Release 0.5.2

This commit is contained in:
Rafa de la Torre 2017-05-12 17:26:41 +02:00
parent 69713ecb0a
commit ce5d1f9e86
35 changed files with 6166 additions and 3 deletions

10
NEWS.md
View File

@ -1,4 +1,12 @@
0.5.0 (2016-12-15)
0.5.2 (2017-05-12)
------------------
* Fixes missing comma for dict creation #172
0.5.1 (2016-12-12)
------------------
* Fixed problem with the upgrade file from 0.4.2 to 0.5.0 that hasn't changes that should be there (as per ethervoid).
0.5.0 (2016-12-12)
------------------
* Updated PULL_REQUEST_TEMPLATE
* Fixed a bug that flips the order of the numerator in denominator for calculating using Moran Local Rate because previously the code sorted the keys alphabetically.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,5 +1,5 @@
comment = 'CartoDB Spatial Analysis extension'
default_version = '0.5.1'
default_version = '0.5.2'
requires = 'plpythonu, postgis'
superuser = true
schema = cdb_crankshaft

View File

@ -0,0 +1,6 @@
"""Import all modules"""
import crankshaft.random_seeds
import crankshaft.clustering
import crankshaft.space_time_dynamics
import crankshaft.segmentation
import analysis_data_provider

View File

@ -0,0 +1,67 @@
"""class for fetching data"""
import plpy
import pysal_utils as pu
class AnalysisDataProvider:
def get_getis(self, w_type, params):
"""fetch data for getis ord's g"""
try:
query = pu.construct_neighbor_query(w_type, params)
result = plpy.execute(query)
# if there are no neighbors, exit
if len(result) == 0:
return pu.empty_zipped_array(4)
else:
return result
except plpy.SPIError, err:
plpy.error('Analysis failed: %s' % err)
def get_markov(self, w_type, params):
"""fetch data for spatial markov"""
try:
query = pu.construct_neighbor_query(w_type, params)
data = plpy.execute(query)
if len(data) == 0:
return pu.empty_zipped_array(4)
return data
except plpy.SPIError, err:
plpy.error('Analysis failed: %s' % err)
def get_moran(self, w_type, params):
"""fetch data for moran's i analyses"""
try:
query = pu.construct_neighbor_query(w_type, params)
data = plpy.execute(query)
# if there are no neighbors, exit
if len(data) == 0:
return pu.empty_zipped_array(2)
return data
except plpy.SPIError, err:
plpy.error('Analysis failed: %s' % e)
return pu.empty_zipped_array(2)
def get_nonspatial_kmeans(self, query):
"""fetch data for non-spatial kmeans"""
try:
data = plpy.execute(query)
return data
except plpy.SPIError, err:
plpy.error('Analysis failed: %s' % err)
def get_spatial_kmeans(self, params):
"""fetch data for spatial kmeans"""
query = ("SELECT "
"array_agg({id_col} ORDER BY {id_col}) as ids,"
"array_agg(ST_X({geom_col}) ORDER BY {id_col}) As xs,"
"array_agg(ST_Y({geom_col}) ORDER BY {id_col}) As ys "
"FROM ({subquery}) As a "
"WHERE {geom_col} IS NOT NULL").format(**params)
try:
data = plpy.execute(query)
return data
except plpy.SPIError, err:
plpy.error('Analysis failed: %s' % err)

View File

@ -0,0 +1,4 @@
"""Import all functions from for clustering"""
from moran import *
from kmeans import *
from getis import *

View File

@ -0,0 +1,50 @@
"""
Getis-Ord's G geostatistics (hotspot/coldspot analysis)
"""
import pysal as ps
from collections import OrderedDict
# crankshaft modules
import crankshaft.pysal_utils as pu
from crankshaft.analysis_data_provider import AnalysisDataProvider
# High level interface ---------------------------------------
class Getis:
def __init__(self, data_provider=None):
if data_provider is None:
self.data_provider = AnalysisDataProvider()
else:
self.data_provider = data_provider
def getis_ord(self, subquery, attr,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Getis-Ord's G*
Implementation building neighbors with a PostGIS database and PySAL's
Getis-Ord's G* hotspot/coldspot module.
Andy Eschbacher
"""
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors if kNN is chosen
qvals = OrderedDict([("id_col", id_col),
("attr1", attr),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
result = self.data_provider.get_getis(w_type, qvals)
attr_vals = pu.get_attributes(result)
# build PySAL weight object
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate Getis-Ord's G* z- and p-values
getis = ps.esda.getisord.G_Local(attr_vals, weight,
star=True, permutations=permutations)
return zip(getis.z_sim, getis.p_sim, getis.p_z_sim, weight.id_order)

View File

@ -0,0 +1,32 @@
from sklearn.cluster import KMeans
import numpy as np
from crankshaft.analysis_data_provider import AnalysisDataProvider
class Kmeans:
def __init__(self, data_provider=None):
if data_provider is None:
self.data_provider = AnalysisDataProvider()
else:
self.data_provider = data_provider
def spatial(self, query, no_clusters, no_init=20):
"""
find centers based on clusters of latitude/longitude pairs
query: SQL query that has a WGS84 geometry (the_geom)
"""
params = {"subquery": query,
"geom_col": "the_geom",
"id_col": "cartodb_id"}
data = self.data_provider.get_spatial_kmeans(params)
# Unpack query response
xs = data[0]['xs']
ys = data[0]['ys']
ids = data[0]['ids']
km = KMeans(n_clusters=no_clusters, n_init=no_init)
labels = km.fit_predict(zip(xs, ys))
return zip(ids, labels)

View File

@ -0,0 +1,208 @@
"""
Moran's I geostatistics (global clustering & outliers presence)
"""
# TODO: Fill in local neighbors which have null/NoneType values with the
# average of the their neighborhood
import pysal as ps
from collections import OrderedDict
from crankshaft.analysis_data_provider import AnalysisDataProvider
# crankshaft module
import crankshaft.pysal_utils as pu
# High level interface ---------------------------------------
class Moran:
def __init__(self, data_provider=None):
if data_provider is None:
self.data_provider = AnalysisDataProvider()
else:
self.data_provider = data_provider
def global_stat(self, subquery, attr_name,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I (global)
Implementation building neighbors with a PostGIS database and Moran's I
core clusters with PySAL.
Andy Eschbacher
"""
params = OrderedDict([("id_col", id_col),
("attr1", attr_name),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
result = self.data_provider.get_moran(w_type, params)
# collect attributes
attr_vals = pu.get_attributes(result)
# calculate weights
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate moran global
moran_global = ps.esda.moran.Moran(attr_vals, weight,
permutations=permutations)
return zip([moran_global.I], [moran_global.EI])
def local_stat(self, subquery, attr,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I implementation for PL/Python
Andy Eschbacher
"""
# geometries with attributes that are null are ignored
# resulting in a collection of not as near neighbors
params = OrderedDict([("id_col", id_col),
("attr1", attr),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
result = self.data_provider.get_moran(w_type, params)
attr_vals = pu.get_attributes(result)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local(attr_vals, weight,
permutations=permutations)
# find quadrants for each geometry
quads = quad_position(lisa.q)
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def global_rate_stat(self, subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Rate (global)
Andy Eschbacher
"""
params = OrderedDict([("id_col", id_col),
("attr1", numerator),
("attr2", denominator),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
result = self.data_provider.get_moran(w_type, params)
# collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate moran global rate
lisa_rate = ps.esda.moran.Moran_Rate(numer, denom, weight,
permutations=permutations)
return zip([lisa_rate.I], [lisa_rate.EI])
def local_rate_stat(self, subquery, numerator, denominator,
w_type, num_ngbrs, permutations, geom_col, id_col):
"""
Moran's I Local Rate
Andy Eschbacher
"""
# geometries with values that are null are ignored
# resulting in a collection of not as near neighbors
params = OrderedDict([("id_col", id_col),
("numerator", numerator),
("denominator", denominator),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
result = self.data_provider.get_moran(w_type, params)
# collect attributes
numer = pu.get_attributes(result, 1)
denom = pu.get_attributes(result, 2)
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_Rate(numer, denom, weight,
permutations=permutations)
# find quadrants for each geometry
quads = quad_position(lisa.q)
return zip(lisa.Is, quads, lisa.p_sim, weight.id_order, lisa.y)
def local_bivariate_stat(self, subquery, attr1, attr2,
permutations, geom_col, id_col,
w_type, num_ngbrs):
"""
Moran's I (local) Bivariate (untested)
"""
params = OrderedDict([("id_col", id_col),
("attr1", attr1),
("attr2", attr2),
("geom_col", geom_col),
("subquery", subquery),
("num_ngbrs", num_ngbrs)])
result = self.data_provider.get_moran(w_type, params)
# collect attributes
attr1_vals = pu.get_attributes(result, 1)
attr2_vals = pu.get_attributes(result, 2)
# create weights
weight = pu.get_weight(result, w_type, num_ngbrs)
# calculate LISA values
lisa = ps.esda.moran.Moran_Local_BV(attr1_vals, attr2_vals, weight,
permutations=permutations)
# find clustering of significance
lisa_sig = quad_position(lisa.q)
return zip(lisa.Is, lisa_sig, lisa.p_sim, weight.id_order)
# Low level functions ----------------------------------------
def map_quads(coord):
"""
Map a quadrant number to Moran's I designation
HH=1, LH=2, LL=3, HL=4
Input:
@param coord (int): quadrant of a specific measurement
Output:
classification (one of 'HH', 'LH', 'LL', or 'HL')
"""
if coord == 1:
return 'HH'
elif coord == 2:
return 'LH'
elif coord == 3:
return 'LL'
elif coord == 4:
return 'HL'
else:
return None
def quad_position(quads):
"""
Produce Moran's I classification based of n
Input:
@param quads ndarray: an array of quads classified by
1-4 (PySAL default)
Output:
@param list: an array of quads classied by 'HH', 'LL', etc.
"""
return [map_quads(q) for q in quads]

View File

@ -0,0 +1,2 @@
"""Import all functions for pysal_utils"""
from crankshaft.pysal_utils.pysal_utils import *

