGGREGATE CDB_PyAgg(NUMERIC[]) (
|
||
SFUNC = CDB_PyAggS,
|
||
STYPE = Numeric[],
|
||
INITCOND = "{}"
|
||
);
|
||
END IF;
|
||
END
|
||
$$ LANGUAGE plpgsql;
|
||
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_CreateAndPredictSegment(
|
||
target NUMERIC[],
|
||
features NUMERIC[],
|
||
target_features NUMERIC[],
|
||
target_ids NUMERIC[],
|
||
n_estimators INTEGER DEFAULT 1200,
|
||
max_depth INTEGER DEFAULT 3,
|
||
subsample DOUBLE PRECISION DEFAULT 0.5,
|
||
learning_rate DOUBLE PRECISION DEFAULT 0.01,
|
||
min_samples_leaf INTEGER DEFAULT 1)
|
||
RETURNS TABLE(cartodb_id NUMERIC, prediction NUMERIC, accuracy NUMERIC)
|
||
AS $$
|
||
import numpy as np
|
||
import plpy
|
||
|
||
from crankshaft.segmentation import create_and_predict_segment_agg
|
||
model_params = {'n_estimators': n_estimators,
|
||
'max_depth': max_depth,
|
||
'subsample': subsample,
|
||
'learning_rate': learning_rate,
|
||
'min_samples_leaf': min_samples_leaf}
|
||
|
||
def unpack2D(data):
|
||
dimension = data.pop(0)
|
||
a = np.array(data, dtype=float)
|
||
return a.reshape(len(a)/dimension, dimension)
|
||
|
||
return create_and_predict_segment_agg(np.array(target, dtype=float),
|
||
unpack2D(features),
|
||
unpack2D(target_features),
|
||
target_ids,
|
||
model_params)
|
||
|
||
$$ LANGUAGE plpythonu;
|
||
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_CreateAndPredictSegment (
|
||
query TEXT,
|
||
variable_name TEXT,
|
||
target_table TEXT,
|
||
n_estimators INTEGER DEFAULT 1200,
|
||
max_depth INTEGER DEFAULT 3,
|
||
subsample DOUBLE PRECISION DEFAULT 0.5,
|
||
learning_rate DOUBLE PRECISION DEFAULT 0.01,
|
||
min_samples_leaf INTEGER DEFAULT 1)
|
||
RETURNS TABLE (cartodb_id TEXT, prediction NUMERIC, accuracy NUMERIC)
|
||
AS $$
|
||
from crankshaft.segmentation import create_and_predict_segment
|
||
model_params = {'n_estimators': n_estimators, 'max_depth':max_depth, 'subsample' : subsample, 'learning_rate': learning_rate, 'min_samples_leaf' : min_samples_leaf}
|
||
return create_and_predict_segment(query,variable_name,target_table, model_params)
|
||
$$ LANGUAGE plpythonu;
|
||
CREATE OR REPLACE FUNCTION CDB_Gravity(
|
||
IN target_query text,
|
||
IN weight_column text,
|
||
IN source_query text,
|
||
IN pop_column text,
|
||
IN target bigint,
|
||
IN radius integer,
|
||
IN minval numeric DEFAULT -10e307
|
||
)
|
||
RETURNS TABLE(
|
||
the_geom geometry,
|
||
source_id bigint,
|
||
target_id bigint,
|
||
dist numeric,
|
||
h numeric,
|
||
hpop numeric) AS $$
|
||
DECLARE
|
||
t_id bigint[];
|
||
t_geom geometry[];
|
||
t_weight numeric[];
|
||
s_id bigint[];
|
||
s_geom geometry[];
|
||
s_pop numeric[];
|
||
BEGIN
|
||
EXECUTE 'WITH foo as('+target_query+') SELECT array_agg(cartodb_id), array_agg(the_geom), array_agg(' || weight_column || ') FROM foo' INTO t_id, t_geom, t_weight;
|
||
EXECUTE 'WITH foo as('+source_query+') SELECT array_agg(cartodb_id), array_agg(the_geom), array_agg(' || pop_column || ') FROM foo' INTO s_id, s_geom, s_pop;
|
||
RETURN QUERY
|
||
SELECT g.* FROM t, s, CDB_Gravity(t_id, t_geom, t_weight, s_id, s_geom, s_pop, target, radius, minval) g;
|
||
END;
|
||
$$ language plpgsql;
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_Gravity(
|
||
IN t_id bigint[],
|
||
IN t_geom geometry[],
|
||
IN t_weight numeric[],
|
||
IN s_id bigint[],
|
||
IN s_geom geometry[],
|
||
IN s_pop numeric[],
|
||
IN target bigint,
|
||
IN radius integer,
|
||
IN minval numeric DEFAULT -10e307
|
||
)
|
||
RETURNS TABLE(
|
||
the_geom geometry,
|
||
source_id bigint,
|
||
target_id bigint,
|
||
dist numeric,
|
||
h numeric,
|
||
hpop numeric) AS $$
|
||
DECLARE
|
||
t_type text;
|
||
s_type text;
|
||
t_center geometry[];
|
||
s_center geometry[];
|
||
BEGIN
|
||
t_type := GeometryType(t_geom[1]);
|
||
s_type := GeometryType(s_geom[1]);
|
||
IF t_type = 'POINT' THEN
|
||
t_center := t_geom;
|
||
ELSE
|
||
WITH tmp as (SELECT unnest(t_geom) as g) SELECT array_agg(ST_Centroid(g)) INTO t_center FROM tmp;
|
||
END IF;
|
||
IF s_type = 'POINT' THEN
|
||
s_center := s_geom;
|
||
ELSE
|
||
WITH tmp as (SELECT unnest(s_geom) as g) SELECT array_agg(ST_Centroid(g)) INTO s_center FROM tmp;
|
||
END IF;
|
||
RETURN QUERY
|
||
with target0 as(
|
||
SELECT unnest(t_center) as tc, unnest(t_weight) as tw, unnest(t_id) as td
|
||
),
|
||
source0 as(
|
||
SELECT unnest(s_center) as sc, unnest(s_id) as sd, unnest (s_geom) as sg, unnest(s_pop) as sp
|
||
),
|
||
prev0 as(
|
||
SELECT
|
||
source0.sg,
|
||
source0.sd as sourc_id,
|
||
coalesce(source0.sp,0) as sp,
|
||
target.td as targ_id,
|
||
coalesce(target.tw,0) as tw,
|
||
GREATEST(1.0,ST_Distance(geography(target.tc), geography(source0.sc)))::numeric as distance
|
||
FROM source0
|
||
CROSS JOIN LATERAL
|
||
(
|
||
SELECT
|
||
*
|
||
FROM target0
|
||
WHERE tw > minval
|
||
AND ST_DWithin(geography(source0.sc), geography(tc), radius)
|
||
) AS target
|
||
),
|
||
deno as(
|
||
SELECT
|
||
sourc_id,
|
||
sum(tw/distance) as h_deno
|
||
FROM
|
||
prev0
|
||
GROUP BY sourc_id
|
||
)
|
||
SELECT
|
||
p.sg as the_geom,
|
||
p.sourc_id as source_id,
|
||
p.targ_id as target_id,
|
||
case when p.distance > 1 then p.distance else 0.0 end as dist,
|
||
100*(p.tw/p.distance)/d.h_deno as h,
|
||
p.sp*(p.tw/p.distance)/d.h_deno as hpop
|
||
FROM
|
||
prev0 p,
|
||
deno d
|
||
WHERE
|
||
p.targ_id = target AND
|
||
p.sourc_id = d.sourc_id;
|
||
END;
|
||
$$ language plpgsql;
|
||
-- 0: nearest neighbor(s)
|
||
-- 1: barymetric
|
||
-- 2: IDW
|
||
-- 3: krigin ---> TO DO
|
||
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation(
|
||
IN query text,
|
||
IN point geometry,
|
||
IN method integer DEFAULT 1,
|
||
IN p1 numeric DEFAULT 0,
|
||
IN p2 numeric DEFAULT 0
|
||
)
|
||
RETURNS numeric AS
|
||
$$
|
||
DECLARE
|
||
gs geometry[];
|
||
vs numeric[];
|
||
output numeric;
|
||
BEGIN
|
||
EXECUTE 'WITH a AS('||query||') SELECT array_agg(the_geom), array_agg(attrib) FROM a' INTO gs, vs;
|
||
SELECT CDB_SpatialInterpolation(gs, vs, point, method, p1,p2) INTO output FROM a;
|
||
|
||
RETURN output;
|
||
END;
|
||
$$
|
||
language plpgsql IMMUTABLE;
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_SpatialInterpolation(
|
||
IN geomin geometry[],
|
||
IN colin numeric[],
|
||
IN point geometry,
|
||
IN method integer DEFAULT 1,
|
||
IN p1 numeric DEFAULT 0,
|
||
IN p2 numeric DEFAULT 0
|
||
)
|
||
RETURNS numeric AS
|
||
$$
|
||
DECLARE
|
||
gs geometry[];
|
||
vs numeric[];
|
||
gs2 geometry[];
|
||
vs2 numeric[];
|
||
g geometry;
|
||
vertex geometry[];
|
||
sg numeric;
|
||
sa numeric;
|
||
sb numeric;
|
||
sc numeric;
|
||
va numeric;
|
||
vb numeric;
|
||
vc numeric;
|
||
output numeric;
|
||
BEGIN
|
||
-- output := -999.999;
|
||
|
||
-- nearest neighbors
|
||
-- p1: limit the number of neighbors, 0-> closest one
|
||
IF method = 0 THEN
|
||
|
||
IF p1 = 0 THEN
|
||
p1 := 1;
|
||
END IF;
|
||
|
||
WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v),
|
||
b as (SELECT a.v as v FROM a ORDER BY point<->a.g LIMIT p1::integer)
