mirror of
https://github.com/CartoDB/crankshaft.git
synced 2024-11-01 10:20:48 +08:00
added CDB stuff
This commit is contained in:
parent
edeac18389
commit
bae3362b59
@ -61,7 +61,7 @@ BEGIN
|
||||
),
|
||||
grid as(
|
||||
SELECT
|
||||
ST_Transform(CDB_RectangleGrid(geom, cell, cell), 4326) as geom
|
||||
ST_Transform(cdb_crankshaft.CDB_RectangleGrid(geom, cell, cell), 4326) as geom
|
||||
FROM envelope3857
|
||||
),
|
||||
interp as(
|
||||
@ -76,13 +76,13 @@ BEGIN
|
||||
classes as(
|
||||
SELECT CASE
|
||||
WHEN classmethod = 0 THEN
|
||||
CDB_EqualIntervalBins(array_agg(val), steps)
|
||||
cdb_crankshaft.CDB_EqualIntervalBins(array_agg(val), steps)
|
||||
WHEN classmethod = 1 THEN
|
||||
CDB_HeadsTailsBins(array_agg(val), steps)
|
||||
cdb_crankshaft.CDB_HeadsTailsBins(array_agg(val), steps)
|
||||
WHEN classmethod = 2 THEN
|
||||
CDB_JenksBins(array_agg(val), steps)
|
||||
cdb_crankshaft.CDB_JenksBins(array_agg(val), steps)
|
||||
ELSE
|
||||
CDB_QuantileBins(array_agg(val), steps)
|
||||
cdb_crankshaft.CDB_QuantileBins(array_agg(val), steps)
|
||||
END as b
|
||||
FROM interp
|
||||
where val is not null
|
||||
@ -127,7 +127,7 @@ $$ language plpgsql;
|
||||
-- =====================================================================
|
||||
-- Interp in grid, so we can use barycentric with a precalculated tin (NNI)
|
||||
-- =====================================================================
|
||||
CREATE OR REPLACE FUNCTION cdb_crankshaft._interp_in_tin(
|
||||
CREATE OR REPLACE FUNCTION _interp_in_tin(
|
||||
IN geomin geometry[],
|
||||
IN colin numeric[],
|
||||
IN tin geometry[],
|
||||
@ -189,3 +189,450 @@ $$
|
||||
language plpgsql;
|
||||
|
||||
|
||||
--
|
||||
-- Fill given extent with a rectangular coverage
|
||||
--
|
||||
-- @param ext Extent to fill. Only rectangles with center point falling
|
||||
-- inside the extent (or at the lower or leftmost edge) will
|
||||
-- be emitted. The returned hexagons will have the same SRID
|
||||
-- as this extent.
|
||||
--
|
||||
-- @param width With of each rectangle
|
||||
--
|
||||
-- @param height Height of each rectangle
|
||||
--
|
||||
-- @param origin Optional origin to allow for exact tiling.
|
||||
-- If omitted the origin will be 0,0.
|
||||
-- The parameter is checked for having the same SRID
|
||||
-- as the extent.
|
||||
--
|
||||
--
|
||||
CREATE OR REPLACE FUNCTION CDB_RectangleGrid(ext GEOMETRY, width FLOAT8, height FLOAT8, origin GEOMETRY DEFAULT NULL)
|
||||
RETURNS SETOF GEOMETRY
|
||||
AS $$
|
||||
DECLARE
|
||||
h GEOMETRY; -- rectangle cell
|
||||
hstep FLOAT8; -- horizontal step
|
||||
vstep FLOAT8; -- vertical step
|
||||
hw FLOAT8; -- half width
|
||||
hh FLOAT8; -- half height
|
||||
vstart FLOAT8;
|
||||
hstart FLOAT8;
|
||||
hend FLOAT8;
|
||||
vend FLOAT8;
|
||||
xoff FLOAT8;
|
||||
yoff FLOAT8;
|
||||
xgrd FLOAT8;
|
||||
ygrd FLOAT8;
|
||||
x FLOAT8;
|
||||
y FLOAT8;
|
||||
srid INTEGER;
|
||||
BEGIN
|
||||
|
||||
srid := ST_SRID(ext);
|
||||
|
||||
xoff := 0;
|
||||
