Document aggregation filters

Note that dimension filters remain undocumented
This commit is contained in:
Javier Goizueta 2018-03-21 17:21:05 +01:00
parent 6ada8ba6a2
commit ead6fa5f1f

View File

@ -185,3 +185,80 @@ This is the minimum number of (estimated) rows in the dataset (query results) fo
]
}
```
### `filters`
Aggregated data can be filtered by imposing filtering conditions on the aggregated columns.
Each condition is represented by one or more parameters:
* `{ "equal": V }` selects an specific value of the aggregated column.
* `{ "not_equal": V }` selects values different from the one specified.
* `{ "in": [v1, v2, v3] }` selects any value from a list.
* `{ "not_in": [v1, v2, v3] }` selects any value not in a list.
* `{ "less_than": v }` selects values strictly less than the one given.
* `{ "less_than_or_equal_to": v }` selects values less than or equal to the one given.
* `{ "greater_than": v }` selects values strictly greater than the one given.
* `{ "greater_than_or_equal_to": v }` selects values greater than or equal to the one given.
One of the *less* conditions can be combined with one of the *greater* conditions to select a range of values, for example:
* `{ "greater_than": v1, "less_than": v2 }`
* `{ "greater_than_or_equal_to": v1, "less_than": v2 }`
* `{ "greater_than": v1, "less_than_or_equal_to": v2 }`
* `{ "greater_than_or_equal_to": v1, "less_than_or_equal_to": v2 }`
For a given column, multiple conditions can be passed in an array; the conditions will logically ORed (any of the conditions have to be verifid for the value to be selected):
* `"myvalue": [ { "equal": 10 }, { "less_than": 0 }]` will select values of the column `myvalue` which are equal to 10 **or** less than 0.
In addition, the filters applied to different columns are logically combined with AND (all the conditions have to be satisfied for an element to be selected); for example with the following `filters` parameter we'll select aggregated records which have a `total_value` > 100 **and** a category equal to "a".
```json
{
"total_value": { "greater_than": 100 },
"category": { "equal": "a" }
}
```
Note that the filtered columns have to be defined with the `columns` parameter, except for `_cdb_features_count`, which is always implicitly defined and can be filtered too.
#### Example
```json
{
"version": "1.7.0",
"extent": [-20037508.5, -20037508.5, 20037508.5, 20037508.5],
"srid": 3857,
"maxzoom": 18,
"minzoom": 3,
"layers": [
{
"type": "mapnik",
"options": {
"sql": "select * from table",
"cartocss": "#table { marker-width: [total]; marker-fill: ramp(value, (red, green, blue), jenks); }",
"cartocss_version": "2.3.0",
"aggregation": {
"placement": "centroid",
"columns": {
"total_value": {
"aggregate_function": "sum",
"aggregated_column": "value"
},
"category": {
"aggregate_function": "mode",
"aggregated_column": "category"
}
},
"filters" : {
"total_value": { "greater_than": 100 },
"category": { "equal": "a" }
},
"resolution": 2,
"threshold": 500000
}
}
}
]
}
```