|
||
SELECT avg(b.v) INTO output FROM b;
|
||
RETURN output;
|
||
|
||
-- barymetric
|
||
ELSIF method = 1 THEN
|
||
WITH a as (SELECT unnest(geomin) AS e),
|
||
b as (SELECT ST_DelaunayTriangles(ST_Collect(a.e),0.001, 0) AS t FROM a),
|
||
c as (SELECT (ST_Dump(t)).geom as v FROM b),
|
||
d as (SELECT v FROM c WHERE ST_Within(point, v))
|
||
SELECT v INTO g FROM d;
|
||
IF g is null THEN
|
||
-- out of the realm of the input data
|
||
RETURN -888.888;
|
||
END IF;
|
||
-- vertex of the selected cell
|
||
WITH a AS (SELECT (ST_DumpPoints(g)).geom AS v)
|
||
SELECT array_agg(v) INTO vertex FROM a;
|
||
|
||
-- retrieve the value of each vertex
|
||
WITH a AS(SELECT unnest(geomin) as geo, unnest(colin) as c)
|
||
SELECT c INTO va FROM a WHERE ST_Equals(geo, vertex[1]);
|
||
WITH a AS(SELECT unnest(geomin) as geo, unnest(colin) as c)
|
||
SELECT c INTO vb FROM a WHERE ST_Equals(geo, vertex[2]);
|
||
WITH a AS(SELECT unnest(geomin) as geo, unnest(colin) as c)
|
||
SELECT c INTO vc FROM a WHERE ST_Equals(geo, vertex[3]);
|
||
|
||
SELECT ST_area(g), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[2], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[1], vertex[3], point]))), ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point,vertex[1],vertex[2], point]))) INTO sg, sa, sb, sc;
|
||
|
||
output := (coalesce(sa,0) * coalesce(va,0) + coalesce(sb,0) * coalesce(vb,0) + coalesce(sc,0) * coalesce(vc,0)) / coalesce(sg);
|
||
RETURN output;
|
||
|
||
-- IDW
|
||
-- p1: limit the number of neighbors, 0->no limit
|
||
-- p2: order of distance decay, 0-> order 1
|
||
ELSIF method = 2 THEN
|
||
|
||
IF p2 = 0 THEN
|
||
p2 := 1;
|
||
END IF;
|
||
|
||
WITH a as (SELECT unnest(geomin) as g, unnest(colin) as v),
|
||
b as (SELECT a.g, a.v FROM a ORDER BY point<->a.g)
|
||
SELECT array_agg(b.g), array_agg(b.v) INTO gs, vs FROM b;
|
||
IF p1::integer>0 THEN
|
||
gs2:=gs;
|
||
vs2:=vs;
|
||
FOR i IN 1..p1
|
||
LOOP
|
||
gs2 := gs2 || gs[i];
|
||
vs2 := vs2 || vs[i];
|
||
END LOOP;
|
||
ELSE
|
||
gs2:=gs;
|
||
vs2:=vs;
|
||
END IF;
|
||
|
||
WITH a as (SELECT unnest(gs2) as g, unnest(vs2) as v),
|
||
b as (
|
||
SELECT
|
||
(1/ST_distance(point, a.g)^p2::integer) as k,
|
||
(a.v/ST_distance(point, a.g)^p2::integer) as f
|
||
FROM a
|
||
)
|
||
SELECT sum(b.f)/sum(b.k) INTO output FROM b;
|
||
RETURN output;
|
||
|
||
-- krigin
|
||
ELSIF method = 3 THEN
|
||
|
||
-- TO DO
|
||
|
||
END IF;
|
||
|
||
RETURN -777.777;
|
||
|
||
END;
|
||
$$
|
||
language plpgsql IMMUTABLE;
|
||
-- =============================================================================================
|
||
--
|
||
-- CDB_Voronoi
|
||
--
|
||
-- =============================================================================================
|
||
CREATE OR REPLACE FUNCTION CDB_voronoi(
|
||
IN geomin geometry[],
|
||
IN buffer numeric DEFAULT 0.5,
|
||
IN tolerance numeric DEFAULT 1e-9
|
||
)
|
||
RETURNS geometry AS $$
|
||
DECLARE
|
||
geomout geometry;
|
||
BEGIN
|
||
-- we need to make the geometry calculations in (pseudo)meters!!!
|
||
with a as (
|
||
SELECT unnest(geomin) as g1
|
||
),
|
||
b as(
|
||
SELECT st_transform(g1, 3857) g2 from a
|
||
)
|
||
SELECT array_agg(g2) INTO geomin from b;
|
||
|
||
WITH
|
||
convexhull_1 as (
|
||
SELECT
|
||
ST_ConvexHull(ST_Collect(geomin)) as g,
|
||
buffer * |/ (st_area(ST_ConvexHull(ST_Collect(geomin)))/PI()) as r
|
||
),
|
||
clipper as(
|
||
SELECT
|
||
st_buffer(ST_MinimumBoundingCircle(a.g), buffer*a.r) as g
|
||
FROM convexhull_1 a
|
||
),
|
||
env0 as (
|
||
SELECT
|
||
(st_dumppoints(st_expand(a.g, buffer*a.r))).geom as e
|
||
FROM convexhull_1 a
|
||
),
|
||
env as (
|
||
SELECT
|
||
array_agg(env0.e) as e
|
||
FROM env0
|
||
),
|
||
sample AS (
|
||
SELECT
|
||
ST_Collect(geomin || env.e) as geom
|
||
FROM env
|
||
),
|
||
convexhull as (
|
||
SELECT
|
||
ST_ConvexHull(ST_Collect(geomin)) as cg
|
||
),
|
||
tin as (
|
||
SELECT
|
||
ST_Dump(ST_DelaunayTriangles(geom, tolerance, 0)) as gd
|
||
FROM
|
||
sample
|
||
),
|
||
tin_polygons as (
|
||
SELECT
|
||
(gd).Path as id,
|
||
(gd).Geom as pg,
|
||
ST_Centroid(ST_MinimumBoundingCircle((gd).Geom, 180)) as ct
|
||
FROM tin
|
||
),
|
||
tin_lines as (
|
||
SELECT
|
||
id,
|
||
ST_ExteriorRing(pg) as lg
|
||
FROM tin_polygons
|
||
),
|
||
tin_nodes as (
|
||
SELECT
|
||
id,
|
||
ST_PointN(lg,1) p1,
|
||
ST_PointN(lg,2) p2,
|
||
ST_PointN(lg,3) p3
|
||
FROM tin_lines
|
||
),
|
||
tin_edges AS (
|
||
SELECT
|
||
p.id,
|
||
UNNEST(ARRAY[
|
||
ST_MakeLine(n.p1,n.p2) ,
|
||
ST_MakeLine(n.p2,n.p3) ,
|
||
ST_MakeLine(n.p3,n.p1)]) as Edge,
|
||
ST_Force2D(cdb_crankshaft._Find_Circle(n.p1,n.p2,n.p3)) as ct,
|
||
CASE WHEN st_distance(p.ct, ST_ExteriorRing(p.pg)) < tolerance THEN
|
||
TRUE
|
||
ELSE FALSE END AS ctx,
|
||
p.pg,
|
||
ST_within(p.ct, convexhull.cg) as ctin
|
||
FROM
|
||
tin_polygons p,
|
||
tin_nodes n,
|
||
convexhull
|
||
WHERE p.id = n.id
|
||
),
|
||
voro_nodes as (
|
||
SELECT
|
||
CASE WHEN x.ctx = TRUE THEN
|
||
ST_Centroid(x.edge)
|
||
ELSE
|
||
x.ct
|
||
END as xct,
|
||
CASE WHEN y.id is null THEN
|
||
CASE WHEN x.ctin = TRUE THEN
|
||
ST_SetSRID(ST_MakePoint(
|
||
ST_X(x.ct) + ((ST_X(ST_Centroid(x.edge)) - ST_X(x.ct)) * (1+buffer)),
|
||
ST_Y(x.ct) + ((ST_Y(ST_Centroid(x.edge)) - ST_Y(x.ct)) * (1+buffer))
|
||
), ST_SRID(x.ct))
|
||
END
|
||
ELSE
|
||
y.ct
|
||
END as yct
|
||
FROM
|
||
tin_edges x
|
||
LEFT OUTER JOIN
|
||
tin_edges y
|
||
ON x.id <> y.id AND ST_Equals(x.edge, y.edge)
|
||
),
|
||
voro_edges as(
|
||
SELECT
|
||
ST_LineMerge(ST_Collect(ST_MakeLine(xct, yct))) as v
|
||
FROM
|
||
voro_nodes
|
||
),
|
||
voro_cells as(
|
||
SELECT
|
||
ST_Polygonize(
|
||
ST_Node(
|
||
ST_LineMerge(
|
||
ST_Union(v, ST_ExteriorRing(
|
||
ST_Convexhull(v)
|
||
)
|
||
)
|
||
)
|
||
)
|
||
) as g
|
||
FROM
|
||
voro_edges
|
||
),
|
||
voro_set as(
|
||
SELECT
|
||
(st_dump(v.g)).geom as g
|
||
FROM voro_cells v
|
||
),
|
||
clipped_voro as(
|
||
SELECT
|
||
ST_intersection(c.g, v.g) as g
|
||
FROM
|
||
voro_set v,
|
||
clipper c
|
||
WHERE
|
||
ST_GeometryType(v.g) = 'ST_Polygon'
|
||
)
|
||
SELECT
|
||
st_collect(
|
||
ST_Transform(
|
||
ST_ConvexHull(g),
|
||
4326
|
||
)
|
||
)
|
||
INTO geomout
|
||
FROM
|
||
clipped_voro;
|
||
RETURN geomout;
|
||
END;
|
||
$$ language plpgsql IMMUTABLE;
|
||
|
||
/** ----------------------------------------------------------------------------------------
|
||
* @function : FindCircle
|
||
* @precis : Function that determines if three points form a circle. If so a table containing
|
||
* centre and radius is returned. If not, a null table is returned.
|
||
* @version : 1.0.1
|
||
* @param : p_pt1 : First point in curve
|
||
* @param : p_pt2 : Second point in curve
|
||
* @param : p_pt3 : Third point in curve
|
||
* @return : geometry : In which X,Y ordinates are the centre X, Y and the Z being the radius of found circle
|
||
* or NULL if three points do not form a circle.
|
||
* @history : Simon Greener - Feb 2012 - Original coding.