yoff := 0;
|
||||
|
||||
IF origin IS NOT NULL THEN
|
||||
IF ST_SRID(origin) != srid THEN
|
||||
RAISE EXCEPTION 'SRID mismatch between extent (%) and origin (%)', srid, ST_SRID(origin);
|
||||
END IF;
|
||||
xoff := ST_X(origin);
|
||||
yoff := ST_Y(origin);
|
||||
END IF;
|
||||
|
||||
--RAISE DEBUG 'X offset: %', xoff;
|
||||
--RAISE DEBUG 'Y offset: %', yoff;
|
||||
|
||||
hw := width/2.0;
|
||||
hh := height/2.0;
|
||||
|
||||
xgrd := hw;
|
||||
ygrd := hh;
|
||||
--RAISE DEBUG 'X grid size: %', xgrd;
|
||||
--RAISE DEBUG 'Y grid size: %', ygrd;
|
||||
|
||||
hstep := width;
|
||||
vstep := height;
|
||||
|
||||
-- Tweak horizontal start on hstep grid from origin
|
||||
hstart := xoff + ceil((ST_XMin(ext)-xoff)/hstep)*hstep;
|
||||
--RAISE DEBUG 'hstart: %', hstart;
|
||||
|
||||
-- Tweak vertical start on vstep grid from origin
|
||||
vstart := yoff + ceil((ST_Ymin(ext)-yoff)/vstep)*vstep;
|
||||
--RAISE DEBUG 'vstart: %', vstart;
|
||||
|
||||
hend := ST_XMax(ext);
|
||||
vend := ST_YMax(ext);
|
||||
|
||||
--RAISE DEBUG 'hend: %', hend;
|
||||
--RAISE DEBUG 'vend: %', vend;
|
||||
|
||||
x := hstart;
|
||||
WHILE x < hend LOOP -- over X
|
||||
y := vstart;
|
||||
h := ST_MakeEnvelope(x-hw, y-hh, x+hw, y+hh, srid);
|
||||
WHILE y < vend LOOP -- over Y
|
||||
RETURN NEXT h;
|
||||
h := ST_Translate(h, 0, vstep);
|
||||
y := yoff + round(((y + vstep)-yoff)/ygrd)*ygrd; -- round to grid
|
||||
END LOOP;
|
||||
x := xoff + round(((x + hstep)-xoff)/xgrd)*xgrd; -- round to grid
|
||||
END LOOP;
|
||||
|
||||
RETURN;
|
||||
END
|
||||
$$ LANGUAGE 'plpgsql' IMMUTABLE;
|
||||
|
||||
--
|
||||
-- Calculate the equal interval bins for a given column
|
||||
--
|
||||
-- @param in_array A numeric array of numbers to determine the best
|
||||
-- to determine the bin boundary
|
||||
--
|
||||
-- @param breaks The number of bins you want to find.
|
||||
--
|
||||
--
|
||||
-- Returns: upper edges of bins
|
||||
--
|
||||
--
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_EqualIntervalBins ( in_array NUMERIC[], breaks INT ) RETURNS NUMERIC[] as $$
|
||||
DECLARE
|
||||
diff numeric;
|
||||
min_val numeric;
|
||||
max_val numeric;
|
||||
tmp_val numeric;
|
||||
i INT := 1;
|
||||
reply numeric[];
|
||||
BEGIN
|
||||
SELECT min(e), max(e) INTO min_val, max_val FROM ( SELECT unnest(in_array) e ) x WHERE e IS NOT NULL;
|
||||
diff = (max_val - min_val) / breaks::numeric;
|
||||
LOOP
|
||||
IF i < breaks THEN
|
||||
tmp_val = min_val + i::numeric * diff;
|
||||
reply = array_append(reply, tmp_val);
|
||||
i := i+1;
|
||||
ELSE
|
||||
reply = array_append(reply, max_val);
|
||||
EXIT;
|
||||
END IF;
|
||||
END LOOP;
|
||||
RETURN reply;
|
||||
END;
|
||||
$$ language plpgsql IMMUTABLE;
|
||||
|
||||
--
|
||||
-- Determine the Heads/Tails classifications from a numeric array
|
||||
--
|
||||
-- @param in_array A numeric array of numbers to determine the best
|
||||
-- bins based on the Heads/Tails method.
|
||||
--
|
||||
-- @param breaks The number of bins you want to find.