View File

@ -0,0 +1,211 @@
"""
Utilities module for generic PySAL functionality, mainly centered on
translating queries into numpy arrays or PySAL weights objects
"""
import numpy as np
import pysal as ps
def construct_neighbor_query(w_type, query_vals):
"""Return query (a string) used for finding neighbors
@param w_type text: type of neighbors to calculate ('knn' or 'queen')
@param query_vals dict: values used to construct the query
"""
if w_type.lower() == 'knn':
return knn(query_vals)
else:
return queen(query_vals)
# Build weight object
def get_weight(query_res, w_type='knn', num_ngbrs=5):
"""
Construct PySAL weight from return value of query
@param query_res dict-like: query results with attributes and neighbors
"""
# if w_type.lower() == 'knn':
# row_normed_weights = [1.0 / float(num_ngbrs)] * num_ngbrs
# weights = {x['id']: row_normed_weights for x in query_res}
# else:
# weights = {x['id']: [1.0 / len(x['neighbors'])] * len(x['neighbors'])
# if len(x['neighbors']) > 0
# else [] for x in query_res}
neighbors = {x['id']: x['neighbors'] for x in query_res}
print 'len of neighbors: %d' % len(neighbors)
built_weight = ps.W(neighbors)
built_weight.transform = 'r'
return built_weight
def query_attr_select(params):
"""
Create portion of SELECT statement for attributes inolved in query.
Defaults to order in the params
@param params: dict of information used in query (column names,
table name, etc.)
Example:
OrderedDict([('numerator', 'price'),
('denominator', 'sq_meters'),
('subquery', 'SELECT * FROM interesting_data')])
Output:
"i.\"price\"::numeric As attr1, " \
"i.\"sq_meters\"::numeric As attr2, "
"""
attr_string = ""
template = "i.\"%(col)s\"::numeric As attr%(alias_num)s, "
if 'time_cols' in params:
# if markov analysis
attrs = params['time_cols']
for idx, val in enumerate(attrs):
attr_string += template % {"col": val, "alias_num": idx + 1}
else:
# if moran's analysis
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'subquery',
'num_ngbrs', 'subquery')]
for idx, val in enumerate(attrs):
attr_string += template % {"col": params[val],
"alias_num": idx + 1}
return attr_string
def query_attr_where(params):
"""
Construct where conditions when building neighbors query
Create portion of WHERE clauses for weeding out NULL-valued geometries
Input: dict of params:
{'subquery': ...,
'numerator': 'data1',
'denominator': 'data2',
'': ...}
Output:
'idx_replace."data1" IS NOT NULL AND idx_replace."data2" IS NOT NULL'
Input:
{'subquery': ...,
'time_cols': ['time1', 'time2', 'time3'],
'etc': ...}
Output: 'idx_replace."time1" IS NOT NULL AND idx_replace."time2" IS NOT
NULL AND idx_replace."time3" IS NOT NULL'
"""
attr_string = []
template = "idx_replace.\"%s\" IS NOT NULL"
if 'time_cols' in params:
# markov where clauses
attrs = params['time_cols']
# add values to template
for attr in attrs:
attr_string.append(template % attr)
else:
# moran where clauses
# get keys
attrs = [k for k in params
if k not in ('id_col', 'geom_col', 'subquery',
'num_ngbrs', 'subquery')]
# add values to template
for attr in attrs:
attr_string.append(template % params[attr])
if 'denominator' in attrs:
attr_string.append(
"idx_replace.\"%s\" <> 0" % params['denominator'])
out = " AND ".join(attr_string)
return out
def knn(params):
"""SQL query for k-nearest neighbors.
@param vars: dict of values to fill template
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE " \
"i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"%(attr_where_j)s " \
"ORDER BY " \
"j.\"{geom_col}\" <-> i.\"{geom_col}\" ASC " \
"LIMIT {num_ngbrs})" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
# SQL query for finding queens neighbors (all contiguous polygons)
def queen(params):
"""SQL query for queen neighbors.
@param params dict: information to fill query
"""
attr_select = query_attr_select(params)
attr_where = query_attr_where(params)
replacements = {"attr_select": attr_select,
"attr_where_i": attr_where.replace("idx_replace", "i"),
"attr_where_j": attr_where.replace("idx_replace", "j")}
query = "SELECT " \
"i.\"{id_col}\" As id, " \
"%(attr_select)s" \
"(SELECT ARRAY(SELECT j.\"{id_col}\" " \
"FROM ({subquery}) As j " \
"WHERE i.\"{id_col}\" <> j.\"{id_col}\" AND " \
"ST_Touches(i.\"{geom_col}\", j.\"{geom_col}\") AND " \
"%(attr_where_j)s)" \
") As neighbors " \
"FROM ({subquery}) As i " \
"WHERE " \
"%(attr_where_i)s " \
"ORDER BY i.\"{id_col}\" ASC;" % replacements
return query.format(**params)
# to add more weight methods open a ticket or pull request
def get_attributes(query_res, attr_num=1):
"""
@param query_res: query results with attributes and neighbors
@param attr_num: attribute number (1, 2, ...)
"""
return np.array([x['attr' + str(attr_num)] for x in query_res],
dtype=np.float)
def empty_zipped_array(num_nones):
"""
prepare return values for cases of empty weights objects (no neighbors)
Input:
@param num_nones int: number of columns (e.g., 4)
Output:
[(None, None, None, None)]
"""
return [tuple([None] * num_nones)]

View File

@ -0,0 +1,11 @@
"""Random seed generator used for non-deterministic functions in crankshaft"""
import random
import numpy
def set_random_seeds(value):
"""
Set the seeds of the RNGs (Random Number Generators)
used internally.
"""
random.seed(value)
numpy.random.seed(value)

View File

@ -0,0 +1 @@
from segmentation import *

View File

@ -0,0 +1,176 @@
"""
Segmentation creation and prediction
"""
import sklearn
import numpy as np
import plpy
from sklearn.ensemble import GradientBoostingRegressor
from sklearn import metrics
from sklearn.cross_validation import train_test_split
# Lower level functions
#----------------------
def replace_nan_with_mean(array):
"""
Input:
@param array: an array of floats which may have null-valued entries
Output:
array with nans filled in with the mean of the dataset
"""
# returns an array of rows and column indices
indices = np.where(np.isnan(array))
# iterate through entries which have nan values
for row, col in zip(*indices):
array[row, col] = np.mean(array[~np.isnan(array[:, col]), col])
return array
def get_data(variable, feature_columns, query):
"""
Fetch data from the database, clean, and package into
numpy arrays
Input:
@param variable: name of the target variable
@param feature_columns: list of column names
@param query: subquery that data is pulled from for the packaging
Output:
prepared data, packaged into NumPy arrays
"""
columns = ','.join(['array_agg("{col}") As "{col}"'.format(col=col) for col in feature_columns])
try:
data = plpy.execute('''SELECT array_agg("{variable}") As target, {columns} FROM ({query}) As a'''.format(
variable=variable,
columns=columns,
query=query))
except Exception, e:
plpy.error('Failed to access data to build segmentation model: %s' % e)
# extract target data from plpy object
target = np.array(data[0]['target'])
# put n feature data arrays into an n x m array of arrays
features = np.column_stack([np.array(data[0][col], dtype=float) for col in feature_columns])
return replace_nan_with_mean(target), replace_nan_with_mean(features)
# High level interface
# --------------------
def create_and_predict_segment_agg(target, features, target_features, target_ids, model_parameters):
"""
Version of create_and_predict_segment that works on arrays that come stright form the SQL calling
the function.
Input:
@param target: The 1D array of lenth NSamples containing the target variable we want the model to predict
@param features: Thw 2D array of size NSamples * NFeatures that form the imput to the model
@param target_ids: A 1D array of target_ids that will be used to associate the results of the prediction with the rows which they come from
@param model_parameters: A dictionary containing parameters for the model.
"""
clean_target = replace_nan_with_mean(target)
clean_features = replace_nan_with_mean(features)
target_features = replace_nan_with_mean(target_features)
model, accuracy = train_model(clean_target, clean_features, model_parameters, 0.2)
prediction = model.predict(target_features)
accuracy_array = [accuracy]*prediction.shape[0]
return zip(target_ids, prediction, np.full(prediction.shape, accuracy_array))
def create_and_predict_segment(query, variable, target_query, model_params):
"""
generate a segment with machine learning
Stuart Lynn
"""
## fetch column names
try:
columns = plpy.execute('SELECT * FROM ({query}) As a LIMIT 1 '.format(query=query))[0].keys()
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
## extract column names to be used in building the segmentation model
feature_columns = set(columns) - set([variable, 'cartodb_id', 'the_geom', 'the_geom_webmercator'])
## get data from database
target, features = get_data(variable, feature_columns, query)
model, accuracy = train_model(target, features, model_params, 0.2)
cartodb_ids, result = predict_segment(model, feature_columns, target_query)
accuracy_array = [accuracy]*result.shape[0]
return zip(cartodb_ids, result, accuracy_array)
def train_model(target, features, model_params, test_split):
"""
Train the Gradient Boosting model on the provided data and calculate the accuracy of the model
Input:
@param target: 1D Array of the variable that the model is to be trianed to predict
@param features: 2D Array NSamples * NFeatures to use in trining the model
@param model_params: A dictionary of model parameters, the full specification can be found on the
scikit learn page for [GradientBoostingRegressor](http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html)
@parma test_split: The fraction of the data to be withheld for testing the model / calculating the accuray
"""
features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
model = GradientBoostingRegressor(**model_params)
model.fit(features_train, target_train)
accuracy = calculate_model_accuracy(model, features, target)
return model, accuracy
def calculate_model_accuracy(model, features, target):
"""
Calculate the mean squared error of the model prediction
Input:
@param model: model trained from input features
@param features: features to make a prediction from
@param target: target to compare prediction to
Output:
mean squared error of the model prection compared to the target
"""
prediction = model.predict(features)
return metrics.mean_squared_error(prediction, target)
def predict_segment(model, features, target_query):
"""
Use the provided model to predict the values for the new feature set
Input:
@param model: The pretrained model
@features: A list of features to use in the model prediction (list of column names)
@target_query: The query to run to obtain the data to predict on and the cartdb_ids associated with it.
"""
batch_size = 1000
joined_features = ','.join(['"{0}"::numeric'.format(a) for a in features])
try:
cursor = plpy.cursor('SELECT Array[{joined_features}] As features FROM ({target_query}) As a'.format(
joined_features=joined_features,
target_query=target_query))
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
results = []
while True:
rows = cursor.fetch(batch_size)
if not rows:
break
batch = np.row_stack([np.array(row['features'], dtype=float) for row in rows])
#Need to fix this. Should be global mean. This will cause weird effects
batch = replace_nan_with_mean(batch)
prediction = model.predict(batch)
results.append(prediction)
try:
cartodb_ids = plpy.execute('''SELECT array_agg(cartodb_id ORDER BY cartodb_id) As cartodb_ids FROM ({0}) As a'''.format(target_query))[0]['cartodb_ids']
except Exception, e:
plpy.error('Failed to build segmentation model: %s' % e)
return cartodb_ids, np.concatenate(results)