|
||
* Rafa de la Torre - Aug 2016 - Small fix for type checking
|
||
* @copyright : Simon Greener @ 2012
|
||
* Licensed under a Creative Commons Attribution-Share Alike 2.5 Australia License. (http://creativecommons.org/licenses/by-sa/2.5/au/)
|
||
**/
|
||
CREATE OR REPLACE FUNCTION _Find_Circle(
|
||
IN p_pt1 geometry,
|
||
IN p_pt2 geometry,
|
||
IN p_pt3 geometry)
|
||
RETURNS geometry AS
|
||
$BODY$
|
||
DECLARE
|
||
v_Centre geometry;
|
||
v_radius NUMERIC;
|
||
v_CX NUMERIC;
|
||
v_CY NUMERIC;
|
||
v_dA NUMERIC;
|
||
v_dB NUMERIC;
|
||
v_dC NUMERIC;
|
||
v_dD NUMERIC;
|
||
v_dE NUMERIC;
|
||
v_dF NUMERIC;
|
||
v_dG NUMERIC;
|
||
BEGIN
|
||
IF ( p_pt1 IS NULL OR p_pt2 IS NULL OR p_pt3 IS NULL ) THEN
|
||
RAISE EXCEPTION 'All supplied points must be not null.';
|
||
RETURN NULL;
|
||
END IF;
|
||
IF ( ST_GeometryType(p_pt1) <> 'ST_Point' OR
|
||
ST_GeometryType(p_pt2) <> 'ST_Point' OR
|
||
ST_GeometryType(p_pt3) <> 'ST_Point' ) THEN
|
||
RAISE EXCEPTION 'All supplied geometries must be points.';
|
||
RETURN NULL;
|
||
END IF;
|
||
v_dA := ST_X(p_pt2) - ST_X(p_pt1);
|
||
v_dB := ST_Y(p_pt2) - ST_Y(p_pt1);
|
||
v_dC := ST_X(p_pt3) - ST_X(p_pt1);
|
||
v_dD := ST_Y(p_pt3) - ST_Y(p_pt1);
|
||
v_dE := v_dA * (ST_X(p_pt1) + ST_X(p_pt2)) + v_dB * (ST_Y(p_pt1) + ST_Y(p_pt2));
|
||
v_dF := v_dC * (ST_X(p_pt1) + ST_X(p_pt3)) + v_dD * (ST_Y(p_pt1) + ST_Y(p_pt3));
|
||
v_dG := 2.0 * (v_dA * (ST_Y(p_pt3) - ST_Y(p_pt2)) - v_dB * (ST_X(p_pt3) - ST_X(p_pt2)));
|
||
-- If v_dG is zero then the three points are collinear and no finite-radius
|
||
-- circle through them exists.
|
||
IF ( v_dG = 0 ) THEN
|
||
RETURN NULL;
|
||
ELSE
|
||
v_CX := (v_dD * v_dE - v_dB * v_dF) / v_dG;
|
||
v_CY := (v_dA * v_dF - v_dC * v_dE) / v_dG;
|
||
v_Radius := SQRT(POWER(ST_X(p_pt1) - v_CX,2) + POWER(ST_Y(p_pt1) - v_CY,2) );
|
||
END IF;
|
||
RETURN ST_SetSRID(ST_MakePoint(v_CX, v_CY, v_radius),ST_Srid(p_pt1));
|
||
END;
|
||
$BODY$
|
||
LANGUAGE plpgsql VOLATILE STRICT;
|
||
|
||
-- Moran's I Global Measure (public-facing)
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_AreasOfInterestGlobal(
|
||
subquery TEXT,
|
||
column_name TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS TABLE (moran NUMERIC, significance NUMERIC)
|
||
AS $$
|
||
from crankshaft.clustering import Moran
|
||
# TODO: use named parameters or a dictionary
|
||
moran = Moran()
|
||
return moran.global_stat(subquery, column_name, w_type,
|
||
num_ngbrs, permutations, geom_col, id_col)
|
||
$$ LANGUAGE plpythonu;
|
||
|
||
-- Moran's I Local (internal function)
|
||
CREATE OR REPLACE FUNCTION
|
||
_CDB_AreasOfInterestLocal(
|
||
subquery TEXT,
|
||
column_name TEXT,
|
||
w_type TEXT,
|
||
num_ngbrs INT,
|
||
permutations INT,
|
||
geom_col TEXT,
|
||
id_col TEXT)
|
||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||
AS $$
|
||
from crankshaft.clustering import Moran
|
||
moran = Moran()
|
||
# TODO: use named parameters or a dictionary
|
||
return moran.local_stat(subquery, column_name, w_type,
|
||
num_ngbrs, permutations, geom_col, id_col)
|
||
$$ LANGUAGE plpythonu;
|
||
|
||
-- Moran's I Local (public-facing function)
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_AreasOfInterestLocal(
|
||
subquery TEXT,
|
||
column_name TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||
AS $$
|
||
|
||
SELECT moran, quads, significance, rowid, vals
|
||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col);
|
||
|
||
$$ LANGUAGE SQL;
|
||
|
||
-- Moran's I only for HH and HL (public-facing function)
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_GetSpatialHotspots(
|
||
subquery TEXT,
|
||
column_name TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||
AS $$
|
||
|
||
SELECT moran, quads, significance, rowid, vals
|
||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||
WHERE quads IN ('HH', 'HL');
|
||
|
||
$$ LANGUAGE SQL;
|
||
|
||
-- Moran's I only for LL and LH (public-facing function)
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_GetSpatialColdspots(
|
||
subquery TEXT,
|
||
attr TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||
AS $$
|
||
|
||
SELECT moran, quads, significance, rowid, vals
|
||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||
WHERE quads IN ('LL', 'LH');
|
||
|
||
$$ LANGUAGE SQL;
|
||
|
||
-- Moran's I only for LH and HL (public-facing function)
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_GetSpatialOutliers(
|
||
subquery TEXT,
|
||
attr TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS TABLE (moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||
AS $$
|
||
|
||
SELECT moran, quads, significance, rowid, vals
|
||
FROM cdb_crankshaft._CDB_AreasOfInterestLocal(subquery, attr, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||
WHERE quads IN ('HL', 'LH');
|
||
|
||
$$ LANGUAGE SQL;
|
||
|
||
-- Moran's I Global Rate (public-facing function)
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_AreasOfInterestGlobalRate(
|
||
subquery TEXT,
|
||
numerator TEXT,
|
||
denominator TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS TABLE (moran FLOAT, significance FLOAT)
|
||
AS $$
|
||
from crankshaft.clustering import Moran
|
||
moran = Moran()
|
||
# TODO: use named parameters or a dictionary
|
||
return moran.global_rate_stat(subquery, numerator, denominator, w_type,
|
||
num_ngbrs, permutations, geom_col, id_col)
|
||
$$ LANGUAGE plpythonu;
|
||
|
||
|
||
-- Moran's I Local Rate (internal function)
|
||
CREATE OR REPLACE FUNCTION
|
||
_CDB_AreasOfInterestLocalRate(
|
||
subquery TEXT,
|
||
numerator TEXT,
|
||
denominator TEXT,
|
||
w_type TEXT,
|
||
num_ngbrs INT,
|
||
permutations INT,
|
||
geom_col TEXT,
|
||
id_col TEXT)
|
||
RETURNS
|
||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||
AS $$
|
||
from crankshaft.clustering import Moran
|
||
moran = Moran()
|
||
# TODO: use named parameters or a dictionary
|
||
return moran.local_rate_stat(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||
$$ LANGUAGE plpythonu;
|
||
|
||
-- Moran's I Local Rate (public-facing function)
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_AreasOfInterestLocalRate(
|
||
subquery TEXT,
|
||
numerator TEXT,
|
||
denominator TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS
|
||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||
AS $$
|
||
|
||
SELECT moran, quads, significance, rowid, vals
|
||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col);
|
||
|
||
$$ LANGUAGE SQL;
|
||
|
||
-- Moran's I Local Rate only for HH and HL (public-facing function)
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_GetSpatialHotspotsRate(
|
||
subquery TEXT,
|
||
numerator TEXT,
|
||
denominator TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS
|
||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||
AS $$
|
||
|
||
SELECT moran, quads, significance, rowid, vals
|
||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||
WHERE quads IN ('HH', 'HL');
|
||
|
||
$$ LANGUAGE SQL;
|
||
|
||
-- Moran's I Local Rate only for LL and LH (public-facing function)
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_GetSpatialColdspotsRate(
|
||
subquery TEXT,
|
||
numerator TEXT,
|
||
denominator TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS
|
||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||
AS $$
|
||
|
||
SELECT moran, quads, significance, rowid, vals
|
||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||
WHERE quads IN ('LL', 'LH');
|
||
|
||
$$ LANGUAGE SQL;
|
||
|
||
-- Moran's I Local Rate only for LH and HL (public-facing function)
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_GetSpatialOutliersRate(
|
||
subquery TEXT,
|
||
numerator TEXT,
|
||
denominator TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS
|
||
TABLE(moran NUMERIC, quads TEXT, significance NUMERIC, rowid INT, vals NUMERIC)
|
||
AS $$
|
||
|
||
SELECT moran, quads, significance, rowid, vals
|
||
FROM cdb_crankshaft._CDB_AreasOfInterestLocalRate(subquery, numerator, denominator, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||
WHERE quads IN ('HL', 'LH');
|
||
|
||
$$ LANGUAGE SQL;
|
||
-- Spatial k-means clustering
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_KMeans(query text, no_clusters integer, no_init integer default 20)
|
||
RETURNS table (cartodb_id integer, cluster_no integer) as $$
|
||
|
||
from crankshaft.clustering import Kmeans
|
||
kmeans = Kmeans()
|
||
return kmeans.spatial(query, no_clusters, no_init)
|
||
|
||
$$ LANGUAGE plpythonu;
|
||
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanS(state Numeric[],the_geom GEOMETRY(Point, 4326), weight NUMERIC)
|
||
RETURNS Numeric[] AS
|
||
$$
|
||
DECLARE
|
||
newX NUMERIC;
|
||
newY NUMERIC;
|
||
newW NUMERIC;
|
||
BEGIN
|
||
IF weight IS NULL OR the_geom IS NULL THEN
|
||
newX = state[1];
|
||
newY = state[2];
|
||
newW = state[3];
|
||
ELSE
|
||
newX = state[1] + ST_X(the_geom)*weight;
|
||
newY = state[2] + ST_Y(the_geom)*weight;
|
||
newW = state[3] + weight;
|
||
END IF;
|
||
RETURN Array[newX,newY,newW];
|
||
|
||
END
|
||
$$ LANGUAGE plpgsql;
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_WeightedMeanF(state Numeric[])
|
||
RETURNS GEOMETRY AS
|
||
$$
|
||
BEGIN
|
||
IF state[3] = 0 THEN
|
||
RETURN ST_SetSRID(ST_MakePoint(state[1],state[2]), 4326);
|
||
ELSE
|
||
RETURN ST_SETSRID(ST_MakePoint(state[1]/state[3], state[2]/state[3]),4326);
|
||
END IF;
|
||
END
|
||
$$ LANGUAGE plpgsql;
|
||
|
||
-- Create aggregate if it did not exist
|
||
DO $$
|
||
BEGIN
|
||
IF NOT EXISTS (
|
||
SELECT *
|
||
FROM pg_catalog.pg_proc p
|
||
LEFT JOIN pg_catalog.pg_namespace n ON n.oid = p.pronamespace
|
||
WHERE n.nspname = 'cdb_crankshaft'
|
||
AND p.proname = 'cdb_weightedmean'
|
||
AND p.proisagg)
|
||
THEN
|
||
CREATE AGGREGATE CDB_WeightedMean(geometry(Point, 4326), NUMERIC) (
|
||
SFUNC = CDB_WeightedMeanS,
|
||
FINALFUNC = CDB_WeightedMeanF,
|
||
STYPE = Numeric[],
|
||
INITCOND = "{0.0,0.0,0.0}"
|
||
);
|
||
END IF;
|
||
END
|
||
$$ LANGUAGE plpgsql;
|
||
-- Spatial Markov
|
||
|
||
-- input table format:
|
||
-- id | geom | date_1 | date_2 | date_3
|
||
-- 1 | Pt1 | 12.3 | 13.1 | 14.2
|
||
-- 2 | Pt2 | 11.0 | 13.2 | 12.5
|
||
-- ...
