---
layout: tutorial_v2
title: Zoom levels
---
## Zoom levels
Leaflet works with [latitude](https://en.wikipedia.org/wiki/Latitude), [longitude](https://en.wikipedia.org/wiki/Longitude) and "zoom level".
Lower zoom levels means that the map shows entire continents, while higher zoom
levels means that the map can show details of a city.
To understand how zoom levels work, first we need a basic introduction to geodesy.
## The shape of the earth
Let's have a look at a simple map locked at zoom zero:
```
var map = L.map('map', {
minZoom: 0,
maxZoom: 0
});
var positron = L.tileLayer('http://{s}.basemaps.cartocdn.com/light_all/{z}/{x}/{y}.png', {
attribution: cartodbAttribution
}).addTo(map);
map.setView([0, 0], 0);
```
{% include frame.html url="example-zero.html" %}
Notice that the "whole earth" is just one image, 256 pixels wide and 256 pixels high:
Just to be clear: the earth is not a square. Rather, the earth is shaped like [a weird potato](https://commons.wikimedia.org/wiki/File:GRACE_globe_animation.gif) that can be approximated to [something similar to a sphere](https://en.wikipedia.org/wiki/Geoid).
This is not the only way of displaying the surface on the earth on a plane. There
are [hundreds of ways](https://en.wikipedia.org/wiki/Map_projection), each of them
with its own advantages and disadvantages. The following 6-minute video is a nice
introduction to the topic:
Things like geodesy, map projections and coordinate systems are hard, *very hard*
(and out of scope for this tutorial). Assuming that the earth is a square is not
always the right thing to do, but most of the time works fine enough, makes things
simpler, and allows Leaflet (and other map libraries) to be fast.
## Powers of two
For now, let's just ***assume*** that the world is a square:
When we represent the world at zoom level **zero**, it's 256 pixels wide and high. When we go into zoom level **one**, it doubles its width and height, and can be represented by four 256-pixel-by-256-pixel images:
At each zoom level, each tile is divided in four, and its size doubles (in other words, the width and height of the world is 256·2zoomlevel pixels):
Zoom 0
Zoom 1
Zoom 2
This goes on and on. Most tile services offer tiles up to zoom level 18, depending on
their coverage. This is enough to see a few city blocks per tile.
## A note about scale
One of the disadvantages of using a cylindrical projection is that the scale is not
constant, and measuring distances or sizes is not reliable, specially at low zoom levels.
In [technical terms](https://en.wikipedia.org/wiki/Map_projection#Projections_by_preservation_of_a_metric_property),
the cylindrical projection that Leaflet uses is conformal (preserves shapes),
but not equidistant (does not preserve distances), and not equal-area
(does not preserve areas, as things near the equator appear smaller than they are).
By adding a `L.Control.Scale` to a map, and panning to the equator and to 60° north,
we can see how the scale factor doubles. The following example uses
[javascript timeouts](https://developer.mozilla.org/docs/Web/API/WindowTimers/setTimeout)
to do this automatically:
```
L.control.scale().addTo(map);
setInterval(function(){
map.setView([0, 0]);
setTimeout(function(){
map.setView([60, 0]);
}, 2000);
}, 4000);
```
{% include frame.html url="example-scale.html" %}
`L.Control.Scale` shows the scale which applies to the center point of the map.
At high zoom levels, the scale changes very little, and is not noticeable.
## Controlling the zoom
A leaflet map has several ways to control the zoom level shown, but the most obvious
one is [`setZoom()`](../../reference-1.0.3.html#map-setzoom). For example, `map.setZoom(0);`
will set the zoom level of `map` to `0`.
This example again uses timeouts to alternate between zoom levels `0` and `1` automatically:
```
setInterval(function(){
map.setZoom(0);
setTimeout(function(){
map.setZoom(1);
}, 2000);
}, 4000);
```
{% include frame.html url="example-setzoom.html" %}
Notice how the images shown at zoom levels 0 and one correspond with the images
shown in the previous section!
Other ways of setting the zoom are:
* [`setView(center, zoom)`](../../reference-1.0.3.html#map-setview), which also sets the map center
* [`flyTo(center, zoom)`](../../reference-1.0.3.html#map-flyto), like `setView` but with a smooth animation
* [`zoomIn()` / `zoomIn(delta)`](../../reference-1.0.3.html#map-zoomin), zooms in `delta` zoom levels, `1` by default
* [`zoomOut()` / `zoomOut(delta)`](../../reference-1.0.3.html#map-zoomout), zooms out `delta` zoom levels, `1` by default
* [`setZoomAround(fixedPoint, zoom)`](../../reference-1.0.3.html#map-setzoomaround), sets the zoom level while keeping a point fixed (what scrollwheel zooming does)
* [`fitBounds(bounds)`](../../reference-1.0.3.html#map-fitbounds), automatically calculates the zoom to fit a rectangular area on the map
## Fractional zoom
A feature introduced in Leaflet 1.0.0 was the concept of fractional zoom.
Before this, the zoom level of the map could be only an integer number (`0`, `1`, `2`, and so on);
but now you can use fractional numbers like `1.5` or `1.25`.
Fractional zoom is disabled by default. To enable it, use the
[map's `zoomSnap` option](http://leafletjs.com/reference-1.0.3.html#map-zoomsnap).
The `zoomSnap` option has a default value of `1` (which means that the zoom level
of the map can be `0`, `1`, `2`, and so on).
If you set the value of `zoomSnap` to `0.5`, the valid zoom levels of the map
will be `0`, `0.5`, `1`, `1.5`, `2`, and so on.
If you set a value of `0.1`, the valid zoom levels of the map will be `0`, `0.1`,
`0.2`, `0.3`, `0.4`, and so on.
The following example uses a `zoomSnap` value of `0.25`:
```
var map = L.map('map', {
zoomSnap: 0.25
});
```
{% include frame.html url="example-fractional.html" %}
As you can see, Leaflet will only load the tiles for zoom levels `0` or `1`, and will scale them
as needed.
Leaflet will snap the zoom level to the closest valid one. For example,
if you have `zoomSnap: 0.25` and you try to do `map.setZoom(0.8)`, the zoom will
snap back to `0.75`. The same happens with `map.fitBounds(bounds)`, or when ending
a pinch-zoom gesture on a touchscreen.
`zoomSnap` can be set to zero. This means that Leaflet will not
snap the zoom level.
There is another important map option related to `zoomSnap`: [the `zoomDelta` option](http://leafletjs.com/reference-1.0.3.html#map-zoomdelta).
This controls how many zoom levels to zoom in/out when using the zoom buttons
(from the default [`L.Control.Zoom`](http://leafletjs.com/reference-1.0.3.html#control-zoom))
or the `+`/`-` keys in your keyboard.
For the mousewheel zoom, the [`wheelPxPerZoomLevel`](http://leafletjs.com/reference-1.0.3.html#map-wheelpxperzoomlevel)
option controls how fast the mousewheel zooms in our out.
Here is an example with `zoomSnap` set to zero:
```
var map = L.map('map', {
zoomDelta: 0.25,
zoomSnap: 0
});
```
Try the following, and see how the zoom level changes:
* Pinch-zoom if you have a touchscreen
* Zoom in/out with your mousewheel
* Do a box zoom (drag with your mouse while pressing the `shift` key in your keyboard)
* Use the zoom in/out buttons
{% include frame.html url="example-delta.html" %}
That concludes this tutorial. Now play with your zoom levels in your maps!