|
||||
--
|
||||
--
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_HeadsTailsBins ( in_array NUMERIC[], breaks INT) RETURNS NUMERIC[] as $$
|
||||
DECLARE
|
||||
element_count INT4;
|
||||
arr_mean numeric;
|
||||
i INT := 2;
|
||||
reply numeric[];
|
||||
BEGIN
|
||||
-- get the total size of our row
|
||||
element_count := array_upper(in_array, 1) - array_lower(in_array, 1);
|
||||
-- ensure the ordering of in_array
|
||||
SELECT array_agg(e) INTO in_array FROM (SELECT unnest(in_array) e ORDER BY e) x;
|
||||
-- stop if no rows
|
||||
IF element_count IS NULL THEN
|
||||
RETURN NULL;
|
||||
END IF;
|
||||
-- stop if our breaks are more than our input array size
|
||||
IF element_count < breaks THEN
|
||||
RETURN in_array;
|
||||
END IF;
|
||||
|
||||
-- get our mean value
|
||||
SELECT avg(v) INTO arr_mean FROM ( SELECT unnest(in_array) as v ) x;
|
||||
|
||||
reply = Array[arr_mean];
|
||||
-- slice our bread
|
||||
LOOP
|
||||
IF i > breaks THEN EXIT; END IF;
|
||||
SELECT avg(e) INTO arr_mean FROM ( SELECT unnest(in_array) e) x WHERE e > reply[i-1];
|
||||
IF arr_mean IS NOT NULL THEN
|
||||
reply = array_append(reply, arr_mean);
|
||||
END IF;
|
||||
i := i+1;
|
||||
END LOOP;
|
||||
RETURN reply;
|
||||
END;
|
||||
$$ language plpgsql IMMUTABLE;
|
||||
|
||||
--
|
||||
-- Determine the Jenks classifications from a numeric array
|
||||
--
|
||||
-- @param in_array A numeric array of numbers to determine the best
|
||||
-- bins based on the Jenks method.
|
||||
--
|
||||
-- @param breaks The number of bins you want to find.
|
||||
--
|
||||
-- @param iterations The number of different starting positions to test.
|
||||
--
|
||||
-- @param invert Optional wheter to return the top of each bin (default)
|
||||
-- or the bottom. BOOLEAN, default=FALSE.
|
||||
--
|
||||
--
|
||||
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_JenksBins ( in_array NUMERIC[], breaks INT, iterations INT DEFAULT 5, invert BOOLEAN DEFAULT FALSE) RETURNS NUMERIC[] as $$
|
||||
DECLARE
|
||||
element_count INT4;
|
||||
arr_mean NUMERIC;
|
||||
bot INT;
|
||||
top INT;
|
||||
tops INT[];
|
||||
classes INT[][];
|
||||
i INT := 1; j INT := 1;
|
||||
curr_result NUMERIC[];
|
||||
best_result NUMERIC[];
|
||||
seedtarget TEXT;
|
||||
quant NUMERIC[];
|
||||
shuffles INT;
|
||||
BEGIN
|
||||
-- get the total size of our row
|
||||
element_count := array_length(in_array, 1); --array_upper(in_array, 1) - array_lower(in_array, 1);
|
||||
-- ensure the ordering of in_array
|
||||
SELECT array_agg(e) INTO in_array FROM (SELECT unnest(in_array) e ORDER BY e) x;
|
||||
-- stop if no rows
|
||||
IF element_count IS NULL THEN
|
||||
RETURN NULL;
|
||||
END IF;
|
||||
-- stop if our breaks are more than our input array size
|
||||
IF element_count < breaks THEN
|
||||
RETURN in_array;
|
||||
END IF;
|
||||
|
||||
shuffles := LEAST(GREATEST(floor(2500000.0/(element_count::float*iterations::float)), 1), 750)::int;
|
||||
-- get our mean value
|
||||
SELECT avg(v) INTO arr_mean FROM ( SELECT unnest(in_array) as v ) x;
|
||||
|
||||
-- assume best is actually Quantile