|
||
-- Sample Function call:
|
||
-- SELECT CDB_SpatialMarkov('SELECT * FROM real_estate',
|
||
-- Array['date_1', 'date_2', 'date_3'])
|
||
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_SpatialMarkovTrend (
|
||
subquery TEXT,
|
||
time_cols TEXT[],
|
||
num_classes INT DEFAULT 7,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 99,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS TABLE (trend NUMERIC, trend_up NUMERIC, trend_down NUMERIC, volatility NUMERIC, rowid INT)
|
||
AS $$
|
||
|
||
from crankshaft.space_time_dynamics import Markov
|
||
markov = Markov()
|
||
|
||
## TODO: use named parameters or a dictionary
|
||
return markov.spatial_trend(subquery, time_cols, num_classes, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||
$$ LANGUAGE plpythonu;
|
||
|
||
-- input table format: identical to above but in a predictable format
|
||
-- Sample function call:
|
||
-- SELECT cdb_spatial_markov('SELECT * FROM real_estate',
|
||
-- 'date_1')
|
||
|
||
|
||
-- CREATE OR REPLACE FUNCTION
|
||
-- cdb_spatial_markov (
|
||
-- subquery TEXT,
|
||
-- time_col_min text,
|
||
-- time_col_max text,
|
||
-- date_format text, -- '_YYYY_MM_DD'
|
||
-- num_time_per_bin INT DEFAULT 1,
|
||
-- permutations INT DEFAULT 99,
|
||
-- geom_column TEXT DEFAULT 'the_geom',
|
||
-- id_col TEXT DEFAULT 'cartodb_id',
|
||
-- w_type TEXT DEFAULT 'knn',
|
||
-- num_ngbrs int DEFAULT 5)
|
||
-- RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT)
|
||
-- AS $$
|
||
-- plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
||
-- from crankshaft.clustering import moran_local
|
||
-- # TODO: use named parameters or a dictionary
|
||
-- return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs)
|
||
-- $$ LANGUAGE plpythonu;
|
||
--
|
||
-- -- input table format:
|
||
-- -- id | geom | date | measurement
|
||
-- -- 1 | Pt1 | 12/3 | 13.2
|
||
-- -- 2 | Pt2 | 11/5 | 11.3
|
||
-- -- 3 | Pt1 | 11/13 | 12.9
|
||
-- -- 4 | Pt3 | 12/19 | 10.1
|
||
-- -- ...
|
||
--
|
||
-- CREATE OR REPLACE FUNCTION
|
||
-- cdb_spatial_markov (
|
||
-- subquery TEXT,
|
||
-- time_col text,
|
||
-- num_time_per_bin INT DEFAULT 1,
|
||
-- permutations INT DEFAULT 99,
|
||
-- geom_column TEXT DEFAULT 'the_geom',
|
||
-- id_col TEXT DEFAULT 'cartodb_id',
|
||
-- w_type TEXT DEFAULT 'knn',
|
||
-- num_ngbrs int DEFAULT 5)
|
||
-- RETURNS TABLE (moran FLOAT, quads TEXT, significance FLOAT, ids INT)
|
||
-- AS $$
|
||
-- plpy.execute('SELECT cdb_crankshaft._cdb_crankshaft_activate_py()')
|
||
-- from crankshaft.clustering import moran_local
|
||
-- # TODO: use named parameters or a dictionary
|
||
-- return spatial_markov(subquery, time_cols, permutations, geom_column, id_col, w_type, num_ngbrs)
|
||
-- $$ LANGUAGE plpythonu;
|
||
-- Based on:
|
||
-- https://github.com/mapbox/polylabel/blob/master/index.js
|
||
-- https://sites.google.com/site/polesofinaccessibility/
|
||
-- Requires: https://github.com/CartoDB/cartodb-postgresql
|
||
|
||
-- Based on:
|
||
-- https://github.com/mapbox/polylabel/blob/master/index.js
|
||
-- https://sites.google.com/site/polesofinaccessibility/
|
||
-- Requires: https://github.com/CartoDB/cartodb-postgresql
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_PIA(
|
||
IN polygon geometry,
|
||
IN tolerance numeric DEFAULT 1.0
|
||
)
|
||
RETURNS geometry AS $$
|
||
DECLARE
|
||
env geometry[];
|
||
cells geometry[];
|
||
cell geometry;
|
||
best_c geometry;
|
||
best_d numeric;
|
||
test_d numeric;
|
||
test_mx numeric;
|
||
test_h numeric;
|
||
test_cells geometry[];
|
||
width numeric;
|
||
height numeric;
|
||
h numeric;
|
||
i integer;
|
||
n integer;
|
||
sqr numeric;
|
||
p geometry;
|
||
BEGIN
|
||
sqr := |/2;
|
||
polygon := ST_Transform(polygon, 3857);
|
||
|
||
-- grid #0 cell size
|
||
height := ST_YMax(polygon) - ST_YMin(polygon);
|
||
width := ST_XMax(polygon) - ST_XMin(polygon);
|
||
h := 0.5*LEAST(height, width);
|
||
|
||
-- grid #0
|
||
with c1 as(
|
||
SELECT cdb_crankshaft.CDB_RectangleGrid(polygon, h, h) as c
|
||
)
|
||
SELECT array_agg(c) INTO cells FROM c1;
|
||
|
||
-- 1st guess: centroid
|
||
best_d := cdb_crankshaft._Signed_Dist(polygon, ST_Centroid(Polygon));
|
||
|
||
-- looping the loop
|
||
n := array_length(cells,1);
|
||
i := 1;
|
||
LOOP
|
||
|
||
EXIT WHEN i > n;
|
||
|
||
cell := cells[i];
|
||
i := i+1;
|
||
|
||
-- cell side size, it's square
|
||
test_h := ST_XMax(cell) - ST_XMin(cell) ;
|
||
|
||
-- check distance
|
||
test_d := cdb_crankshaft._Signed_Dist(polygon, ST_Centroid(cell));
|
||
IF test_d > best_d THEN
|
||
best_d := test_d;
|
||
best_c := cells[i];
|
||
END IF;
|
||
|
||
-- longest distance within the cell
|
||
test_mx := test_d + (test_h/2 * sqr);
|
||
|
||
-- if the cell has no chance to contains the desired point, continue
|
||
CONTINUE WHEN test_mx - best_d <= tolerance;
|
||
|
||
-- resample the cell
|
||
with c1 as(
|
||
SELECT cdb_crankshaft.CDB_RectangleGrid(cell, test_h/2, test_h/2) as c
|
||
)
|
||
SELECT array_agg(c) INTO test_cells FROM c1;
|
||
|
||
-- concat the new cells to the former array
|
||
cells := cells || test_cells;
|
||
|
||
-- prepare next iteration
|
||
n := array_length(cells,1);
|
||
|
||
END LOOP;
|
||
|
||
RETURN ST_transform(ST_Centroid(best_c), 4326);
|
||
|
||
END;
|
||
$$ language plpgsql IMMUTABLE;
|
||
|
||
|
||
-- signed distance point to polygon with holes
|
||
-- negative is the point is out the polygon
|
||
CREATE OR REPLACE FUNCTION _Signed_Dist(
|
||
IN polygon geometry,
|
||
IN point geometry
|
||
)
|
||
RETURNS numeric AS $$
|
||
DECLARE
|
||
i integer;
|
||
within integer;
|
||
holes integer;
|
||
dist numeric;
|
||
BEGIN
|
||
dist := 1e999;
|
||
SELECT LEAST(dist, ST_distance(point, ST_ExteriorRing(polygon))::numeric) INTO dist;
|
||
SELECT CASE WHEN ST_Within(point,polygon) THEN 1 ELSE -1 END INTO within;
|
||
SELECT ST_NumInteriorRings(polygon) INTO holes;
|
||
IF holes > 0 THEN
|
||
FOR i IN 1..holes
|
||
LOOP
|
||
SELECT LEAST(dist, ST_distance(point, ST_InteriorRingN(polygon, i))::numeric) INTO dist;
|
||
END LOOP;
|
||
END IF;
|
||
dist := dist * within::numeric;
|
||
RETURN dist;
|
||
END;
|
||
$$ language plpgsql IMMUTABLE;
|
||
--
|
||
-- Iterative densification of a set of points using Delaunay triangulation
|
||
-- the new points have as assigned value the average value of the 3 vertex (centroid)
|
||
--
|
||
-- @param geomin - array of geometries (points)
|
||
--
|
||
-- @param colin - array of numeric values in that points
|
||
--
|
||
-- @param iterations - integer, number of iterations
|
||
--
|
||
--
|
||
-- Returns: TABLE(geomout geometry, colout numeric)
|
||
--
|
||
--
|
||
CREATE OR REPLACE FUNCTION CDB_Densify(
|
||
IN geomin geometry[],
|
||
IN colin numeric[],
|
||
IN iterations integer
|
||
)
|
||
RETURNS TABLE(geomout geometry, colout numeric) AS $$
|
||
DECLARE
|
||
geotemp geometry[];
|
||
coltemp numeric[];
|
||
i integer;
|
||
gs geometry[];
|
||
g geometry;
|
||
vertex geometry[];
|
||
va numeric;
|
||
vb numeric;
|
||
vc numeric;
|
||
center geometry;
|
||
centerval numeric;
|
||
tmp integer;
|
||
BEGIN
|
||
geotemp := geomin;
|
||
coltemp := colin;
|
||
FOR i IN 1..iterations
|
||
LOOP
|
||
-- generate TIN
|
||
WITH a as (SELECT unnest(geotemp) AS e),
|
||
b as (SELECT ST_DelaunayTriangles(ST_Collect(a.e),0.001, 0) AS t FROM a),