View File

@ -0,0 +1,2 @@
"""Import all functions from clustering libraries."""
from markov import *

View File

@ -0,0 +1,194 @@
"""
Spatial dynamics measurements using Spatial Markov
"""
# TODO: remove all plpy dependencies
import numpy as np
import pysal as ps
import plpy
import crankshaft.pysal_utils as pu
from crankshaft.analysis_data_provider import AnalysisDataProvider
class Markov:
def __init__(self, data_provider=None):
if data_provider is None:
self.data_provider = AnalysisDataProvider()
else:
self.data_provider = data_provider
def spatial_trend(self, subquery, time_cols, num_classes=7,
w_type='knn', num_ngbrs=5, permutations=0,
geom_col='the_geom', id_col='cartodb_id'):
"""
Predict the trends of a unit based on:
1. history of its transitions to different classes (e.g., 1st
quantile -> 2nd quantile)
2. average class of its neighbors
Inputs:
@param subquery string: e.g., SELECT the_geom, cartodb_id,
interesting_time_column FROM table_name
@param time_cols list of strings: list of strings of column names
@param num_classes (optional): number of classes to break
distribution of values into. Currently uses quantile bins.
@param w_type string (optional): weight type ('knn' or 'queen')
@param num_ngbrs int (optional): number of neighbors (if knn type)
@param permutations int (optional): number of permutations for test
stats
@param geom_col string (optional): name of column which contains
the geometries
@param id_col string (optional): name of column which has the ids
of the table
Outputs:
@param trend_up float: probablity that a geom will move to a higher
class
@param trend_down float: probablity that a geom will move to a
lower class
@param trend float: (trend_up - trend_down) / trend_static
@param volatility float: a measure of the volatility based on
probability stddev(prob array)
"""
if len(time_cols) < 2:
plpy.error('More than one time column needs to be passed')
params = {"id_col": id_col,
"time_cols": time_cols,
"geom_col": geom_col,
"subquery": subquery,
"num_ngbrs": num_ngbrs}
query_result = self.data_provider.get_markov(w_type, params)
# build weight
weights = pu.get_weight(query_result, w_type)
weights.transform = 'r'
# prep time data
t_data = get_time_data(query_result, time_cols)
sp_markov_result = ps.Spatial_Markov(t_data,
weights,
k=num_classes,
fixed=False,
permutations=permutations)
# get lag classes
lag_classes = ps.Quantiles(
ps.lag_spatial(weights, t_data[:, -1]),
k=num_classes).yb
# look up probablity distribution for each unit according to class and
# lag class
prob_dist = get_prob_dist(sp_markov_result.P,
lag_classes,
sp_markov_result.classes[:, -1])
# find the ups and down and overall distribution of each cell
trend_up, trend_down, trend, volatility = get_prob_stats(prob_dist, sp_markov_result.classes[:, -1])
# output the results
return zip(trend, trend_up, trend_down, volatility, weights.id_order)
def get_time_data(markov_data, time_cols):
"""
Extract the time columns and bin appropriately
"""
num_attrs = len(time_cols)
return np.array([[x['attr' + str(i)] for x in markov_data]
for i in range(1, num_attrs+1)], dtype=float).transpose()
# not currently used
def rebin_data(time_data, num_time_per_bin):
"""
Convert an n x l matrix into an (n/m) x l matrix where the values are
reduced (averaged) for the intervening states:
1 2 3 4 1.5 3.5
5 6 7 8 -> 5.5 7.5
9 8 7 6 8.5 6.5
5 4 3 2 4.5 2.5
if m = 2, the 4 x 4 matrix is transformed to a 2 x 4 matrix.
This process effectively resamples the data at a longer time span n
units longer than the input data.
For cases when there is a remainder (remainder(5/3) = 2), the remaining
two columns are binned together as the last time period, while the
first three are binned together for the first period.
Input:
@param time_data n x l ndarray: measurements of an attribute at
different time intervals
@param num_time_per_bin int: number of columns to average into a new
column
Output:
ceil(n / m) x l ndarray of resampled time series
"""
if time_data.shape[1] % num_time_per_bin == 0:
# if fit is perfect, then use it
n_max = time_data.shape[1] / num_time_per_bin
else:
# fit remainders into an additional column
n_max = time_data.shape[1] / num_time_per_bin + 1
return np.array(
[time_data[:, num_time_per_bin * i:num_time_per_bin * (i+1)].mean(axis=1)
for i in range(n_max)]).T
def get_prob_dist(transition_matrix, lag_indices, unit_indices):
"""
Given an array of transition matrices, look up the probability
associated with the arrangements passed
Input:
@param transition_matrix ndarray[k,k,k]:
@param lag_indices ndarray:
@param unit_indices ndarray:
Output:
Array of probability distributions
"""
return np.array([transition_matrix[(lag_indices[i], unit_indices[i])]
for i in range(len(lag_indices))])
def get_prob_stats(prob_dist, unit_indices):
"""
get the statistics of the probability distributions
Outputs:
@param trend_up ndarray(float): sum of probabilities for upward
movement (relative to the unit index of that prob)
@param trend_down ndarray(float): sum of probabilities for downward
movement (relative to the unit index of that prob)
@param trend ndarray(float): difference of upward and downward
movements
"""
num_elements = len(unit_indices)
trend_up = np.empty(num_elements, dtype=float)
trend_down = np.empty(num_elements, dtype=float)
trend = np.empty(num_elements, dtype=float)
for i in range(num_elements):
trend_up[i] = prob_dist[i, (unit_indices[i]+1):].sum()
trend_down[i] = prob_dist[i, :unit_indices[i]].sum()
if prob_dist[i, unit_indices[i]] > 0.0:
trend[i] = (trend_up[i] - trend_down[i]) / (
prob_dist[i, unit_indices[i]])
else:
trend[i] = None
# calculate volatility of distribution
volatility = prob_dist.std(axis=1)
return trend_up, trend_down, trend, volatility

View File

@ -0,0 +1,5 @@
joblib==0.8.3
numpy==1.6.1
scipy==0.14.0
pysal==1.11.2
scikit-learn==0.14.1

View File

@ -0,0 +1,49 @@
"""
CartoDB Spatial Analysis Python Library
See:
https://github.com/CartoDB/crankshaft
"""
from setuptools import setup, find_packages
setup(
name='crankshaft',
version='0.5.2',
description='CartoDB Spatial Analysis Python Library',
url='https://github.com/CartoDB/crankshaft',
author='Data Services Team - CartoDB',
author_email='dataservices@cartodb.com',
license='MIT',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Mapping comunity',
'Topic :: Maps :: Mapping Tools',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2.7',
],
keywords='maps mapping tools spatial analysis geostatistics',
packages=find_packages(exclude=['contrib', 'docs', 'tests']),
extras_require={
'dev': ['unittest'],
'test': ['unittest', 'nose', 'mock'],
},
# The choice of component versions is dictated by what's
# provisioned in the production servers.
# IMPORTANT NOTE: please don't change this line. Instead issue a ticket to systems for evaluation.
install_requires=['joblib==0.8.3', 'numpy==1.6.1', 'scipy==0.14.0', 'pysal==1.11.2', 'scikit-learn==0.14.1'],
requires=['pysal', 'numpy', 'sklearn'],
test_suite='test'
)