|
||||
SELECT cdb_crankshaft.CDB_QuantileBins(in_array, breaks) INTO quant;
|
||||
|
||||
-- if data is very very large, just return quant and be done
|
||||
IF element_count > 5000000 THEN
|
||||
RETURN quant;
|
||||
END IF;
|
||||
|
||||
-- change quant into bottom, top markers
|
||||
LOOP
|
||||
IF i = 1 THEN
|
||||
bot = 1;
|
||||
ELSE
|
||||
-- use last top to find this bot
|
||||
bot = top+1;
|
||||
END IF;
|
||||
IF i = breaks THEN
|
||||
top = element_count;
|
||||
ELSE
|
||||
SELECT count(*) INTO top FROM ( SELECT unnest(in_array) as v) x WHERE v <= quant[i];
|
||||
END IF;
|
||||
IF i = 1 THEN
|
||||
classes = ARRAY[ARRAY[bot,top]];
|
||||
ELSE
|
||||
classes = ARRAY_CAT(classes,ARRAY[bot,top]);
|
||||
END IF;
|
||||
IF i > breaks THEN EXIT; END IF;
|
||||
i = i+1;
|
||||
END LOOP;
|
||||
|
||||
best_result = cdb_crankshaft.CDB_JenksBinsIteration( in_array, breaks, classes, invert, element_count, arr_mean, shuffles);
|
||||
|
||||
--set the seed so we can ensure the same results
|
||||
SELECT setseed(0.4567) INTO seedtarget;
|
||||
--loop through random starting positions
|
||||
LOOP
|
||||
IF j > iterations-1 THEN EXIT; END IF;
|
||||
i = 1;
|
||||
tops = ARRAY[element_count];
|
||||
LOOP
|
||||
IF i = breaks THEN EXIT; END IF;
|
||||
SELECT array_agg(distinct e) INTO tops FROM (SELECT unnest(array_cat(tops, ARRAY[floor(random()*element_count::float)::int])) as e ORDER BY e) x WHERE e != 1;
|
||||
i = array_length(tops, 1);
|
||||
END LOOP;
|
||||
i = 1;
|
||||
LOOP
|
||||
IF i > breaks THEN EXIT; END IF;
|
||||
IF i = 1 THEN
|
||||
bot = 1;
|
||||
ELSE
|
||||
bot = top+1;
|
||||
END IF;
|
||||
top = tops[i];
|
||||
IF i = 1 THEN
|
||||
classes = ARRAY[ARRAY[bot,top]];
|
||||
ELSE
|
||||
classes = ARRAY_CAT(classes,ARRAY[bot,top]);
|
||||
END IF;
|
||||
i := i+1;
|
||||
END LOOP;
|
||||
curr_result = cdb_crankshaft.CDB_JenksBinsIteration( in_array, breaks, classes, invert, element_count, arr_mean, shuffles);
|
||||
|
||||
IF curr_result[1] > best_result[1] THEN
|
||||
best_result = curr_result;
|
||||
j = j-1; -- if we found a better result, add one more search
|
||||
END IF;
|
||||
j = j+1;
|
||||
END LOOP;
|
||||
|
||||
RETURN (best_result)[2:array_upper(best_result, 1)];
|
||||
END;
|
||||
$$ language plpgsql IMMUTABLE;
|
||||
|
||||
|
||||
|
||||
--
|
||||
-- Perform a single iteration of the Jenks classification
|
||||
--
|
||||
|
||||
CREATE OR REPLACE FUNCTION CDB_JenksBinsIteration ( in_array NUMERIC[], breaks INT, classes INT[][], invert BOOLEAN, element_count INT4, arr_mean NUMERIC, max_search INT DEFAULT 50) RETURNS NUMERIC[] as $$
|
||||
DECLARE
|
||||
tmp_val numeric;
|
||||
new_classes int[][];
|
||||
tmp_class int[];
|
||||
i INT := 1;
|
||||
j INT := 1;
|
||||
side INT := 2;
|
||||
sdam numeric;
|
||||
gvf numeric := 0.0;
|
||||
new_gvf numeric;
|
||||
arr_gvf numeric[];
|
||||
class_avg numeric;
|
||||
class_max_i INT;
|
||||
class_min_i INT;
|
||||
class_max numeric;
|
||||
class_min numeric;
|
||||
reply numeric[];
|
||||
BEGIN
|
||||
|
||||
-- Calculate the sum of squared deviations from the array mean (SDAM).