|
||
c as (SELECT (ST_Dump(t)).geom AS v FROM b)
|
||
SELECT array_agg(v) INTO gs FROM c;
|
||
-- loop cells
|
||
FOREACH g IN ARRAY gs
|
||
LOOP
|
||
-- append centroid
|
||
SELECT ST_Centroid(g) INTO center;
|
||
geotemp := array_append(geotemp, center);
|
||
-- retrieve the value of each vertex
|
||
WITH a AS (SELECT (ST_DumpPoints(g)).geom AS v)
|
||
SELECT array_agg(v) INTO vertex FROM a;
|
||
WITH a AS(SELECT unnest(geotemp) as geo, unnest(coltemp) as c)
|
||
SELECT c INTO va FROM a WHERE ST_Equals(geo, vertex[1]);
|
||
WITH a AS(SELECT unnest(geotemp) as geo, unnest(coltemp) as c)
|
||
SELECT c INTO vb FROM a WHERE ST_Equals(geo, vertex[2]);
|
||
WITH a AS(SELECT unnest(geotemp) as geo, unnest(coltemp) as c)
|
||
SELECT c INTO vc FROM a WHERE ST_Equals(geo, vertex[3]);
|
||
-- calc the value at the center
|
||
centerval := (va + vb + vc) / 3;
|
||
-- append the value
|
||
coltemp := array_append(coltemp, centerval);
|
||
END LOOP;
|
||
END LOOP;
|
||
RETURN QUERY SELECT unnest(geotemp ) as geomout, unnest(coltemp ) as colout;
|
||
END;
|
||
$$ language plpgsql IMMUTABLE;
|
||
CREATE OR REPLACE FUNCTION CDB_TINmap(
|
||
IN geomin geometry[],
|
||
IN colin numeric[],
|
||
IN iterations integer
|
||
)
|
||
RETURNS TABLE(geomout geometry, colout numeric) AS $$
|
||
DECLARE
|
||
p geometry[];
|
||
vals numeric[];
|
||
gs geometry[];
|
||
g geometry;
|
||
vertex geometry[];
|
||
centerval numeric;
|
||
va numeric;
|
||
vb numeric;
|
||
vc numeric;
|
||
coltemp numeric[];
|
||
BEGIN
|
||
SELECT array_agg(dens.geomout), array_agg(dens.colout) INTO p, vals FROM cdb_crankshaft.CDB_Densify(geomin, colin, iterations) dens;
|
||
WITH a as (SELECT unnest(p) AS e),
|
||
b as (SELECT ST_DelaunayTriangles(ST_Collect(a.e),0.001, 0) AS t FROM a),
|
||
c as (SELECT (ST_Dump(t)).geom AS v FROM b)
|
||
SELECT array_agg(v) INTO gs FROM c;
|
||
FOREACH g IN ARRAY gs
|
||
LOOP
|
||
-- retrieve the vertex of each triangle
|
||
WITH a AS (SELECT (ST_DumpPoints(g)).geom AS v)
|
||
SELECT array_agg(v) INTO vertex FROM a;
|
||
-- retrieve the value of each vertex
|
||
WITH a AS(SELECT unnest(p) as geo, unnest(vals) as c)
|
||
SELECT c INTO va FROM a WHERE ST_Equals(geo, vertex[1]);
|
||
WITH a AS(SELECT unnest(p) as geo, unnest(vals) as c)
|
||
SELECT c INTO vb FROM a WHERE ST_Equals(geo, vertex[2]);
|
||
WITH a AS(SELECT unnest(p) as geo, unnest(vals) as c)
|
||
SELECT c INTO vc FROM a WHERE ST_Equals(geo, vertex[3]);
|
||
-- calc the value at the center
|
||
centerval := (va + vb + vc) / 3;
|
||
-- append the value
|
||
coltemp := array_append(coltemp, centerval);
|
||
END LOOP;
|
||
RETURN QUERY SELECT unnest(gs) as geomout, unnest(coltemp ) as colout;
|
||
END;
|
||
$$ language plpgsql IMMUTABLE;
|
||
-- Getis-Ord's G
|
||
-- Hotspot/Coldspot Analysis tool
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_GetisOrdsG(
|
||
subquery TEXT,
|
||
column_name TEXT,
|
||
w_type TEXT DEFAULT 'knn',
|
||
num_ngbrs INT DEFAULT 5,
|
||
permutations INT DEFAULT 999,
|
||
geom_col TEXT DEFAULT 'the_geom',
|
||
id_col TEXT DEFAULT 'cartodb_id')
|
||
RETURNS TABLE (z_score NUMERIC, p_value NUMERIC, p_z_sim NUMERIC, rowid BIGINT)
|
||
AS $$
|
||
from crankshaft.clustering import Getis
|
||
getis = Getis()
|
||
return getis.getis_ord(subquery, column_name, w_type, num_ngbrs, permutations, geom_col, id_col)
|
||
$$ LANGUAGE plpythonu;
|
||
|
||
-- TODO: make a version that accepts the values as arrays
|
||
|
||
-- Find outliers using a static threshold
|
||
--
|
||
CREATE OR REPLACE FUNCTION CDB_StaticOutlier(column_value numeric, threshold numeric)
|
||
RETURNS boolean
|
||
AS $$
|
||
BEGIN
|
||
|
||
RETURN column_value > threshold;
|
||
|
||
END;
|
||
$$ LANGUAGE plpgsql;
|
||
|
||
-- Find outliers by a percentage above the threshold
|
||
-- TODO: add symmetric option? `is_symmetric boolean DEFAULT false`
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_PercentOutlier(column_values numeric[], outlier_fraction numeric, ids int[])
|
||
RETURNS TABLE(is_outlier boolean, rowid int)
|
||
AS $$
|
||
DECLARE
|
||
avg_val numeric;
|
||
out_vals boolean[];
|
||
BEGIN
|
||
|
||
SELECT avg(i) INTO avg_val
|
||
FROM unnest(column_values) As x(i);
|
||
|
||
IF avg_val = 0 THEN
|
||
RAISE EXCEPTION 'Mean value is zero. Try another outlier method.';
|
||
END IF;
|
||
|
||
SELECT array_agg(
|
||
outlier_fraction < i / avg_val) INTO out_vals
|
||
FROM unnest(column_values) As x(i);
|
||
|
||
RETURN QUERY
|
||
SELECT unnest(out_vals) As is_outlier,
|
||
unnest(ids) As rowid;
|
||
|
||
END;
|
||
$$ LANGUAGE plpgsql;
|
||
|
||
-- Find outliers above a given number of standard deviations from the mean
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_StdDevOutlier(column_values numeric[], num_deviations numeric, ids int[], is_symmetric boolean DEFAULT true)
|
||
RETURNS TABLE(is_outlier boolean, rowid int)
|
||
AS $$
|
||
DECLARE
|
||
stddev_val numeric;
|
||
avg_val numeric;
|
||
out_vals boolean[];
|
||
BEGIN
|
||
|
||
SELECT stddev(i), avg(i) INTO stddev_val, avg_val
|
||
FROM unnest(column_values) As x(i);
|
||
|
||
IF stddev_val = 0 THEN
|
||
RAISE EXCEPTION 'Standard deviation of input data is zero';
|
||
END IF;
|
||
|
||
IF is_symmetric THEN
|
||
SELECT array_agg(
|
||
abs(i - avg_val) / stddev_val > num_deviations) INTO out_vals
|
||
FROM unnest(column_values) As x(i);
|
||
ELSE
|
||
SELECT array_agg(
|
||
(i - avg_val) / stddev_val > num_deviations) INTO out_vals
|
||
FROM unnest(column_values) As x(i);
|
||
END IF;
|
||
|
||
RETURN QUERY
|
||
SELECT unnest(out_vals) As is_outlier,
|
||
unnest(ids) As rowid;
|
||
END;
|
||
$$ LANGUAGE plpgsql;
|
||
CREATE OR REPLACE FUNCTION CDB_Contour(
|
||
IN geomin geometry[],
|
||
IN colin numeric[],
|
||
IN buffer numeric,
|
||
IN intmethod integer,
|
||
IN classmethod integer,
|
||
IN steps integer,
|
||
IN max_time integer DEFAULT 60000
|
||
)
|
||
RETURNS TABLE(
|
||
the_geom geometry,
|
||
bin integer,
|
||
min_value numeric,
|
||
max_value numeric,
|
||
avg_value numeric
|
||
) AS $$
|
||
DECLARE
|
||
cell_count integer;
|
||
tin geometry[];
|
||
resolution integer;
|
||
BEGIN
|
||
|
||
-- nasty trick to override issue #121
|
||
IF max_time = 0 THEN
|
||
max_time = -90;
|
||
END IF;
|
||
resolution := max_time;
|
||
max_time := -1 * resolution;
|
||
|
||
-- calc the optimal number of cells for the current dataset
|
||
SELECT
|
||
CASE intmethod
|
||
WHEN 0 THEN round(3.7745903782 * max_time - 9.4399210051 * array_length(geomin,1) - 1350.8778213073)
|
||
WHEN 1 THEN round(2.2855592156 * max_time - 87.285217133 * array_length(geomin,1) + 17255.7085601797)
|
||
WHEN 2 THEN round(0.9799471999 * max_time - 127.0334085369 * array_length(geomin,1) + 22707.9579721218)
|
||
ELSE 10000
|
||
END INTO cell_count;
|
||
|
||
-- we don't have iterative barycentric interpolation in CDB_interpolation,
|
||
-- and it's a costy function, so let's make a custom one here till
|
||
-- we update the code
|
||
-- tin := ARRAY[]::geometry[];
|
||
IF intmethod=1 THEN
|
||
WITH
|
||
a as (SELECT unnest(geomin) AS e),
|
||
b as (SELECT ST_DelaunayTriangles(ST_Collect(a.e),0.001, 0) AS t FROM a),
|
||
c as (SELECT (ST_Dump(t)).geom as v FROM b)
|
||
SELECT array_agg(v) INTO tin FROM c;
|
||
END IF;
|
||
-- Delaunay stuff performed just ONCE!!
