mirror of
https://github.com/CartoDB/crankshaft.git
synced 2024-11-01 10:20:48 +08:00
changing form of function to use query
This commit is contained in:
parent
f134a54c24
commit
d3e1fca2b3
@ -30,8 +30,7 @@ $$ LANGUAGE plpythonu;
|
||||
CREATE OR REPLACE FUNCTION
|
||||
cdb_create_and_predict_segment (
|
||||
segment_name TEXT,
|
||||
table_name TEXT,
|
||||
column_name TEXT,
|
||||
query TEXT,
|
||||
target_table TEXT,
|
||||
geoid_column TEXT DEFAULT 'geoid',
|
||||
census_table TEXT DEFAULT 'block_groups'
|
||||
@ -40,5 +39,5 @@ RETURNS TABLE (the_geom geometry, geoid text, prediction Numeric )
|
||||
AS $$
|
||||
from crankshaft import segmentation
|
||||
# TODO: use named parameters or a dictionary
|
||||
return segmentation.create_and_predict_segment(segment_name,table_name,column_name,geoid_column,census_table,target_table,'random_forest')
|
||||
return segmentation.create_and_predict_segment(segment_name,query,geoid_column,census_table,target_table,'random_forest')
|
||||
$$ LANGUAGE plpythonu;
|
||||
|
@ -30,14 +30,17 @@ def create_segment(segment_name,table_name,column_name,geoid_column,census_table
|
||||
# predict_segment
|
||||
return accuracy
|
||||
|
||||
def create_and_predict_segment(segment_name,table_name,column_name,geoid_column,census_table,target_table,method):
|
||||
def create_and_predict_segment(segment_name,query,geoid_column,census_table,target_table,method):
|
||||
"""
|
||||
generate a segment with machine learning
|
||||
Stuart Lynn
|
||||
"""
|
||||
data = pd.DataFrame(join_with_census(table_name, column_name,geoid_column, census_table))
|
||||
features = data[data.columns.difference([column_name, 'the_geom_webmercator', 'geoid','the_geom'])]
|
||||
target, mean, std = normalize(data[column_name])
|
||||
data = pd.DataFrame(join_with_census(query,geoid_column, census_table))
|
||||
features = data[data.columns.difference(['target', 'the_geom_webmercator', 'geoid','the_geom'])]
|
||||
target, mean, std = normalize(data['target'])
|
||||
|
||||
normed_target,target_mean, target_std = normalize(target)
|
||||
|
||||
model, accuracy, used_features = train_model(target,features, test_split=0.2)
|
||||
# save_model(segment_name, model, accuracy, table_name, column_name, census_table, geoid_column, method)
|
||||
result = predict_segment(model,used_features,geoid_column,target_table)
|
||||
@ -71,17 +74,20 @@ def calculate_model_accuracy(model,features,target):
|
||||
prediction = model.predict(features)
|
||||
return metrics.mean_squared_error(prediction,target)/np.std(target)
|
||||
|
||||
def join_with_census(table_name, column_name, geoid_column, census_table):
|
||||
columns = plpy.execute('select * from {census_table} limit 1 '.format(**locals()))
|
||||
combined_columns = [ a for a in columns[0].keys() if a not in ['the_geom','cartodb_id','geoid','the_geom_webmercator']]
|
||||
def join_with_census(query, geoid_column, census_table):
|
||||
columns = plpy.execute('select * from {census_table} limit 1 '.format(**locals()))
|
||||
combined_columns = [ a for a in columns[0].keys() if a not in ['target','the_geom','cartodb_id','geoid','the_geom_webmercator']]
|
||||
plpy.notice(combined_columns)
|
||||
feature_names = ",".join([ " {census_table}.\"{a}\"::Numeric as \"{a}\" ".format(**locals()) for a in combined_columns])
|
||||
plpy.notice(feature_names)
|
||||
|
||||
plpy.notice('joining with census data')
|
||||
join_data = plpy.execute('''
|
||||
|
||||
SELECT {feature_names}, {table_name}.{column_name}
|
||||
FROM {table_name}
|
||||
SELECT {feature_names}, a.target
|
||||
FROM ({query}) a
|
||||
JOIN {census_table}
|
||||
ON {table_name}.{geoid_column}::numeric = {census_table}.geoid::numeric
|
||||
ON a.{geoid_column}::numeric = {census_table}.geoid::numeric
|
||||
'''.format(**locals()))
|
||||
|
||||
if len(join_data) == 0:
|
||||
@ -113,6 +119,7 @@ def predict_segment(model,features,geoid_column,census_table):
|
||||
plpy.notice('predicting: predicting data')
|
||||
|
||||
prediction = model.predict(targets)
|
||||
de_norm_prediciton = []
|
||||
plpy.notice('predicting: predicted')
|
||||
|
||||
return zip( [a['the_geom'] for a in geoms], [a['geoid'] for a in geo_ids],prediction)
|
||||
|
Loading…
Reference in New Issue
Block a user