View File

@ -0,0 +1 @@
[[0.004793783909323601, 0.17999999999999999, 0.49808756424021061], [-1.0701189472090842, 0.079000000000000001, 0.14228288580832316], [-0.67867750971877305, 0.42099999999999999, 0.24867110969448558], [-0.67407386707620487, 0.246, 0.25013217644612995], [-0.79495689068870035, 0.33200000000000002, 0.21331928959090596], [-0.49279481022182703, 0.058999999999999997, 0.31107878905057329], [-0.38075627530057132, 0.28399999999999997, 0.35169205342069643], [-0.86710921611314895, 0.23699999999999999, 0.19294108571294855], [-0.78618647240956485, 0.050000000000000003, 0.2158791250244505], [-0.76108527223116984, 0.064000000000000001, 0.22330306830813684], [-0.13340753531942209, 0.247, 0.44693554317763651], [-0.57584545722033043, 0.48999999999999999, 0.28235982246156488], [-0.78882694661192831, 0.433, 0.2151065788731219], [-0.38769767950046219, 0.375, 0.34911988661484239], [-0.56057819488052207, 0.41399999999999998, 0.28754255985169652], [-0.41354017495644935, 0.45500000000000002, 0.339605447117173], [-0.23993577722243081, 0.49099999999999999, 0.40519002230969337], [-0.1389080156677496, 0.40400000000000003, 0.44476141839645233], [-0.25485737510500855, 0.376, 0.39941662953554224], [-0.71218610582902353, 0.17399999999999999, 0.23817476979886087], [-0.54533105995872144, 0.13700000000000001, 0.2927629228714812], [-0.39547917847510977, 0.033000000000000002, 0.34624464252424236], [-0.43052658996257548, 0.35399999999999998, 0.33340631435564982], [-0.37296719193774736, 0.40300000000000002, 0.35458643102865428], [-0.66482612169465694, 0.31900000000000001, 0.25308085650392698], [-0.13772133540823422, 0.34699999999999998, 0.44523032843016275], [-0.6765304487868502, 0.20999999999999999, 0.24935196033890672], [-0.64518763494323472, 0.32200000000000001, 0.25940279912025543], [-0.5078622084312413, 0.41099999999999998, 0.30577498972600159], [-0.12652006733772059, 0.42899999999999999, 0.44966013262301163], [-0.32691133022814595, 0.498, 0.37186747562269029], [0.25533848511500978, 0.42399999999999999, 0.39923083899077472], [2.7045138116476508, 0.0050000000000000001, 0.0034202212972238577], [-0.1551614486076057, 0.44400000000000001, 0.43834701985429037], [1.9524487722567723, 0.012999999999999999, 0.025442473674991528], [-1.2055816465306763, 0.017000000000000001, 0.11398941970467646], [3.478472976017831, 0.002, 0.00025213964072468009], [-1.4621715757903719, 0.002, 0.071847099325659136], [-0.84010307600180256, 0.085000000000000006, 0.20042529779230778], [5.7097646237318243, 0.0030000000000000001, 5.6566262784940591e-09], [1.5082367956567375, 0.065000000000000002, 0.065746966514827365], [-0.58337270103430816, 0.44, 0.27982121546450034], [-0.083271860457022437, 0.45100000000000001, 0.46681768733385554], [-0.46872337815000953, 0.34599999999999997, 0.31963368715684204], [0.18490279849545319, 0.23799999999999999, 0.42665263797981101], [3.470424529947997, 0.012, 0.00025981817437825683], [-0.99942612137154796, 0.032000000000000001, 0.15879415560388499], [-1.3650387953594485, 0.034000000000000002, 0.08612042845912049], [1.8617160516432014, 0.081000000000000003, 0.03132156240215267], [1.1321188945775384, 0.11600000000000001, 0.12879222611766061], [0.064116686050580601, 0.27300000000000002, 0.4744386578180424], [-0.42032194540259099, 0.29999999999999999, 0.33712514016213468], [-0.79581215423980922, 0.123, 0.21307061309098785], [-0.42792753720906046, 0.45600000000000002, 0.33435193892883741], [-1.0629378527428395, 0.051999999999999998, 0.14390506780140866], [-0.54164761752225477, 0.33700000000000002, 0.29403064095211839], [1.0934778886820793, 0.13700000000000001, 0.13709201601893539], [-0.094068785378413719, 0.38200000000000001, 0.46252725802998929], [0.13482026574801856, 0.36799999999999999, 0.44637699118865737], [-0.13976995315653129, 0.34699999999999998, 0.44442087706276601], [-0.051047663924746682, 0.32000000000000001, 0.47964376985626245], [-0.21468297736730158, 0.41699999999999998, 0.41500724761906527], [-0.20873154637330626, 0.38800000000000001, 0.41732890604390893], [-0.32427876152583485, 0.49199999999999999, 0.37286349875557478], [-0.65254842943280977, 0.374, 0.25702372075306734], [-0.48611858196118796, 0.23300000000000001, 0.31344154643990074], [-0.14482354344529477, 0.32600000000000001, 0.44242509660469886], [-0.51052030974200002, 0.439, 0.30484349480873729], [0.56814382285283538, 0.14999999999999999, 0.28496865660103166], [0.58680919931668207, 0.161, 0.27866592887231878], [0.013390357044409013, 0.25800000000000001, 0.49465818005865647], [-0.19050728887961568, 0.41399999999999998, 0.4244558160399462], [-0.60531777422216049, 0.35199999999999998, 0.2724839368239631], [1.0899331115425805, 0.127, 0.13787130480311838], [0.17015055382651084, 0.36899999999999999, 0.43244586845546418], [-0.21738337124409801, 0.40600000000000003, 0.41395479459421991], [1.0329303331079593, 0.079000000000000001, 0.15081825117169467], [1.0218317101096221, 0.104, 0.15343027913308094]]

View File

@ -0,0 +1 @@
[{"xs": [9.917239463463458, 9.042767302696836, 10.798929825304187, 8.763751051762995, 11.383882954810852, 11.018206993460897, 8.939526075734316, 9.636159342565252, 10.136336896960058, 11.480610059427342, 12.115011910725082, 9.173267848893428, 10.239300931201738, 8.00012512174072, 8.979962292282131, 9.318376124429575, 10.82259513754284, 10.391747171927115, 10.04904588886165, 9.96007160443463, -0.78825626804569, -0.3511819898577426, -1.2796410003764271, -0.3977049391203402, 2.4792311265774667, 1.3670311632092624, 1.2963504112955613, 2.0404844103073025, -1.6439708506073223, 0.39122885445645805, 1.026031821452462, -0.04044477160482201, -0.7442346929085072, -0.34687120826243034, -0.23420359971379054, -0.5919629143336708, -0.202903054395391, -0.1893399644841902, 1.9331834251176807, -0.12321054392851609], "ys": [8.735627063679981, 9.857615954045011, 10.81439096759407, 10.586727233537191, 9.232919976568622, 11.54281262696508, 8.392787912674466, 9.355119689665944, 9.22380703532752, 10.542142541823122, 10.111980619367035, 10.760836265570738, 8.819773453269804, 10.25325722424816, 9.802077905695608, 8.955420161552611, 9.833801181904477, 10.491684241001613, 12.076108669877556, 11.74289693140474, -0.5685725015474191, -0.5715728344759778, -0.20180907868635137, 0.38431336480089595, -0.3402202083684184, -2.4652736827783586, 0.08295159401756182, 0.8503818775816505, 0.6488691600321166, 0.5794762568230527, -0.6770063922144103, -0.6557616416449478, -1.2834289177624947, 0.1096318195532717, -0.38986922166834853, -1.6224497706950238, 0.09429787743230483, 0.4005097316394031, -0.508002811195673, -1.2473463371366507], "ids": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]}]

View File

@ -0,0 +1 @@
[[0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 0], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 1], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 2], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 3], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 4], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 5], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 6], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 7], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 8], [0.19047619047619049, 0.16, 0.0, 0.32594478059941379, 9], [-0.23529411764705882, 0.0, 0.19047619047619047, 0.31356338348865387, 10], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 11], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 12], [0.027777777777777783, 0.11111111111111112, 0.088888888888888892, 0.30339641183779581, 13], [0.03125, 0.030303030303030304, 0.0, 0.3850273981640871, 14], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 15], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 16], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 17], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 18], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 19], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 20], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 21], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 22], [-0.16666666666666663, 0.18181818181818182, 0.27272727272727271, 0.20246415864836445, 23], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 24], [0.1875, 0.23999999999999999, 0.12, 0.23731835158706122, 25], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 26], [-0.043478260869565216, 0.0, 0.041666666666666664, 0.37950991789118999, 27], [0.22222222222222221, 0.18181818181818182, 0.0, 0.31701083225750354, 28], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 29], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 30], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 31], [0.030303030303030304, 0.078947368421052627, 0.052631578947368418, 0.33560628561957595, 32], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 33], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 34], [0.0, 0.10000000000000001, 0.10000000000000001, 0.30331501776206204, 35], [-0.054054054054054057, 0.0, 0.05128205128205128, 0.37488547451276033, 36], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 37], [-0.22222222222222224, 0.13333333333333333, 0.26666666666666666, 0.22310934040908681, 38], [-0.0625, 0.095238095238095233, 0.14285714285714285, 0.28634850244519822, 39], [0.034482758620689655, 0.0625, 0.03125, 0.35388469167230169, 40], [0.11111111111111112, 0.10000000000000001, 0.0, 0.35213633723318016, 41], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 42], [0.0, 0.0, 0.0, 0.40000000000000002, 43], [0.0, 0.065217391304347824, 0.065217391304347824, 0.33605067580764519, 44], [0.078947368421052641, 0.073170731707317083, 0.0, 0.36451788667842738, 45], [0.052631578947368425, 0.090909090909090912, 0.045454545454545456, 0.33352611505171165, 46], [-0.20512820512820512, 0.0, 0.1702127659574468, 0.32172013908826891, 47]]

View File

@ -0,0 +1,52 @@
[[0.9319096128346788, "HH"],
[-1.135787401862846, "HL"],
[0.11732030672508517, "LL"],
[0.6152779669180425, "LL"],
[-0.14657336660125297, "LH"],
[0.6967858120189607, "LL"],
[0.07949310115714454, "HH"],
[0.4703198759258987, "HH"],
[0.4421125200498064, "HH"],
[0.5724288737143592, "LL"],
[0.8970743435692062, "LL"],
[0.18327334401918674, "LL"],
[-0.01466729201304962, "HL"],
[0.3481559372544409, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329988, "HH"],
[0.4373841193538136, "HH"],
[0.15971286468915544, "LL"],
[1.0543588860308968, "HH"],
[1.7372866900020818, "HH"],
[1.091998586053999, "LL"],
[0.1171572584252222, "HH"],
[0.08438455015300014, "LL"],
[0.06547094736902978, "LL"],
[0.15482141569329985, "HH"],
[1.1627044812890683, "HH"],
[0.06547094736902978, "LL"],
[0.795275137550483, "HH"],
[0.18562939195219, "LL"],
[0.3010757406693439, "LL"],
[2.8205795942839376, "HH"],
[0.11259190602909264, "LL"],
[-0.07116352791516614, "HL"],
[-0.09945240794119009, "LH"],
[0.18562939195219, "LL"],
[0.1832733440191868, "LL"],
[-0.39054253768447705, "HL"],
[-0.1672071289487642, "HL"],
[0.3337669247916343, "HH"],
[0.2584386102554792, "HH"],
[-0.19733845476322634, "HL"],
[-0.9379282899805409, "LH"],
[-0.028770969951095866, "LH"],
[0.051367269430983485, "LL"],
[-0.2172548045913472, "LH"],
[0.05136726943098351, "LL"],
[0.04191046803899837, "LL"],
[0.7482357030403517, "HH"],
[-0.014585767863118111, "LH"],
[0.5410013139159929, "HH"],
[1.0223932668429925, "LL"],
[1.4179402898927476, "LL"]]