|
||
|
||
-- magic
|
||
RETURN QUERY
|
||
WITH
|
||
convexhull as (
|
||
SELECT
|
||
ST_ConvexHull(ST_Collect(geomin)) as g,
|
||
buffer * |/ st_area(ST_ConvexHull(ST_Collect(geomin)))/PI() as r
|
||
),
|
||
envelope as (
|
||
SELECT
|
||
st_expand(a.g, a.r) as e
|
||
FROM convexhull a
|
||
),
|
||
envelope3857 as(
|
||
SELECT
|
||
ST_Transform(e, 3857) as geom
|
||
FROM envelope
|
||
),
|
||
resolution as(
|
||
SELECT
|
||
CASE WHEN resolution <= 0 THEN
|
||
round(|/ (
|
||
ST_area(geom) / abs(cell_count)
|
||
))
|
||
ELSE
|
||
resolution
|
||
END AS cell
|
||
FROM envelope3857
|
||
),
|
||
grid as(
|
||
SELECT
|
||
ST_Transform(cdb_crankshaft.CDB_RectangleGrid(e.geom, r.cell, r.cell), 4326) as geom
|
||
FROM envelope3857 e, resolution r
|
||
),
|
||
interp as(
|
||
SELECT
|
||
geom,
|
||
CASE
|
||
WHEN intmethod=1 THEN cdb_crankshaft._interp_in_tin(geomin, colin, tin, ST_Centroid(geom))
|
||
ELSE cdb_crankshaft.CDB_SpatialInterpolation(geomin, colin, ST_Centroid(geom), intmethod)
|
||
END as val
|
||
FROM grid
|
||
),
|
||
classes as(
|
||
SELECT CASE
|
||
WHEN classmethod = 0 THEN
|
||
cdb_crankshaft.CDB_EqualIntervalBins(array_agg(val), steps)
|
||
WHEN classmethod = 1 THEN
|
||
cdb_crankshaft.CDB_HeadsTailsBins(array_agg(val), steps)
|
||
WHEN classmethod = 2 THEN
|
||
cdb_crankshaft.CDB_JenksBins(array_agg(val), steps)
|
||
ELSE
|
||
cdb_crankshaft.CDB_QuantileBins(array_agg(val), steps)
|
||
END as b
|
||
FROM interp
|
||
where val is not null
|
||
),
|
||
classified as(
|
||
SELECT
|
||
i.*,
|
||
width_bucket(i.val, c.b) as bucket
|
||
FROM interp i left join classes c
|
||
ON 1=1
|
||
),
|
||
classified2 as(
|
||
SELECT
|
||
geom,
|
||
val,
|
||
CASE
|
||
WHEN bucket = steps THEN bucket - 1
|
||
ELSE bucket
|
||
END as b
|
||
FROM classified
|
||
),
|
||
final as(
|
||
SELECT
|
||
st_union(geom) as the_geom,
|
||
b as bin,
|
||
min(val) as min_value,
|
||
max(val) as max_value,
|
||
avg(val) as avg_value
|
||
FROM classified2
|
||
GROUP BY bin
|
||
)
|
||
SELECT
|
||
*
|
||
FROM final
|
||
where final.bin is not null
|
||
;
|
||
END;
|
||
$$ language plpgsql;
|
||
|
||
|
||
|
||
-- =====================================================================
|
||
-- Interp in grid, so we can use barycentric with a precalculated tin (NNI)
|
||
-- =====================================================================
|
||
CREATE OR REPLACE FUNCTION _interp_in_tin(
|
||
IN geomin geometry[],
|
||
IN colin numeric[],
|
||
IN tin geometry[],
|
||
IN point geometry
|
||
)
|
||
RETURNS numeric AS
|
||
$$
|
||
DECLARE
|
||
g geometry;
|
||
vertex geometry[];
|
||
sg numeric;
|
||
sa numeric;
|
||
sb numeric;
|
||
sc numeric;
|
||
va numeric;
|
||
vb numeric;
|
||
vc numeric;
|
||
output numeric;
|
||
BEGIN
|
||
-- get the cell the point is within
|
||
WITH
|
||
a as (SELECT unnest(tin) as v),
|
||
b as (SELECT v FROM a WHERE ST_Within(point, v))
|
||
SELECT v INTO g FROM b;
|
||
|
||
-- if we're out of the data realm,
|
||
-- return null
|
||
IF g is null THEN
|
||
RETURN null;
|
||
END IF;
|
||
|
||
-- vertex of the selected cell
|
||
WITH a AS (
|
||
SELECT (ST_DumpPoints(g)).geom AS v
|
||
)
|
||
SELECT array_agg(v) INTO vertex FROM a;
|
||
|
||
-- retrieve the value of each vertex
|
||
WITH a AS(SELECT unnest(geomin) as geo, unnest(colin) as c)
|
||
SELECT c INTO va FROM a WHERE ST_Equals(geo, vertex[1]);
|
||
|
||
WITH a AS(SELECT unnest(geomin) as geo, unnest(colin) as c)
|
||
SELECT c INTO vb FROM a WHERE ST_Equals(geo, vertex[2]);
|
||
|
||
WITH a AS(SELECT unnest(geomin) as geo, unnest(colin) as c)
|
||
SELECT c INTO vc FROM a WHERE ST_Equals(geo, vertex[3]);
|
||
|
||
-- calc the areas
|
||
SELECT
|
||
ST_area(g),
|
||
ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[2], vertex[3], point]))),
|
||
ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point, vertex[1], vertex[3], point]))),
|
||
ST_area(ST_MakePolygon(ST_MakeLine(ARRAY[point,vertex[1],vertex[2], point]))) INTO sg, sa, sb, sc;
|
||
|
||
output := (coalesce(sa,0) * coalesce(va,0) + coalesce(sb,0) * coalesce(vb,0) + coalesce(sc,0) * coalesce(vc,0)) / coalesce(sg,1);
|
||
RETURN output;
|
||
END;
|
||
$$
|
||
language plpgsql;
|
||
-- Function by Stuart Lynn for a simple interpolation of a value
|
||
-- from a polygon table over an arbitrary polygon
|
||
-- (weighted by the area proportion overlapped)
|
||
-- Aereal weighting is a very simple form of aereal interpolation.
|
||
--
|
||
-- Parameters:
|
||
-- * geom a Polygon geometry which defines the area where a value will be
|
||
-- estimated as the area-weighted sum of a given table/column
|
||
-- * target_table_name table name of the table that provides the values
|
||
-- * target_column column name of the column that provides the values
|
||
-- * schema_name optional parameter to defina the schema the target table
|
||
-- belongs to, which is necessary if its not in the search_path.
|
||
-- Note that target_table_name should never include the schema in it.
|
||
-- Return value:
|
||
-- Aereal-weighted interpolation of the column values over the geometry
|
||
CREATE OR REPLACE
|
||
FUNCTION cdb_overlap_sum(geom geometry, target_table_name text, target_column text, schema_name text DEFAULT NULL)
|
||
RETURNS numeric AS
|
||
$$
|
||
DECLARE
|
||
result numeric;
|
||
qualified_name text;
|
||
BEGIN
|
||
IF schema_name IS NULL THEN
|
||
qualified_name := Format('%I', target_table_name);
|
||
ELSE
|
||
qualified_name := Format('%I.%s', schema_name, target_table_name);
|
||
END IF;
|
||
EXECUTE Format('
|
||
SELECT sum(%I*ST_Area(St_Intersection($1, a.the_geom))/ST_Area(a.the_geom))
|
||
FROM %s AS a
|
||
WHERE $1 && a.the_geom
|
||
', target_column, qualified_name)
|
||
USING geom
|
||
INTO result;
|
||
RETURN result;
|
||
END;
|
||
$$ LANGUAGE plpgsql;
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_GWR(subquery text, dep_var text, ind_vars text[],
|
||
bw numeric default null, fixed boolean default False,
|
||
kernel text default 'bisquare', geom_col text default 'the_geom',
|
||
id_col text default 'cartodb_id')
|
||
RETURNS table(coeffs JSON, stand_errs JSON, t_vals JSON,
|
||
filtered_t_vals JSON, predicted numeric,
|
||
residuals numeric, r_squared numeric, bandwidth numeric,
|
||
rowid bigint)
|
||
AS $$
|
||
|
||
from crankshaft.regression import GWR
|
||
|
||
gwr = GWR()
|
||
|
||
return gwr.gwr(subquery, dep_var, ind_vars, bw, fixed, kernel, geom_col, id_col)
|
||
|
||
$$ LANGUAGE plpythonu;
|
||
|
||
|
||
CREATE OR REPLACE FUNCTION
|
||
CDB_GWR_Predict(subquery text, dep_var text, ind_vars text[],
|
||
bw numeric default null, fixed boolean default False,
|
||
kernel text default 'bisquare',
|
||
geom_col text default 'the_geom',
|
||
id_col text default 'cartodb_id')
|
||
RETURNS table(coeffs JSON, stand_errs JSON, t_vals JSON,
|
||
r_squared numeric, predicted numeric, rowid bigint)
|
||
AS $$
|
||
|
||
from crankshaft.regression import GWR
|
||
gwr = GWR()
|
||
|
||
return gwr.gwr_predict(subquery, dep_var, ind_vars, bw, fixed, kernel, geom_col, id_col)
|
||
|
||
$$ LANGUAGE plpythonu;
|
||
--
|
||
-- Creates N points randomly distributed arround the polygon
|
||
--
|
||
-- @param g - the geometry to be turned in to points
|
||
--
|
||
-- @param no_points - the number of points to generate
|
||
--
|
||
-- @params max_iter_per_point - the function generates points in the polygon's bounding box
|
||
-- and discards points which don't lie in the polygon. max_iter_per_point specifies how many
|
||
-- misses per point the funciton accepts before giving up.