|
||||
SELECT sum((arr_mean - e)^2) INTO sdam FROM ( SELECT unnest(in_array) as e ) x;
|
||||
--Identify the breaks for the lowest GVF
|
||||
LOOP
|
||||
i = 1;
|
||||
LOOP
|
||||
-- get our mean
|
||||
SELECT avg(e) INTO class_avg FROM ( SELECT unnest(in_array[classes[i][1]:classes[i][2]]) as e) x;
|
||||
-- find the deviation
|
||||
SELECT sum((class_avg-e)^2) INTO tmp_val FROM ( SELECT unnest(in_array[classes[i][1]:classes[i][2]]) as e ) x;
|
||||
IF i = 1 THEN
|
||||
arr_gvf = ARRAY[tmp_val];
|
||||
-- init our min/max map for later
|
||||
class_max = arr_gvf[i];
|
||||
class_min = arr_gvf[i];
|
||||
class_min_i = 1;
|
||||
class_max_i = 1;
|
||||
ELSE
|
||||
arr_gvf = array_append(arr_gvf, tmp_val);
|
||||
END IF;
|
||||
i := i+1;
|
||||
IF i > breaks THEN EXIT; END IF;
|
||||
END LOOP;
|
||||
-- calculate our new GVF
|
||||
SELECT sdam-sum(e) INTO new_gvf FROM ( SELECT unnest(arr_gvf) as e ) x;
|
||||
-- if no improvement was made, exit
|
||||
IF new_gvf < gvf THEN EXIT; END IF;
|
||||
gvf = new_gvf;
|
||||
IF j > max_search THEN EXIT; END IF;
|
||||
j = j+1;
|
||||
i = 1;
|
||||
LOOP
|
||||
--establish directionality (uppward through classes or downward)
|
||||
IF arr_gvf[i] < class_min THEN
|
||||
class_min = arr_gvf[i];
|
||||
class_min_i = i;
|
||||
END IF;
|
||||
IF arr_gvf[i] > class_max THEN
|
||||
class_max = arr_gvf[i];
|
||||
class_max_i = i;
|
||||
END IF;
|
||||
i := i+1;
|
||||
IF i > breaks THEN EXIT; END IF;
|
||||
END LOOP;
|
||||
IF class_max_i > class_min_i THEN
|
||||
class_min_i = class_max_i - 1;
|
||||
ELSE
|
||||
class_min_i = class_max_i + 1;
|
||||
END IF;
|
||||
--Move from higher class to a lower gid order
|
||||
IF class_max_i > class_min_i THEN
|
||||
classes[class_max_i][1] = classes[class_max_i][1] + 1;
|
||||
classes[class_min_i][2] = classes[class_min_i][2] + 1;
|
||||
ELSE -- Move from lower class UP into a higher class by gid
|
||||
classes[class_max_i][2] = classes[class_max_i][2] - 1;
|
||||
classes[class_min_i][1] = classes[class_min_i][1] - 1;
|
||||
END IF;
|
||||
END LOOP;
|
||||
|
||||
i = 1;
|
||||
LOOP
|
||||
IF invert = TRUE THEN
|
||||
side = 1; --default returns bottom side of breaks, invert returns top side
|
||||
END IF;
|
||||
reply = array_append(reply, in_array[classes[i][side]]);
|
||||
i = i+1;
|
||||
IF i > breaks THEN EXIT; END IF;
|
||||
END LOOP;
|
||||
|
||||
RETURN array_prepend(gvf, reply);
|
||||
|
||||
END;
|
||||
$$ language plpgsql IMMUTABLE;
|
||||
|
||||
|
||||
--
|
||||
-- Determine the Quantile classifications from a numeric array
|
||||
--
|
||||
-- @param in_array A numeric array of numbers to determine the best
|
||||
-- bins based on the Quantile method.
|
||||
--
|
||||
-- @param breaks The number of bins you want to find.
|
||||
--
|
||||
--
|
||||
CREATE OR REPLACE FUNCTION CDB_QuantileBins ( in_array NUMERIC[], breaks INT) RETURNS NUMERIC[] as $$
|
||||
DECLARE
|
||||
element_count INT4;
|
||||
break_size numeric;
|
||||
tmp_val numeric;
|
||||
i INT := 1;
|
||||
reply numeric[];
|
||||
BEGIN
|
||||
-- sort our values
|
||||
SELECT array_agg(e) INTO in_array FROM (SELECT unnest(in_array) e ORDER BY e ASC) x;
|
||||
-- get the total size of our data
|
||||
element_count := array_length(in_array, 1);
|
||||
break_size := element_count::numeric / breaks;
|
||||
-- slice our bread
|
||||
LOOP
|
||||
IF i < breaks THEN
|
||||
IF break_size * i % 1 > 0 THEN
|
||||
SELECT e INTO tmp_val FROM ( SELECT unnest(in_array) e LIMIT 1 OFFSET ceil(break_size * i) - 1) x;
|
||||
ELSE
|
||||
SELECT avg(e) INTO tmp_val FROM ( SELECT unnest(in_array) e LIMIT 2 OFFSET ceil(break_size * i) - 1 ) x;
|
||||
END IF;
|
||||
ELSIF i = breaks THEN
|
||||
-- select the last value
|
||||
SELECT max(e) INTO tmp_val FROM ( SELECT unnest(in_array) e ) x;
|
||||
ELSE
|
||||
EXIT;
|
||||
END IF;
|
||||
|
||||
reply = array_append(reply, tmp_val);
|
||||
i := i+1;
|
||||
END LOOP;
|
||||
RETURN reply;
|
||||
END;
|
||||
$$ language plpgsql IMMUTABLE;
|
||||
|
Loading…
Reference in New Issue
Block a user