k-means clustering is a popular technique for finding clusters in data by minimizing the intra-cluster 'distance' and maximizing the inter-cluster 'distance'. The distance is defined in the parameter space of the variables entered.
This function attempts to find `no_clusters` clusters within the input data based on the geographic distribution. It will return a table with ids and the cluster classification of each point input assuming `the_geom` is not null-valued. If `the_geom` is null-valued, the point will not be considered in the analysis.
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column name `the_geom` and id column name `cartodb_id` unless otherwise specified in the input arguments |
| subquery | TEXT | SQL query that exposes the data to be analyzed (e.g., `SELECT * FROM interesting_table`). This query must have the geometry column and the columns specified as the weight and category columns|
| weight\_column | TEXT | The name of the column to use as a weight |
| category\_column | TEXT | The name of the column to use as a category |
K-means clustering classifies the rows of your dataset into `no_clusters` by finding the centers (means) of the variables in `colnames` and classifying each row by it's proximity to the nearest center. This method partitions space into distinct Voronoi cells.
As a standard machine learning method, k-means clustering is an unsupervised learning technique that finds the natural clustering of values. For instance, it is useful for finding subgroups in census data leading to demographic segmentation.
### Arguments
| Name | Type | Description |
|------|------|-------------|
| query | TEXT | SQL query to expose the data to be used in the analysis (e.g., `SELECT * FROM iris_data`). It should contain at least the columns specified in `colnames` and the `id_colname`. |
| colnames | TEXT[] | Array of columns to be used in the analysis (e.g., `Array['petal_width', 'sepal_length', 'petal_length']`). |
| no\_clusters | INTEGER | Number of clusters for the classification of the data |
| standarize (optional) | BOOLEAN | Setting this to true (default) standardizes the data to have a mean at zero and a standard deviation of 1 |
### Returns
A table with the following columns.
| Column | Type | Description |
|--------|------|-------------|
| cluster_label | TEXT | Label that a cluster belongs to, number from 0 to `no_clusters - 1`. |
| cluster_center | JSON | Center of the cluster that a row belongs to. The keys of the JSON object are the `colnames`, with values that are the center of the respective cluster |
| silhouettes | NUMERIC | [Silhouette score](http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html#sklearn.metrics.silhouette_score) of the cluster label |