|
||
--
|
||
-- Returns: Multipoint with the requested points
|
||
CREATE OR REPLACE FUNCTION cdb_dot_density(geom geometry , no_points Integer, max_iter_per_point Integer DEFAULT 1000)
|
||
RETURNS GEOMETRY AS $$
|
||
DECLARE
|
||
extent GEOMETRY;
|
||
test_point Geometry;
|
||
width NUMERIC;
|
||
height NUMERIC;
|
||
x0 NUMERIC;
|
||
y0 NUMERIC;
|
||
xp NUMERIC;
|
||
yp NUMERIC;
|
||
no_left INTEGER;
|
||
remaining_iterations INTEGER;
|
||
points GEOMETRY[];
|
||
bbox_line GEOMETRY;
|
||
intersection_line GEOMETRY;
|
||
BEGIN
|
||
extent := ST_Envelope(geom);
|
||
width := ST_XMax(extent) - ST_XMIN(extent);
|
||
height := ST_YMax(extent) - ST_YMIN(extent);
|
||
x0 := ST_XMin(extent);
|
||
y0 := ST_YMin(extent);
|
||
no_left := no_points;
|
||
|
||
LOOP
|
||
if(no_left=0) THEN
|
||
EXIT;
|
||
END IF;
|
||
yp = y0 + height*random();
|
||
bbox_line = ST_MakeLine(
|
||
ST_SetSRID(ST_MakePoint(yp, x0),4326),
|
||
ST_SetSRID(ST_MakePoint(yp, x0+width),4326)
|
||
);
|
||
intersection_line = ST_Intersection(bbox_line,geom);
|
||
test_point = ST_LineInterpolatePoint(st_makeline(st_linemerge(intersection_line)),random());
|
||
points := points || test_point;
|
||
no_left = no_left - 1 ;
|
||
END LOOP;
|
||
RETURN ST_Collect(points);
|
||
END;
|
||
$$
|
||
LANGUAGE plpgsql VOLATILE;
|
||
-- Make sure by default there are no permissions for publicuser
|
||
-- NOTE: this happens at extension creation time, as part of an implicit transaction.
|
||
-- REVOKE ALL PRIVILEGES ON SCHEMA cdb_crankshaft FROM PUBLIC, publicuser CASCADE;
|
||
|
||
-- Grant permissions on the schema to publicuser (but just the schema)
|
||
GRANT USAGE ON SCHEMA cdb_crankshaft TO publicuser;
|
||
|
||
-- Revoke execute permissions on all functions in the schema by default
|
||
-- REVOKE EXECUTE ON ALL FUNCTIONS IN SCHEMA cdb_crankshaft FROM PUBLIC, publicuser;
|
||
--
|
||
-- Fill given extent with a rectangular coverage
|
||
--
|
||
-- @param ext Extent to fill. Only rectangles with center point falling
|
||
-- inside the extent (or at the lower or leftmost edge) will
|
||
-- be emitted. The returned hexagons will have the same SRID
|
||
-- as this extent.
|
||
--
|
||
-- @param width With of each rectangle
|
||
--
|
||
-- @param height Height of each rectangle
|
||
--
|
||
-- @param origin Optional origin to allow for exact tiling.
|
||
-- If omitted the origin will be 0,0.
|
||
-- The parameter is checked for having the same SRID
|
||
-- as the extent.
|
||
--
|
||
--
|
||
CREATE OR REPLACE FUNCTION CDB_RectangleGrid(ext GEOMETRY, width FLOAT8, height FLOAT8, origin GEOMETRY DEFAULT NULL)
|
||
RETURNS SETOF GEOMETRY
|
||
AS $$
|
||
DECLARE
|
||
h GEOMETRY; -- rectangle cell
|
||
hstep FLOAT8; -- horizontal step
|
||
vstep FLOAT8; -- vertical step
|
||
hw FLOAT8; -- half width
|
||
hh FLOAT8; -- half height
|
||
vstart FLOAT8;
|
||
hstart FLOAT8;
|
||
hend FLOAT8;
|
||
vend FLOAT8;
|
||
xoff FLOAT8;
|
||
yoff FLOAT8;
|
||
xgrd FLOAT8;
|
||
ygrd FLOAT8;
|
||
x FLOAT8;
|
||
y FLOAT8;
|
||
srid INTEGER;
|
||
BEGIN
|
||
|
||
srid := ST_SRID(ext);
|
||
|
||
xoff := 0;
|
||
yoff := 0;
|
||
|
||
IF origin IS NOT NULL THEN
|
||
IF ST_SRID(origin) != srid THEN
|
||
RAISE EXCEPTION 'SRID mismatch between extent (%) and origin (%)', srid, ST_SRID(origin);
|
||
END IF;
|
||
xoff := ST_X(origin);
|
||
yoff := ST_Y(origin);
|
||
END IF;
|
||
|
||
--RAISE DEBUG 'X offset: %', xoff;
|
||
--RAISE DEBUG 'Y offset: %', yoff;
|
||
|
||
hw := width/2.0;
|
||
hh := height/2.0;
|
||
|
||
xgrd := hw;
|
||
ygrd := hh;
|
||
--RAISE DEBUG 'X grid size: %', xgrd;
|
||
--RAISE DEBUG 'Y grid size: %', ygrd;
|
||
|
||
hstep := width;
|
||
vstep := height;
|
||
|
||
-- Tweak horizontal start on hstep grid from origin
|
||
hstart := xoff + ceil((ST_XMin(ext)-xoff)/hstep)*hstep;
|
||
--RAISE DEBUG 'hstart: %', hstart;
|
||
|
||
-- Tweak vertical start on vstep grid from origin
|
||
vstart := yoff + ceil((ST_Ymin(ext)-yoff)/vstep)*vstep;
|
||
--RAISE DEBUG 'vstart: %', vstart;
|
||
|
||
hend := ST_XMax(ext);
|
||
vend := ST_YMax(ext);
|
||
|
||
--RAISE DEBUG 'hend: %', hend;
|
||
--RAISE DEBUG 'vend: %', vend;
|
||
|
||
x := hstart;
|
||
WHILE x < hend LOOP -- over X
|
||
y := vstart;
|
||
h := ST_MakeEnvelope(x-hw, y-hh, x+hw, y+hh, srid);
|
||
WHILE y < vend LOOP -- over Y
|
||
RETURN NEXT h;
|
||
h := ST_Translate(h, 0, vstep);
|
||
y := yoff + round(((y + vstep)-yoff)/ygrd)*ygrd; -- round to grid
|
||
END LOOP;
|
||
x := xoff + round(((x + hstep)-xoff)/xgrd)*xgrd; -- round to grid
|
||
END LOOP;
|
||
|
||
RETURN;
|
||
END
|
||
$$ LANGUAGE 'plpgsql' IMMUTABLE;
|
||
|
||
--
|
||
-- Calculate the equal interval bins for a given column
|
||
--
|
||
-- @param in_array A numeric array of numbers to determine the best
|
||
-- to determine the bin boundary
|
||
--
|
||
-- @param breaks The number of bins you want to find.
|
||
--
|
||
--
|
||
-- Returns: upper edges of bins
|
||
--
|
||
--
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_EqualIntervalBins ( in_array NUMERIC[], breaks INT ) RETURNS NUMERIC[] as $$
|
||
DECLARE
|
||
diff numeric;
|
||
min_val numeric;
|
||
max_val numeric;
|
||
tmp_val numeric;
|
||
i INT := 1;
|
||
reply numeric[];
|
||
BEGIN
|
||
SELECT min(e), max(e) INTO min_val, max_val FROM ( SELECT unnest(in_array) e ) x WHERE e IS NOT NULL;
|
||
diff = (max_val - min_val) / breaks::numeric;
|
||
LOOP
|
||
IF i < breaks THEN
|
||
tmp_val = min_val + i::numeric * diff;
|
||
reply = array_append(reply, tmp_val);
|
||
i := i+1;
|
||
ELSE
|
||
reply = array_append(reply, max_val);
|
||
EXIT;
|
||
END IF;
|
||
END LOOP;
|
||
RETURN reply;
|
||
END;
|
||
$$ language plpgsql IMMUTABLE;
|
||
|
||
--
|
||
-- Determine the Heads/Tails classifications from a numeric array
|
||
--
|
||
-- @param in_array A numeric array of numbers to determine the best
|
||
-- bins based on the Heads/Tails method.
|
||
--
|
||
-- @param breaks The number of bins you want to find.
|
||
--
|
||
--
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_HeadsTailsBins ( in_array NUMERIC[], breaks INT) RETURNS NUMERIC[] as $$
|
||
DECLARE
|
||
element_count INT4;
|
||
arr_mean numeric;
|
||
i INT := 2;
|
||
reply numeric[];
|
||
BEGIN
|
||
-- get the total size of our row
|
||
element_count := array_upper(in_array, 1) - array_lower(in_array, 1);
|
||
-- ensure the ordering of in_array
|
||
SELECT array_agg(e) INTO in_array FROM (SELECT unnest(in_array) e ORDER BY e) x;
|
||
-- stop if no rows
|
||
IF element_count IS NULL THEN
|
||
RETURN NULL;
|
||
END IF;
|
||
-- stop if our breaks are more than our input array size
|
||
IF element_count < breaks THEN
|
||
RETURN in_array;
|
||
END IF;
|
||
|
||
-- get our mean value
|
||
SELECT avg(v) INTO arr_mean FROM ( SELECT unnest(in_array) as v ) x;
|
||
|
||
reply = Array[arr_mean];
|
||
-- slice our bread
|
||
LOOP
|
||
IF i > breaks THEN EXIT; END IF;
|
||
SELECT avg(e) INTO arr_mean FROM ( SELECT unnest(in_array) e) x WHERE e > reply[i-1];
|
||
IF arr_mean IS NOT NULL THEN
|
||
reply = array_append(reply, arr_mean);
|
||
END IF;
|
||
i := i+1;
|
||
END LOOP;
|
||
RETURN reply;
|
||
END;
|
||
$$ language plpgsql IMMUTABLE;
|
||
|
||
--
|
||
-- Determine the Jenks classifications from a numeric array
|
||
--
|
||
-- @param in_array A numeric array of numbers to determine the best
|
||
-- bins based on the Jenks method.
|
||
--
|
||
-- @param breaks The number of bins you want to find.
|
||
--
|
||
-- @param iterations The number of different starting positions to test.
|
||
--
|
||
-- @param invert Optional wheter to return the top of each bin (default)
|
||
-- or the bottom. BOOLEAN, default=FALSE.
