updating to support passing model paramters and returning accuracy from the function along with prediction

This commit is contained in:
Stuart Lynn 2016-06-22 15:56:47 +00:00
parent 1d13b98d68
commit 4df8257377
2 changed files with 19 additions and 11 deletions

View File

@ -2,11 +2,18 @@ CREATE OR REPLACE FUNCTION
CDB_CreateAndPredictSegment (
query TEXT,
variable_name TEXT,
target_table TEXT
target_table TEXT,
n_estimators INTEGER DEFAULT 1200,
max_depth INTEGER DEFAULT 3,
subsample DOUBLE PRECISION DEFAULT 0.5,
learning_rate DOUBLE PRECISION DEFAULT 0.01,
min_samples_leaf INTEGER DEFAULT 1
)
RETURNS TABLE (cartodb_id text, prediction Numeric )
RETURNS TABLE (cartodb_id text, prediction Numeric,accuracy Numeric )
AS $$
from crankshaft.segmentation import create_and_predict_segment
# TODO: use named parameters or a dictionary
return create_and_predict_segment(query,variable_name,target_table)
model_params = {'n_estimators': n_estimators, 'max_depth':max_depth, 'subsample' : subsample, 'learning_rate': learning_rate, 'min_samples_leaf' : min_samples_leaf}
return create_and_predict_segment(query,variable_name,target_table, model_params)
$$ LANGUAGE plpythonu;

View File

@ -5,7 +5,7 @@ Segmentation creation and prediction
import sklearn
import numpy as np
import plpy
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import GradientBoostingRegressor
from sklearn import metrics
from sklearn.cross_validation import train_test_split
@ -26,9 +26,10 @@ def get_data(variable, feature_columns, query):
))
target = np.array(data[0]['target'])
features = np.column_stack([np.array(data[0][col], dtype=float) for col in feature_columns])
return replace_nan_with_mean(target), replace_nan_with_mean(features)
def create_and_predict_segment(query,variable,target_query):
def create_and_predict_segment(query,variable,target_query,model_params):
"""
generate a segment with machine learning
Stuart Lynn
@ -38,14 +39,14 @@ def create_and_predict_segment(query,variable,target_query):
feature_columns = set(columns) - set([variable, 'the_geom', 'the_geom_webmercator'])
target,features = get_data(variable, feature_columns, query)
model, accuracy = train_model(target,features, test_split=0.2)
model, accuracy = train_model(target,features, model_params, 0.2)
cartodb_ids, result = predict_segment(model,feature_columns,target_query)
return zip(cartodb_ids, result)
return zip(cartodb_ids, result, np.full(result.shape, accuracy ))
def train_model(target,features,test_split):
def train_model(target,features,model_params,test_split):
features_train, features_test, target_train, target_test = train_test_split(features, target, test_size=test_split)
model = GradientBoostingClassifier(n_estimators = 200, max_features=features.shape[1])
model = GradientBoostingRegressor(**model_params)
plpy.notice('training the model: fitting to data')
model.fit(features_train, target_train)
plpy.notice('model trained')
@ -54,7 +55,7 @@ def train_model(target,features,test_split):
def calculate_model_accuracy(model,features,target):
prediction = model.predict(features)
return metrics.mean_squared_error(prediction,target)/np.std(target)
return metrics.mean_squared_error(prediction,target)
def predict_segment(model,features,target_query):
"""