View File

@ -0,0 +1,54 @@
[
{"neighbors": [48, 26, 20, 9, 31], "id": 1, "value": 0.5},
{"neighbors": [30, 16, 46, 3, 4], "id": 2, "value": 0.7},
{"neighbors": [46, 30, 2, 12, 16], "id": 3, "value": 0.2},
{"neighbors": [18, 30, 23, 2, 52], "id": 4, "value": 0.1},
{"neighbors": [47, 40, 45, 37, 28], "id": 5, "value": 0.3},
{"neighbors": [10, 21, 41, 14, 37], "id": 6, "value": 0.05},
{"neighbors": [8, 17, 43, 25, 12], "id": 7, "value": 0.4},
{"neighbors": [17, 25, 43, 22, 7], "id": 8, "value": 0.7},
{"neighbors": [39, 34, 1, 26, 48], "id": 9, "value": 0.5},
{"neighbors": [6, 37, 5, 45, 49], "id": 10, "value": 0.04},
{"neighbors": [51, 41, 29, 21, 14], "id": 11, "value": 0.08},
{"neighbors": [44, 46, 43, 50, 3], "id": 12, "value": 0.2},
{"neighbors": [45, 23, 14, 28, 18], "id": 13, "value": 0.4},
{"neighbors": [41, 29, 13, 23, 6], "id": 14, "value": 0.2},
{"neighbors": [36, 27, 32, 33, 24], "id": 15, "value": 0.3},
{"neighbors": [19, 2, 46, 44, 28], "id": 16, "value": 0.4},
{"neighbors": [8, 25, 43, 7, 22], "id": 17, "value": 0.6},
{"neighbors": [23, 4, 29, 14, 13], "id": 18, "value": 0.3},
{"neighbors": [42, 16, 28, 26, 40], "id": 19, "value": 0.7},
{"neighbors": [1, 48, 31, 26, 42], "id": 20, "value": 0.8},
{"neighbors": [41, 6, 11, 14, 10], "id": 21, "value": 0.1},
{"neighbors": [25, 50, 43, 31, 44], "id": 22, "value": 0.4},
{"neighbors": [18, 13, 14, 4, 2], "id": 23, "value": 0.1},
{"neighbors": [33, 49, 34, 47, 27], "id": 24, "value": 0.3},
{"neighbors": [43, 8, 22, 17, 50], "id": 25, "value": 0.4},
{"neighbors": [1, 42, 20, 31, 48], "id": 26, "value": 0.6},
{"neighbors": [32, 15, 36, 33, 24], "id": 27, "value": 0.3},
{"neighbors": [40, 45, 19, 5, 13], "id": 28, "value": 0.8},
{"neighbors": [11, 51, 41, 14, 18], "id": 29, "value": 0.3},
{"neighbors": [2, 3, 4, 46, 18], "id": 30, "value": 0.1},
{"neighbors": [20, 26, 1, 50, 48], "id": 31, "value": 0.9},
{"neighbors": [27, 36, 15, 49, 24], "id": 32, "value": 0.3},
{"neighbors": [24, 27, 49, 34, 32], "id": 33, "value": 0.4},
{"neighbors": [47, 9, 39, 40, 24], "id": 34, "value": 0.3},
{"neighbors": [38, 51, 11, 21, 41], "id": 35, "value": 0.3},
{"neighbors": [15, 32, 27, 49, 33], "id": 36, "value": 0.2},
{"neighbors": [49, 10, 5, 47, 24], "id": 37, "value": 0.5},
{"neighbors": [35, 21, 51, 11, 41], "id": 38, "value": 0.4},
{"neighbors": [9, 34, 48, 1, 47], "id": 39, "value": 0.6},
{"neighbors": [28, 47, 5, 9, 34], "id": 40, "value": 0.5},
{"neighbors": [11, 14, 29, 21, 6], "id": 41, "value": 0.4},
{"neighbors": [26, 19, 1, 9, 31], "id": 42, "value": 0.2},
{"neighbors": [25, 12, 8, 22, 44], "id": 43, "value": 0.3},
{"neighbors": [12, 50, 46, 16, 43], "id": 44, "value": 0.2},
{"neighbors": [28, 13, 5, 40, 19], "id": 45, "value": 0.3},
{"neighbors": [3, 12, 44, 2, 16], "id": 46, "value": 0.2},
{"neighbors": [34, 40, 5, 49, 24], "id": 47, "value": 0.3},
{"neighbors": [1, 20, 26, 9, 39], "id": 48, "value": 0.5},
{"neighbors": [24, 37, 47, 5, 33], "id": 49, "value": 0.2},
{"neighbors": [44, 22, 31, 42, 26], "id": 50, "value": 0.6},
{"neighbors": [11, 29, 41, 14, 21], "id": 51, "value": 0.01},
{"neighbors": [4, 18, 29, 51, 23], "id": 52, "value": 0.01}
]

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,13 @@
import unittest
from mock_plpy import MockPlPy
plpy = MockPlPy()
import sys
sys.modules['plpy'] = plpy
import os
def fixture_file(name):
dir = os.path.dirname(os.path.realpath(__file__))
return os.path.join(dir, 'fixtures', name)

View File

@ -0,0 +1,54 @@
import re
class MockCursor:
def __init__(self, data):
self.cursor_pos = 0
self.data = data
def fetch(self, batch_size):
batch = self.data[self.cursor_pos:self.cursor_pos + batch_size]
self.cursor_pos += batch_size
return batch
class MockPlPy:
def __init__(self):
self._reset()
def _reset(self):
self.infos = []
self.notices = []
self.debugs = []
self.logs = []
self.warnings = []
self.errors = []
self.fatals = []
self.executes = []
self.results = []
self.prepares = []
self.results = []
def _define_result(self, query, result):
pattern = re.compile(query, re.IGNORECASE | re.MULTILINE)
self.results.append([pattern, result])
def notice(self, msg):
self.notices.append(msg)
def debug(self, msg):
self.notices.append(msg)
def info(self, msg):
self.infos.append(msg)
def cursor(self, query):
data = self.execute(query)
return MockCursor(data)
# TODO: additional arguments
def execute(self, query):
for result in self.results:
if result[0].match(query):
return result[1]
return []

View File

@ -0,0 +1,78 @@
import unittest
import numpy as np
from helper import fixture_file
from crankshaft.clustering import Getis
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
import json
from crankshaft.analysis_data_provider import AnalysisDataProvider
# Fixture files produced as follows
#
# import pysal as ps
# import numpy as np
# import random
#
# # setup variables
# f = ps.open(ps.examples.get_path("stl_hom.dbf"))
# y = np.array(f.by_col['HR8893'])
# w_queen = ps.queen_from_shapefile(ps.examples.get_path("stl_hom.shp"))
#
# out_queen = [{"id": index + 1,
# "neighbors": [x+1 for x in w_queen.neighbors[index]],
# "value": val} for index, val in enumerate(y)]
#
# with open('neighbors_queen_getis.json', 'w') as f:
# f.write(str(out_queen))
#
# random.seed(1234)
# np.random.seed(1234)
# lgstar_queen = ps.esda.getisord.G_Local(y, w_queen, star=True,
# permutations=999)
#
# with open('getis_queen.json', 'w') as f:
# f.write(str(zip(lgstar_queen.z_sim,
# lgstar_queen.p_sim, lgstar_queen.p_z_sim)))
class FakeDataProvider(AnalysisDataProvider):
def __init__(self, mock_data):
self.mock_result = mock_data
def get_getis(self, w_type, param):
return self.mock_result
class GetisTest(unittest.TestCase):
"""Testing class for Getis-Ord's G* funtion
This test replicates the work done in PySAL documentation:
https://pysal.readthedocs.io/en/v1.11.0/users/tutorials/autocorrelation.html#local-g-and-g
"""
def setUp(self):
# load raw data for analysis
self.neighbors_data = json.loads(
open(fixture_file('neighbors_getis.json')).read())
# load pre-computed/known values
self.getis_data = json.loads(
open(fixture_file('getis.json')).read())
def test_getis_ord(self):
"""Test Getis-Ord's G*"""
data = [{'id': d['id'],
'attr1': d['value'],
'neighbors': d['neighbors']} for d in self.neighbors_data]
random_seeds.set_random_seeds(1234)
getis = Getis(FakeDataProvider(data))
result = getis.getis_ord('subquery', 'value',
'queen', None, 999, 'the_geom',
'cartodb_id')
result = [(row[0], row[1]) for row in result]
expected = np.array(self.getis_data)[:, 0:2]
for ([res_z, res_p], [exp_z, exp_p]) in zip(result, expected):
self.assertAlmostEqual(res_z, exp_z, delta=1e-2)

View File

@ -0,0 +1,56 @@
import unittest
import numpy as np
# from mock_plpy import MockPlPy
# plpy = MockPlPy()
#
# import sys
# sys.modules['plpy'] = plpy
from helper import fixture_file
from crankshaft.clustering import Kmeans
from crankshaft.analysis_data_provider import AnalysisDataProvider
import crankshaft.clustering as cc
from crankshaft import random_seeds
import json
from collections import OrderedDict
class FakeDataProvider(AnalysisDataProvider):
def __init__(self, mocked_result):
self.mocked_result = mocked_result
def get_spatial_kmeans(self, query):
return self.mocked_result
def get_nonspatial_kmeans(self, query, standarize):
return self.mocked_result
class KMeansTest(unittest.TestCase):
"""Testing class for k-means spatial"""
def setUp(self):
self.cluster_data = json.loads(
open(fixture_file('kmeans.json')).read())
self.params = {"subquery": "select * from table",
"no_clusters": "10"}
def test_kmeans(self):
"""
"""
data = [{'xs': d['xs'],
'ys': d['ys'],
'ids': d['ids']} for d in self.cluster_data]
random_seeds.set_random_seeds(1234)
kmeans = Kmeans(FakeDataProvider(data))
clusters = kmeans.spatial('subquery', 2)
labels = [a[1] for a in clusters]
c1 = [a for a in clusters if a[1] == 0]
c2 = [a for a in clusters if a[1] == 1]
self.assertEqual(len(np.unique(labels)), 2)
self.assertEqual(len(c1), 20)
self.assertEqual(len(c2), 20)