|
||
--
|
||
--
|
||
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_JenksBins ( in_array NUMERIC[], breaks INT, iterations INT DEFAULT 5, invert BOOLEAN DEFAULT FALSE) RETURNS NUMERIC[] as $$
|
||
DECLARE
|
||
element_count INT4;
|
||
arr_mean NUMERIC;
|
||
bot INT;
|
||
top INT;
|
||
tops INT[];
|
||
classes INT[][];
|
||
i INT := 1; j INT := 1;
|
||
curr_result NUMERIC[];
|
||
best_result NUMERIC[];
|
||
seedtarget TEXT;
|
||
quant NUMERIC[];
|
||
shuffles INT;
|
||
BEGIN
|
||
-- get the total size of our row
|
||
element_count := array_length(in_array, 1); --array_upper(in_array, 1) - array_lower(in_array, 1);
|
||
-- ensure the ordering of in_array
|
||
SELECT array_agg(e) INTO in_array FROM (SELECT unnest(in_array) e ORDER BY e) x;
|
||
-- stop if no rows
|
||
IF element_count IS NULL THEN
|
||
RETURN NULL;
|
||
END IF;
|
||
-- stop if our breaks are more than our input array size
|
||
IF element_count < breaks THEN
|
||
RETURN in_array;
|
||
END IF;
|
||
|
||
shuffles := LEAST(GREATEST(floor(2500000.0/(element_count::float*iterations::float)), 1), 750)::int;
|
||
-- get our mean value
|
||
SELECT avg(v) INTO arr_mean FROM ( SELECT unnest(in_array) as v ) x;
|
||
|
||
-- assume best is actually Quantile
|
||
SELECT cdb_crankshaft.CDB_QuantileBins(in_array, breaks) INTO quant;
|
||
|
||
-- if data is very very large, just return quant and be done
|
||
IF element_count > 5000000 THEN
|
||
RETURN quant;
|
||
END IF;
|
||
|
||
-- change quant into bottom, top markers
|
||
LOOP
|
||
IF i = 1 THEN
|
||
bot = 1;
|
||
ELSE
|
||
-- use last top to find this bot
|
||
bot = top+1;
|
||
END IF;
|
||
IF i = breaks THEN
|
||
top = element_count;
|
||
ELSE
|
||
SELECT count(*) INTO top FROM ( SELECT unnest(in_array) as v) x WHERE v <= quant[i];
|
||
END IF;
|
||
IF i = 1 THEN
|
||
classes = ARRAY[ARRAY[bot,top]];
|
||
ELSE
|
||
classes = ARRAY_CAT(classes,ARRAY[bot,top]);
|
||
END IF;
|
||
IF i > breaks THEN EXIT; END IF;
|
||
i = i+1;
|
||
END LOOP;
|
||
|
||
best_result = cdb_crankshaft.CDB_JenksBinsIteration( in_array, breaks, classes, invert, element_count, arr_mean, shuffles);
|
||
|
||
--set the seed so we can ensure the same results
|
||
SELECT setseed(0.4567) INTO seedtarget;
|
||
--loop through random starting positions
|
||
LOOP
|
||
IF j > iterations-1 THEN EXIT; END IF;
|
||
i = 1;
|
||
tops = ARRAY[element_count];
|
||
LOOP
|
||
IF i = breaks THEN EXIT; END IF;
|
||
SELECT array_agg(distinct e) INTO tops FROM (SELECT unnest(array_cat(tops, ARRAY[floor(random()*element_count::float)::int])) as e ORDER BY e) x WHERE e != 1;
|
||
i = array_length(tops, 1);
|
||
END LOOP;
|
||
i = 1;
|
||
LOOP
|
||
IF i > breaks THEN EXIT; END IF;
|
||
IF i = 1 THEN
|
||
bot = 1;
|
||
ELSE
|
||
bot = top+1;
|
||
END IF;
|
||
top = tops[i];
|
||
IF i = 1 THEN
|
||
classes = ARRAY[ARRAY[bot,top]];
|
||
ELSE
|
||
classes = ARRAY_CAT(classes,ARRAY[bot,top]);
|
||
END IF;
|
||
i := i+1;
|
||
END LOOP;
|
||
curr_result = cdb_crankshaft.CDB_JenksBinsIteration( in_array, breaks, classes, invert, element_count, arr_mean, shuffles);
|
||
|
||
IF curr_result[1] > best_result[1] THEN
|
||
best_result = curr_result;
|
||
j = j-1; -- if we found a better result, add one more search
|
||
END IF;
|
||
j = j+1;
|
||
END LOOP;
|
||
|
||
RETURN (best_result)[2:array_upper(best_result, 1)];
|
||
END;
|
||
$$ language plpgsql IMMUTABLE;
|
||
|
||
|
||
|
||
--
|
||
-- Perform a single iteration of the Jenks classification
|
||
--
|
||
|
||
CREATE OR REPLACE FUNCTION CDB_JenksBinsIteration ( in_array NUMERIC[], breaks INT, classes INT[][], invert BOOLEAN, element_count INT4, arr_mean NUMERIC, max_search INT DEFAULT 50) RETURNS NUMERIC[] as $$
|
||
DECLARE
|
||
tmp_val numeric;
|
||
new_classes int[][];
|
||
tmp_class int[];
|
||
i INT := 1;
|
||
j INT := 1;
|
||
side INT := 2;
|
||
sdam numeric;
|
||
gvf numeric := 0.0;
|
||
new_gvf numeric;
|
||
arr_gvf numeric[];
|
||
class_avg numeric;
|
||
class_max_i INT;
|
||
class_min_i INT;
|
||
class_max numeric;
|
||
class_min numeric;
|
||
reply numeric[];
|
||
BEGIN
|
||
|
||
-- Calculate the sum of squared deviations from the array mean (SDAM).
|
||
SELECT sum((arr_mean - e)^2) INTO sdam FROM ( SELECT unnest(in_array) as e ) x;
|
||
--Identify the breaks for the lowest GVF
|
||
LOOP
|
||
i = 1;
|
||
LOOP
|
||
-- get our mean
|
||
SELECT avg(e) INTO class_avg FROM ( SELECT unnest(in_array[classes[i][1]:classes[i][2]]) as e) x;
|
||
-- find the deviation
|
||
SELECT sum((class_avg-e)^2) INTO tmp_val FROM ( SELECT unnest(in_array[classes[i][1]:classes[i][2]]) as e ) x;
|
||
IF i = 1 THEN
|
||
arr_gvf = ARRAY[tmp_val];
|
||
-- init our min/max map for later
|
||
class_max = arr_gvf[i];
|
||
class_min = arr_gvf[i];
|
||
class_min_i = 1;
|
||
class_max_i = 1;
|
||
ELSE
|
||
arr_gvf = array_append(arr_gvf, tmp_val);
|
||
END IF;
|
||
i := i+1;
|
||
IF i > breaks THEN EXIT; END IF;
|
||
END LOOP;
|
||
-- calculate our new GVF
|
||
SELECT sdam-sum(e) INTO new_gvf FROM ( SELECT unnest(arr_gvf) as e ) x;
|
||
-- if no improvement was made, exit
|
||
IF new_gvf < gvf THEN EXIT; END IF;
|
||
gvf = new_gvf;
|
||
IF j > max_search THEN EXIT; END IF;
|
||
j = j+1;
|
||
i = 1;
|
||
LOOP
|
||
--establish directionality (uppward through classes or downward)
|
||
IF arr_gvf[i] < class_min THEN
|
||
class_min = arr_gvf[i];
|
||
class_min_i = i;
|
||
END IF;
|
||
IF arr_gvf[i] > class_max THEN
|
||
class_max = arr_gvf[i];
|
||
class_max_i = i;
|
||
END IF;
|
||
i := i+1;
|
||
IF i > breaks THEN EXIT; END IF;
|
||
END LOOP;
|
||
IF class_max_i > class_min_i THEN
|
||
class_min_i = class_max_i - 1;
|
||
ELSE
|
||
class_min_i = class_max_i + 1;
|
||
END IF;
|
||
--Move from higher class to a lower gid order
|
||
IF class_max_i > class_min_i THEN
|
||
classes[class_max_i][1] = classes[class_max_i][1] + 1;
|
||
classes[class_min_i][2] = classes[class_min_i][2] + 1;
|
||
ELSE -- Move from lower class UP into a higher class by gid
|
||
classes[class_max_i][2] = classes[class_max_i][2] - 1;
|
||
classes[class_min_i][1] = classes[class_min_i][1] - 1;
|
||
END IF;
|
||
END LOOP;
|
||
|
||
i = 1;
|
||
LOOP
|
||
IF invert = TRUE THEN
|
||
side = 1; --default returns bottom side of breaks, invert returns top side
|
||
END IF;
|
||
reply = array_append(reply, in_array[classes[i][side]]);
|
||
i = i+1;
|
||
IF i > breaks THEN EXIT; END IF;
|
||
END LOOP;
|
||
|
||
RETURN array_prepend(gvf, reply);
|
||
|
||
END;
|
||
$$ language plpgsql IMMUTABLE;
|
||
|
||
|
||
--
|
||
-- Determine the Quantile classifications from a numeric array
|
||
--
|
||
-- @param in_array A numeric array of numbers to determine the best
|
||
-- bins based on the Quantile method.
|
||
--
|
||
-- @param breaks The number of bins you want to find.
|
||
--
|
||
--
|
||
CREATE OR REPLACE FUNCTION CDB_QuantileBins ( in_array NUMERIC[], breaks INT) RETURNS NUMERIC[] as $$
|
||
DECLARE
|
||
element_count INT4;
|
||
break_size numeric;
|
||
tmp_val numeric;
|
||
i INT := 1;
|
||
reply numeric[];
|
||
BEGIN
|
||
-- sort our values
|
||
SELECT array_agg(e) INTO in_array FROM (SELECT unnest(in_array) e ORDER BY e ASC) x;
|
||
-- get the total size of our data
|
||
element_count := array_length(in_array, 1);
|
||
break_size := element_count::numeric / breaks;
|
||
-- slice our bread
|
||
LOOP
|
||
IF i < breaks THEN
|
||
IF break_size * i % 1 > 0 THEN
|
||
SELECT e INTO tmp_val FROM ( SELECT unnest(in_array) e LIMIT 1 OFFSET ceil(break_size * i) - 1) x;
|
||
ELSE
|
||
SELECT avg(e) INTO tmp_val FROM ( SELECT unnest(in_array) e LIMIT 2 OFFSET ceil(break_size * i) - 1 ) x;
|
||
END IF;
|
||
ELSIF i = breaks THEN
|
||
-- select the last value
|
||
SELECT max(e) INTO tmp_val FROM ( SELECT unnest(in_array) e ) x;
|
||
ELSE
|
||
EXIT;
|
||
END IF;
|
||
|
||
reply = array_append(reply, tmp_val);
|
||
i := i+1;
|
||
END LOOP;
|
||
RETURN reply;
|
||
END;
|
||
$$ language plpgsql IMMUTABLE;
|