View File

@ -0,0 +1,112 @@
import unittest
import numpy as np
from helper import fixture_file
from crankshaft.clustering import Moran
from crankshaft.analysis_data_provider import AnalysisDataProvider
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
import json
from collections import OrderedDict
class FakeDataProvider(AnalysisDataProvider):
def __init__(self, mock_data):
self.mock_result = mock_data
def get_moran(self, w_type, params):
return self.mock_result
class MoranTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
self.params = {"id_col": "cartodb_id",
"attr1": "andy",
"attr2": "jay_z",
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.params_markov = {"id_col": "cartodb_id",
"time_cols": ["_2013_dec", "_2014_jan",
"_2014_feb"],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(
open(fixture_file('neighbors.json')).read())
self.moran_data = json.loads(
open(fixture_file('moran.json')).read())
def test_map_quads(self):
"""Test map_quads"""
from crankshaft.clustering import map_quads
self.assertEqual(map_quads(1), 'HH')
self.assertEqual(map_quads(2), 'LH')
self.assertEqual(map_quads(3), 'LL')
self.assertEqual(map_quads(4), 'HL')
self.assertEqual(map_quads(33), None)
self.assertEqual(map_quads('andy'), None)
def test_quad_position(self):
"""Test lisa_sig_vals"""
from crankshaft.clustering import quad_position
quads = np.array([1, 2, 3, 4], np.int)
ans = np.array(['HH', 'LH', 'LL', 'HL'])
test_ans = quad_position(quads)
self.assertTrue((test_ans == ans).all())
def test_local_stat(self):
"""Test Moran's I local"""
data = [OrderedDict([('id', d['id']),
('attr1', d['value']),
('neighbors', d['neighbors'])])
for d in self.neighbors_data]
moran = Moran(FakeDataProvider(data))
random_seeds.set_random_seeds(1234)
result = moran.local_stat('subquery', 'value',
'knn', 5, 99, 'the_geom', 'cartodb_id')
result = [(row[0], row[1]) for row in result]
zipped_values = zip(result, self.moran_data)
for ([res_val, res_quad], [exp_val, exp_quad]) in zipped_values:
self.assertAlmostEqual(res_val, exp_val)
self.assertEqual(res_quad, exp_quad)
def test_moran_local_rate(self):
"""Test Moran's I rate"""
data = [{'id': d['id'],
'attr1': d['value'],
'attr2': 1,
'neighbors': d['neighbors']} for d in self.neighbors_data]
random_seeds.set_random_seeds(1234)
moran = Moran(FakeDataProvider(data))
result = moran.local_rate_stat('subquery', 'numerator', 'denominator',
'knn', 5, 99, 'the_geom', 'cartodb_id')
result = [(row[0], row[1]) for row in result]
zipped_values = zip(result, self.moran_data)
for ([res_val, res_quad], [exp_val, exp_quad]) in zipped_values:
self.assertAlmostEqual(res_val, exp_val)
def test_moran(self):
"""Test Moran's I global"""
data = [{'id': d['id'],
'attr1': d['value'],
'neighbors': d['neighbors']} for d in self.neighbors_data]
random_seeds.set_random_seeds(1235)
moran = Moran(FakeDataProvider(data))
result = moran.global_stat('table', 'value',
'knn', 5, 99, 'the_geom',
'cartodb_id')
result_moran = result[0][0]
expected_moran = np.array([row[0] for row in self.moran_data]).mean()
self.assertAlmostEqual(expected_moran, result_moran, delta=10e-2)

View File

@ -0,0 +1,160 @@
import unittest
import crankshaft.pysal_utils as pu
from crankshaft import random_seeds
from collections import OrderedDict
class PysalUtilsTest(unittest.TestCase):
"""Testing class for utility functions related to PySAL integrations"""
def setUp(self):
self.params1 = OrderedDict([("id_col", "cartodb_id"),
("attr1", "andy"),
("attr2", "jay_z"),
("subquery", "SELECT * FROM a_list"),
("geom_col", "the_geom"),
("num_ngbrs", 321)])
self.params2 = OrderedDict([("id_col", "cartodb_id"),
("numerator", "price"),
("denominator", "sq_meters"),
("subquery", "SELECT * FROM pecan"),
("geom_col", "the_geom"),
("num_ngbrs", 321)])
self.params3 = OrderedDict([("id_col", "cartodb_id"),
("numerator", "sq_meters"),
("denominator", "price"),
("subquery", "SELECT * FROM pecan"),
("geom_col", "the_geom"),
("num_ngbrs", 321)])
self.params_array = {"id_col": "cartodb_id",
"time_cols": ["_2013_dec", "_2014_jan", "_2014_feb"],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
def test_query_attr_select(self):
"""Test query_attr_select"""
ans1 = ("i.\"andy\"::numeric As attr1, "
"i.\"jay_z\"::numeric As attr2, ")
ans2 = ("i.\"price\"::numeric As attr1, "
"i.\"sq_meters\"::numeric As attr2, ")
ans3 = ("i.\"sq_meters\"::numeric As attr1, "
"i.\"price\"::numeric As attr2, ")
ans_array = ("i.\"_2013_dec\"::numeric As attr1, "
"i.\"_2014_jan\"::numeric As attr2, "
"i.\"_2014_feb\"::numeric As attr3, ")
self.assertEqual(pu.query_attr_select(self.params1), ans1)
self.assertEqual(pu.query_attr_select(self.params2), ans2)
self.assertEqual(pu.query_attr_select(self.params3), ans3)
self.assertEqual(pu.query_attr_select(self.params_array), ans_array)
def test_query_attr_where(self):
"""Test pu.query_attr_where"""
ans1 = ("idx_replace.\"andy\" IS NOT NULL AND "
"idx_replace.\"jay_z\" IS NOT NULL")
ans_array = ("idx_replace.\"_2013_dec\" IS NOT NULL AND "
"idx_replace.\"_2014_jan\" IS NOT NULL AND "
"idx_replace.\"_2014_feb\" IS NOT NULL")
self.assertEqual(pu.query_attr_where(self.params1), ans1)
self.assertEqual(pu.query_attr_where(self.params_array), ans_array)
def test_knn(self):
"""Test knn neighbors constructor"""
ans1 = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL " \
"ORDER BY " \
"j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL " \
"ORDER BY i.\"cartodb_id\" ASC;"
ans_array = "SELECT i.\"cartodb_id\" As id, " \
"i.\"_2013_dec\"::numeric As attr1, " \
"i.\"_2014_jan\"::numeric As attr2, " \
"i.\"_2014_feb\"::numeric As attr3, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"j.\"_2013_dec\" IS NOT NULL AND " \
"j.\"_2014_jan\" IS NOT NULL AND " \
"j.\"_2014_feb\" IS NOT NULL " \
"ORDER BY j.\"the_geom\" <-> i.\"the_geom\" ASC " \
"LIMIT 321)) As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"_2013_dec\" IS NOT NULL AND " \
"i.\"_2014_jan\" IS NOT NULL AND " \
"i.\"_2014_feb\" IS NOT NULL "\
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.knn(self.params1), ans1)
self.assertEqual(pu.knn(self.params_array), ans_array)
def test_queen(self):
"""Test queen neighbors constructor"""
ans1 = "SELECT i.\"cartodb_id\" As id, " \
"i.\"andy\"::numeric As attr1, " \
"i.\"jay_z\"::numeric As attr2, " \
"(SELECT ARRAY(SELECT j.\"cartodb_id\" " \
"FROM (SELECT * FROM a_list) As j " \
"WHERE " \
"i.\"cartodb_id\" <> j.\"cartodb_id\" AND " \
"ST_Touches(i.\"the_geom\", " \
"j.\"the_geom\") AND " \
"j.\"andy\" IS NOT NULL AND " \
"j.\"jay_z\" IS NOT NULL)" \
") As neighbors " \
"FROM (SELECT * FROM a_list) As i " \
"WHERE i.\"andy\" IS NOT NULL AND " \
"i.\"jay_z\" IS NOT NULL " \
"ORDER BY i.\"cartodb_id\" ASC;"
self.assertEqual(pu.queen(self.params1), ans1)
def test_construct_neighbor_query(self):
"""Test construct_neighbor_query"""
# Compare to raw knn query
self.assertEqual(pu.construct_neighbor_query('knn', self.params1),
pu.knn(self.params1))
def test_get_attributes(self):
"""Test get_attributes"""
## need to add tests
self.assertEqual(True, True)
def test_get_weight(self):
"""Test get_weight"""
self.assertEqual(True, True)
def test_empty_zipped_array(self):
"""Test empty_zipped_array"""
ans2 = [(None, None)]
ans4 = [(None, None, None, None)]
self.assertEqual(pu.empty_zipped_array(2), ans2)
self.assertEqual(pu.empty_zipped_array(4), ans4)

View File

@ -0,0 +1,64 @@
import unittest
import numpy as np
from helper import plpy, fixture_file
import crankshaft.segmentation as segmentation
import json
class SegmentationTest(unittest.TestCase):
"""Testing class for Moran's I functions"""
def setUp(self):
plpy._reset()
def generate_random_data(self,n_samples,random_state, row_type=False):
x1 = random_state.uniform(size=n_samples)
x2 = random_state.uniform(size=n_samples)
x3 = random_state.randint(0, 4, size=n_samples)
y = x1+x2*x2+x3
cartodb_id = range(len(x1))
if row_type:
return [ {'features': vals} for vals in zip(x1,x2,x3)], y
else:
return [dict( zip(['x1','x2','x3','target', 'cartodb_id'],[x1,x2,x3,y,cartodb_id]))]
def test_replace_nan_with_mean(self):
test_array = np.array([1.2, np.nan, 3.2, np.nan, np.nan])
def test_create_and_predict_segment(self):
n_samples = 1000
random_state_train = np.random.RandomState(13)
random_state_test = np.random.RandomState(134)
training_data = self.generate_random_data(n_samples, random_state_train)
test_data, test_y = self.generate_random_data(n_samples, random_state_test, row_type=True)
ids = [{'cartodb_ids': range(len(test_data))}]
rows = [{'x1': 0,'x2':0,'x3':0,'y':0,'cartodb_id':0}]
plpy._define_result('select \* from \(select \* from training\) a limit 1',rows)
plpy._define_result('.*from \(select \* from training\) as a' ,training_data)
plpy._define_result('select array_agg\(cartodb\_id order by cartodb\_id\) as cartodb_ids from \(.*\) a',ids)
plpy._define_result('.*select \* from test.*' ,test_data)
model_parameters = {'n_estimators': 1200,
'max_depth': 3,
'subsample' : 0.5,
'learning_rate': 0.01,
'min_samples_leaf': 1}
result = segmentation.create_and_predict_segment(
'select * from training',
'target',
'select * from test',
model_parameters)
prediction = [r[1] for r in result]
accuracy =np.sqrt(np.mean( np.square( np.array(prediction) - np.array(test_y))))
self.assertEqual(len(result),len(test_data))
self.assertTrue( result[0][2] < 0.01)
self.assertTrue( accuracy < 0.5*np.mean(test_y) )

View File

@ -0,0 +1,349 @@
import unittest
import numpy as np
import unittest
from helper import fixture_file
from crankshaft.space_time_dynamics import Markov
import crankshaft.space_time_dynamics as std
from crankshaft import random_seeds
from crankshaft.analysis_data_provider import AnalysisDataProvider
import json
class FakeDataProvider(AnalysisDataProvider):
def __init__(self, data):
self.mock_result = data
def get_markov(self, w_type, params):
return self.mock_result
class SpaceTimeTests(unittest.TestCase):
"""Testing class for Markov Functions."""
def setUp(self):
self.params = {"id_col": "cartodb_id",
"time_cols": ['dec_2013', 'jan_2014', 'feb_2014'],
"subquery": "SELECT * FROM a_list",
"geom_col": "the_geom",
"num_ngbrs": 321}
self.neighbors_data = json.loads(
open(fixture_file('neighbors_markov.json')).read())
self.markov_data = json.loads(open(fixture_file('markov.json')).read())
self.time_data = np.array([i * np.ones(10, dtype=float)
for i in range(10)]).T
self.transition_matrix = np.array([
[[0.96341463, 0.0304878, 0.00609756, 0., 0.],
[0.06040268, 0.83221477, 0.10738255, 0., 0.],
[0., 0.14, 0.74, 0.12, 0.],
[0., 0.03571429, 0.32142857, 0.57142857, 0.07142857],
[0., 0., 0., 0.16666667, 0.83333333]],
[[0.79831933, 0.16806723, 0.03361345, 0., 0.],
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
[0.00537634, 0.06989247, 0.8655914, 0.05913978, 0.],
[0., 0., 0.06372549, 0.90196078, 0.03431373],
[0., 0., 0., 0.19444444, 0.80555556]],
[[0.84693878, 0.15306122, 0., 0., 0.],
[0.08133971, 0.78947368, 0.1291866, 0., 0.],
[0.00518135, 0.0984456, 0.79274611, 0.0984456, 0.00518135],
[0., 0., 0.09411765, 0.87058824, 0.03529412],
[0., 0., 0., 0.10204082, 0.89795918]],
[[0.8852459, 0.09836066, 0., 0.01639344, 0.],
[0.03875969, 0.81395349, 0.13953488, 0., 0.00775194],
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
[0., 0.02339181, 0.12865497, 0.75438596, 0.09356725],
[0., 0., 0., 0.09661836, 0.90338164]],
[[0.33333333, 0.66666667, 0., 0., 0.],
[0.0483871, 0.77419355, 0.16129032, 0.01612903, 0.],
[0.01149425, 0.16091954, 0.74712644, 0.08045977, 0.],
[0., 0.01036269, 0.06217617, 0.89637306, 0.03108808],
[0., 0., 0., 0.02352941, 0.97647059]]]
)
def test_spatial_markov(self):
"""Test Spatial Markov."""
data = [{'id': d['id'],
'attr1': d['y1995'],
'attr2': d['y1996'],
'attr3': d['y1997'],
'attr4': d['y1998'],
'attr5': d['y1999'],
'attr6': d['y2000'],
'attr7': d['y2001'],
'attr8': d['y2002'],
'attr9': d['y2003'],
'attr10': d['y2004'],
'attr11': d['y2005'],
'attr12': d['y2006'],
'attr13': d['y2007'],
'attr14': d['y2008'],
'attr15': d['y2009'],
'neighbors': d['neighbors']} for d in self.neighbors_data]
# print(str(data[0]))
markov = Markov(FakeDataProvider(data))
random_seeds.set_random_seeds(1234)
result = markov.spatial_trend('subquery',
['y1995', 'y1996', 'y1997', 'y1998',
'y1999', 'y2000', 'y2001', 'y2002',
'y2003', 'y2004', 'y2005', 'y2006',
'y2007', 'y2008', 'y2009'],
5, 'knn', 5, 0, 'the_geom',
'cartodb_id')
self.assertTrue(result is not None)
result = [(row[0], row[1], row[2], row[3], row[4]) for row in result]
print result[0]
expected = self.markov_data
for ([res_trend, res_up, res_down, res_vol, res_id],
[exp_trend, exp_up, exp_down, exp_vol, exp_id]
) in zip(result, expected):
self.assertAlmostEqual(res_trend, exp_trend)
def test_get_time_data(self):
"""Test get_time_data"""
data = [{'attr1': d['y1995'],
'attr2': d['y1996'],
'attr3': d['y1997'],
'attr4': d['y1998'],
'attr5': d['y1999'],
'attr6': d['y2000'],
'attr7': d['y2001'],
'attr8': d['y2002'],
'attr9': d['y2003'],
'attr10': d['y2004'],
'attr11': d['y2005'],
'attr12': d['y2006'],
'attr13': d['y2007'],
'attr14': d['y2008'],
'attr15': d['y2009']} for d in self.neighbors_data]
result = std.get_time_data(data, ['y1995', 'y1996', 'y1997', 'y1998',
'y1999', 'y2000', 'y2001', 'y2002',
'y2003', 'y2004', 'y2005', 'y2006',
'y2007', 'y2008', 'y2009'])
# expected was prepared from PySAL example:
# f = ps.open(ps.examples.get_path("usjoin.csv"))
# pci = np.array([f.by_col[str(y)]
# for y in range(1995, 2010)]).transpose()
# rpci = pci / (pci.mean(axis = 0))
expected = np.array(
[[0.87654416, 0.863147, 0.85637567, 0.84811668, 0.8446154,
0.83271652, 0.83786314, 0.85012593, 0.85509656, 0.86416612,
0.87119375, 0.86302631, 0.86148267, 0.86252252, 0.86746356],
[0.9188951, 0.91757931, 0.92333258, 0.92517289, 0.92552388,
0.90746978, 0.89830489, 0.89431991, 0.88924794, 0.89815176,
0.91832091, 0.91706054, 0.90139505, 0.87897455, 0.86216858],
[0.82591007, 0.82548596, 0.81989793, 0.81503235, 0.81731522,
0.78964559, 0.80584442, 0.8084998, 0.82258551, 0.82668196,
0.82373724, 0.81814804, 0.83675961, 0.83574199, 0.84647177],
[1.09088176, 1.08537689, 1.08456418, 1.08415404, 1.09898841,
1.14506948, 1.12151133, 1.11160697, 1.10888621, 1.11399806,
1.12168029, 1.13164797, 1.12958508, 1.11371818, 1.09936775],
[1.10731446, 1.11373944, 1.13283638, 1.14472559, 1.15910025,
1.16898201, 1.17212488, 1.14752303, 1.11843284, 1.11024964,
1.11943471, 1.11736468, 1.10863242, 1.09642516, 1.07762337],
[1.42269757, 1.42118434, 1.44273502, 1.43577571, 1.44400684,
1.44184737, 1.44782832, 1.41978227, 1.39092208, 1.4059372,
1.40788646, 1.44052766, 1.45241216, 1.43306098, 1.4174431],
[1.13073885, 1.13110513, 1.11074708, 1.13364636, 1.13088149,
1.10888138, 1.11856629, 1.13062931, 1.11944984, 1.12446239,
1.11671008, 1.10880034, 1.08401709, 1.06959206, 1.07875225],
[1.04706124, 1.04516831, 1.04253372, 1.03239987, 1.02072545,
0.99854316, 0.9880258, 0.99669587, 0.99327676, 1.01400905,
1.03176742, 1.040511, 1.01749645, 0.9936394, 0.98279746],
[0.98996986, 1.00143564, 0.99491, 1.00188408, 1.00455845,
0.99127006, 0.97925917, 0.9683482, 0.95335147, 0.93694787,
0.94308213, 0.92232874, 0.91284091, 0.89689833, 0.88928858],
[0.87418391, 0.86416601, 0.84425695, 0.8404494, 0.83903044,
0.8578708, 0.86036185, 0.86107306, 0.8500772, 0.86981998,
0.86837929, 0.87204141, 0.86633032, 0.84946077, 0.83287146],
[1.14196118, 1.14660262, 1.14892712, 1.14909594, 1.14436624,
1.14450183, 1.12349752, 1.12596664, 1.12213996, 1.1119989,
1.10257792, 1.10491258, 1.11059842, 1.10509795, 1.10020097],
[0.97282463, 0.96700147, 0.96252588, 0.9653878, 0.96057687,
0.95831051, 0.94480909, 0.94804195, 0.95430286, 0.94103989,
0.92122519, 0.91010201, 0.89280392, 0.89298243, 0.89165385],
[0.94325468, 0.96436902, 0.96455242, 0.95243009, 0.94117647,
0.9480927, 0.93539182, 0.95388718, 0.94597005, 0.96918424,
0.94781281, 0.93466815, 0.94281559, 0.96520315, 0.96715441],
[0.97478408, 0.98169225, 0.98712809, 0.98474769, 0.98559897,
0.98687073, 0.99237486, 0.98209969, 0.9877653, 0.97399471,
0.96910087, 0.98416665, 0.98423613, 0.99823861, 0.99545704],
[0.85570269, 0.85575915, 0.85986132, 0.85693406, 0.8538012,
0.86191535, 0.84981451, 0.85472102, 0.84564835, 0.83998883,
0.83478547, 0.82803648, 0.8198736, 0.82265395, 0.8399404],
[0.87022047, 0.85996258, 0.85961813, 0.85689572, 0.83947136,
0.82785597, 0.86008789, 0.86776298, 0.86720209, 0.8676334,
0.89179317, 0.94202108, 0.9422231, 0.93902708, 0.94479184],
[0.90134907, 0.90407738, 0.90403991, 0.90201769, 0.90399238,
0.90906632, 0.92693339, 0.93695966, 0.94242697, 0.94338265,
0.91981796, 0.91108804, 0.90543476, 0.91737138, 0.94793657],
[1.1977611, 1.18222564, 1.18439158, 1.18267865, 1.19286723,
1.20172869, 1.21328691, 1.22624778, 1.22397075, 1.23857042,
1.24419893, 1.23929384, 1.23418676, 1.23626739, 1.26754398],
[1.24919678, 1.25754773, 1.26991161, 1.28020651, 1.30625667,
1.34790023, 1.34399863, 1.32575181, 1.30795492, 1.30544841,
1.30303302, 1.32107766, 1.32936244, 1.33001241, 1.33288462],
[1.06768004, 1.03799276, 1.03637303, 1.02768449, 1.03296093,
1.05059016, 1.03405057, 1.02747623, 1.03162734, 0.9961416,
0.97356208, 0.94241549, 0.92754547, 0.92549227, 0.92138102],
[1.09475614, 1.11526796, 1.11654299, 1.13103948, 1.13143264,
1.13889622, 1.12442212, 1.13367018, 1.13982256, 1.14029944,
1.11979401, 1.10905389, 1.10577769, 1.11166825, 1.09985155],
[0.76530058, 0.76612841, 0.76542451, 0.76722683, 0.76014284,
0.74480073, 0.76098396, 0.76156903, 0.76651952, 0.76533288,
0.78205934, 0.76842416, 0.77487118, 0.77768683, 0.78801192],
[0.98391336, 0.98075816, 0.98295341, 0.97386015, 0.96913803,
0.97370819, 0.96419154, 0.97209861, 0.97441313, 0.96356162,
0.94745352, 0.93965462, 0.93069645, 0.94020973, 0.94358232],
[0.83561828, 0.82298088, 0.81738502, 0.81748588, 0.80904801,
0.80071489, 0.83358256, 0.83451613, 0.85175032, 0.85954307,
0.86790024, 0.87170334, 0.87863799, 0.87497981, 0.87888675],
[0.98845573, 1.02092428, 0.99665283, 0.99141823, 0.99386619,
0.98733195, 0.99644997, 0.99669587, 1.02559097, 1.01116651,
0.99988024, 0.97906749, 0.99323123, 1.00204939, 0.99602148],
[1.14930913, 1.15241949, 1.14300962, 1.14265542, 1.13984683,
1.08312397, 1.05192626, 1.04230892, 1.05577278, 1.08569751,
1.12443486, 1.08891079, 1.08603695, 1.05997314, 1.02160943],
[1.11368269, 1.1057147, 1.11893431, 1.13778669, 1.1432272,
1.18257029, 1.16226243, 1.16009196, 1.14467789, 1.14820235,
1.12386598, 1.12680236, 1.12357937, 1.1159258, 1.12570828],
[1.30379431, 1.30752186, 1.31206366, 1.31532267, 1.30625667,
1.31210239, 1.29989156, 1.29203193, 1.27183516, 1.26830786,
1.2617743, 1.28656675, 1.29734097, 1.29390205, 1.29345446],
[0.83953719, 0.82701448, 0.82006005, 0.81188876, 0.80294864,
0.78772975, 0.82848011, 0.8259679, 0.82435705, 0.83108634,
0.84373784, 0.83891093, 0.84349247, 0.85637272, 0.86539395],
[1.23450087, 1.2426022, 1.23537935, 1.23581293, 1.24522626,
1.2256767, 1.21126648, 1.19377804, 1.18355337, 1.19674434,
1.21536573, 1.23653297, 1.27962009, 1.27968392, 1.25907738],
[0.9769662, 0.97400719, 0.98035944, 0.97581531, 0.95543282,
0.96480308, 0.94686376, 0.93679073, 0.92540049, 0.92988835,
0.93442917, 0.92100464, 0.91475304, 0.90249622, 0.9021363],
[0.84986886, 0.8986851, 0.84295997, 0.87280534, 0.85659368,
0.88937573, 0.894401, 0.90448993, 0.95495898, 0.92698333,
0.94745352, 0.92562488, 0.96635366, 1.02520312, 1.0394296],
[1.01922808, 1.00258203, 1.00974428, 1.00303417, 0.99765073,
1.00759019, 0.99192968, 0.99747298, 0.99550759, 0.97583768,
0.9610168, 0.94779638, 0.93759089, 0.93353431, 0.94121705],
[0.86367411, 0.85558932, 0.85544346, 0.85103025, 0.84336613,
0.83434854, 0.85813595, 0.84667961, 0.84374558, 0.85951183,
0.87194227, 0.89455097, 0.88283929, 0.90349491, 0.90600675],
[1.00947534, 1.00411055, 1.00698819, 0.99513687, 0.99291086,
1.00581626, 0.98850522, 0.99291168, 0.98983209, 0.97511924,
0.96134615, 0.96382634, 0.95011401, 0.9434686, 0.94637765],
[1.05712571, 1.05459419, 1.05753012, 1.04880786, 1.05103857,
1.04800023, 1.03024941, 1.04200483, 1.0402554, 1.03296979,
1.02191682, 1.02476275, 1.02347523, 1.02517684, 1.04359571],
[1.07084189, 1.06669497, 1.07937623, 1.07387988, 1.0794043,
1.0531801, 1.07452771, 1.09383478, 1.1052447, 1.10322136,
1.09167939, 1.08772756, 1.08859544, 1.09177338, 1.1096083],
[0.86719222, 0.86628896, 0.86675156, 0.86425632, 0.86511809,
0.86287327, 0.85169796, 0.85411285, 0.84886336, 0.84517414,
0.84843858, 0.84488343, 0.83374329, 0.82812044, 0.82878599],
[0.88389211, 0.92288667, 0.90282398, 0.91229186, 0.92023286,
0.92652175, 0.94278865, 0.93682452, 0.98655146, 0.992237,
0.9798497, 0.93869677, 0.96947771, 1.00362626, 0.98102351],
[0.97082064, 0.95320233, 0.94534081, 0.94215593, 0.93967,
0.93092109, 0.92662519, 0.93412152, 0.93501274, 0.92879506,
0.92110542, 0.91035556, 0.90430364, 0.89994694, 0.90073864],
[0.95861858, 0.95774543, 0.98254811, 0.98919472, 0.98684824,
0.98882205, 0.97662234, 0.95601578, 0.94905385, 0.94934888,
0.97152609, 0.97163004, 0.9700702, 0.97158948, 0.95884908],
[0.83980439, 0.84726737, 0.85747, 0.85467221, 0.8556751,
0.84818516, 0.85265681, 0.84502402, 0.82645665, 0.81743586,
0.83550406, 0.83338919, 0.83511679, 0.82136617, 0.80921874],
[0.95118156, 0.9466212, 0.94688098, 0.9508583, 0.9512441,
0.95440787, 0.96364363, 0.96804412, 0.97136214, 0.97583768,
0.95571724, 0.96895368, 0.97001634, 0.97082733, 0.98782366],
[1.08910044, 1.08248968, 1.08492895, 1.08656923, 1.09454249,
1.10558188, 1.1214086, 1.12292577, 1.13021031, 1.13342735,
1.14686068, 1.14502975, 1.14474747, 1.14084037, 1.16142926],
[1.06336033, 1.07365823, 1.08691496, 1.09764846, 1.11669863,
1.11856702, 1.09764283, 1.08815849, 1.08044313, 1.09278827,
1.07003204, 1.08398066, 1.09831768, 1.09298232, 1.09176125],
[0.79772065, 0.78829196, 0.78581151, 0.77615922, 0.77035744,
0.77751194, 0.79902974, 0.81437881, 0.80788828, 0.79603865,
0.78966436, 0.79949807, 0.80172182, 0.82168155, 0.85587911],
[1.0052447, 1.00007696, 1.00475899, 1.00613942, 1.00639561,
1.00162979, 0.99860739, 1.00814981, 1.00574316, 0.99030032,
0.97682565, 0.97292596, 0.96519561, 0.96173403, 0.95890284],
[0.95808419, 0.9382568, 0.9654441, 0.95561201, 0.96987289,
0.96608031, 0.99727185, 1.00781194, 1.03484236, 1.05333619,
1.0983263, 1.1704974, 1.17025154, 1.18730553, 1.14242645]])
self.assertTrue(np.allclose(result, expected))
self.assertTrue(type(result) == type(expected))
self.assertTrue(result.shape == expected.shape)
def test_rebin_data(self):
"""Test rebin_data"""
# sample in double the time (even case since 10 % 2 = 0):
# (0+1)/2, (2+3)/2, (4+5)/2, (6+7)/2, (8+9)/2
# = 0.5, 2.5, 4.5, 6.5, 8.5
ans_even = np.array([(i + 0.5) * np.ones(10, dtype=float)
for i in range(0, 10, 2)]).T
self.assertTrue(
np.array_equal(std.rebin_data(self.time_data, 2), ans_even))
# sample in triple the time (uneven since 10 % 3 = 1):
# (0+1+2)/3, (3+4+5)/3, (6+7+8)/3, (9)/1
# = 1, 4, 7, 9
ans_odd = np.array([i * np.ones(10, dtype=float)
for i in (1, 4, 7, 9)]).T
self.assertTrue(
np.array_equal(std.rebin_data(self.time_data, 3), ans_odd))
def test_get_prob_dist(self):
"""Test get_prob_dist"""
lag_indices = np.array([1, 2, 3, 4])
unit_indices = np.array([1, 3, 2, 4])
answer = np.array([
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
[0., 0., 0.09411765, 0.87058824, 0.03529412],
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
[0., 0., 0., 0.02352941, 0.97647059]
])
result = std.get_prob_dist(self.transition_matrix,
lag_indices, unit_indices)
self.assertTrue(np.array_equal(result, answer))
def test_get_prob_stats(self):
"""Test get_prob_stats"""
probs = np.array([
[0.0754717, 0.88207547, 0.04245283, 0., 0.],
[0., 0., 0.09411765, 0.87058824, 0.03529412],
[0.0049505, 0.09405941, 0.77722772, 0.11881188, 0.0049505],
[0., 0., 0., 0.02352941, 0.97647059]
])
unit_indices = np.array([1, 3, 2, 4])
answer_up = np.array([0.04245283, 0.03529412, 0.12376238, 0.])
answer_down = np.array([0.0754717, 0.09411765, 0.0990099, 0.02352941])
answer_trend = np.array([-0.03301887 / 0.88207547,
-0.05882353 / 0.87058824,
0.02475248 / 0.77722772,
-0.02352941 / 0.97647059])
answer_volatility = np.array([0.34221495, 0.33705421,
0.29226542, 0.38834223])
result = std.get_prob_stats(probs, unit_indices)
result_up = result[0]
result_down = result[1]
result_trend = result[2]
result_volatility = result[3]
self.assertTrue(np.allclose(result_up, answer_up))
self.assertTrue(np.allclose(result_down, answer_down))
self.assertTrue(np.allclose(result_trend, answer_trend))
self.assertTrue(np.allclose(result_volatility, answer_volatility))

View File

@ -1,5 +1,5 @@
comment = 'CartoDB Spatial Analysis extension'
default_version = '0.5.1'
default_version = '0.5.2'
requires = 'plpythonu, postgis'
superuser = true
schema = cdb_crankshaft