Adding support for cnn face detector

CNN face detector (deep learning face detection) is modeled as
PHP class. Currently, it only has constructor (which loads a model)
and detect() method. I tried to make it resamble to Python implementation.
Similar to Python, also added support for upsampling. Returned value
is array with numbers as keys where number of keys is equal to number
of found faced. Each element is associative array that has "top", "left",
"right", "bottom" and "detection_confidence" keys.

All errors are propagated using exceptions.

Added two new error tests. I didn't want to rely on presence of model,
so tests are not having great coverage. If we are OK to download models
in tests, it would allow us to have far better coverage.

What is missing:
* Testing with models (should we test that?)
* detect_mult method (similar to what Python have; however, I consider
  that this should not block pushing this change)
This commit is contained in:
Branko Kokanovic 2018-07-14 00:12:10 +02:00
parent d12d75c69e
commit f8cc0e48d3
7 changed files with 213 additions and 3 deletions

View File

@ -75,5 +75,5 @@ var_dump($landmarks);
- [x] 1.Face Detection
- [x] 2.Face Landmark Detection
- [ ] 3.Deep Face Recognition
- [ ] 4.Deep Learning Face Detection
- [x] 4.Deep Learning Face Detection

View File

@ -26,7 +26,8 @@ if test "$PHP_PDLIB" != "no"; then
pdlib_src_files="pdlib.cc \
src/face_detection.cc \
src/face_landmark_detection.cc"
src/face_landmark_detection.cc \
src/cnn_face_detection.cc"
AC_MSG_CHECKING(for pkg-config)
if test ! -f "$PKG_CONFIG"; then

View File

@ -29,6 +29,7 @@ extern "C" {
}
#include "php_pdlib.h"
#include "src/face_detection.h"
#include "src/cnn_face_detection.h"
#include "src/face_landmark_detection.h"
/* If you declare any globals in php_pdlib.h uncomment this:
@ -38,6 +39,9 @@ ZEND_DECLARE_MODULE_GLOBALS(pdlib)
/* True global resources - no need for thread safety here */
static int le_pdlib;
static zend_class_entry *cnn_face_detection_ce = nullptr;
static zend_object_handlers cnn_face_detection_obj_handlers;
/* {{{ PHP_INI
*/
/* Remove comments and fill if you need to have entries in php.ini
@ -88,15 +92,47 @@ static void php_pdlib_init_globals(zend_pdlib_globals *pdlib_globals)
*/
/* }}} */
const zend_function_entry cnn_face_detection_class_methods[] = {
PHP_ME(CnnFaceDetection, __construct, cnn_face_detection_ctor_arginfo, ZEND_ACC_PUBLIC)
PHP_ME(CnnFaceDetection, detect, cnn_face_detection_detect_arginfo, ZEND_ACC_PUBLIC)
PHP_FE_END
};
zend_object* php_cnn_face_detection_new(zend_class_entry *class_type TSRMLS_DC)
{
cnn_face_detection *cfd = (cnn_face_detection*)ecalloc(1, sizeof(cnn_face_detection));
zend_object_std_init(&cfd->std, class_type TSRMLS_CC);
object_properties_init(&cfd->std, class_type);
cfd->std.handlers = &cnn_face_detection_obj_handlers; //zend_get_std_object_handlers();
return &cfd->std;
}
static void php_cnn_face_detection_free(zend_object *object)
{
cnn_face_detection *cfd = (cnn_face_detection*)((char*)object - XtOffsetOf(cnn_face_detection, std));
delete cfd->net;
zend_object_std_dtor(object);
}
/* {{{ PHP_MINIT_FUNCTION
*/
PHP_MINIT_FUNCTION(pdlib)
{
zend_class_entry ce;
INIT_CLASS_ENTRY(ce, "CnnFaceDetection", cnn_face_detection_class_methods);
cnn_face_detection_ce = zend_register_internal_class(&ce TSRMLS_CC);
cnn_face_detection_ce->create_object = php_cnn_face_detection_new;
memcpy(&cnn_face_detection_obj_handlers, zend_get_std_object_handlers(), sizeof(zend_object_handlers));
cnn_face_detection_obj_handlers.offset = XtOffsetOf(cnn_face_detection, std);
cnn_face_detection_obj_handlers.free_obj = php_cnn_face_detection_free;
/* If you have INI entries, uncomment these lines
REGISTER_INI_ENTRIES();
*/
return SUCCESS;
}
/* }}} */
/* {{{ PHP_MSHUTDOWN_FUNCTION

108
src/cnn_face_detection.cc Normal file
View File

@ -0,0 +1,108 @@
#include "../php_pdlib.h"
#include "cnn_face_detection.h"
#include <zend_exceptions.h>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <dlib/dnn.h>
#include <iostream>
using namespace dlib;
using namespace std;
static inline cnn_face_detection *php_cnn_face_detection_from_obj(zend_object *obj) {
return (cnn_face_detection*)((char*)(obj) - XtOffsetOf(cnn_face_detection, std));
}
#define Z_CNN_FACE_DETECTION_P(zv) php_cnn_face_detection_from_obj(Z_OBJ_P((zv)))
PHP_METHOD(CnnFaceDetection, __construct)
{
char *sz_cnn_face_detection_model_path;
size_t cnn_face_detection_model_path_len;
cnn_face_detection *cfd = Z_CNN_FACE_DETECTION_P(getThis());
if (NULL == cfd) {
php_error_docref(NULL TSRMLS_CC, E_ERROR, "Unable to find obj in CnnFaceDetection::__construct()");
return;
}
if (zend_parse_parameters(ZEND_NUM_ARGS(), "s",
&sz_cnn_face_detection_model_path, &cnn_face_detection_model_path_len) == FAILURE){
zend_throw_exception_ex(zend_ce_exception, 0 TSRMLS_CC, "Unable to parse face_detection_model_path");
return;
}
try {
string cnn_face_detection_model_path(
sz_cnn_face_detection_model_path, cnn_face_detection_model_path_len);
net_type *pnet = new net_type;
deserialize(cnn_face_detection_model_path) >> *pnet;
cfd->net = pnet;
} catch (exception& e) {
zend_throw_exception_ex(zend_ce_exception, 0 TSRMLS_CC, e.what());
return;
}
}
PHP_METHOD(CnnFaceDetection, detect)
{
char *img_path;
size_t img_path_len;
long upsample_num = 1;
if (zend_parse_parameters(ZEND_NUM_ARGS(), "s|l", &img_path, &img_path_len, &upsample_num) == FAILURE){
zend_throw_exception_ex(zend_ce_exception, 0 TSRMLS_CC, "Unable to parse detect arguments");
RETURN_FALSE;
}
try {
cnn_face_detection *cfd = Z_CNN_FACE_DETECTION_P(getThis());
pyramid_down<2> pyr;
matrix<rgb_pixel> img;
load_image(img, img_path);
// Upsampling the image will allow us to detect smaller faces but will cause the
// program to use more RAM and run longer.
//
unsigned int levels = upsample_num;
while (levels > 0)
{
levels--;
pyramid_up(img, pyr);
}
net_type *pnet = cfd->net;
auto dets = (*pnet)(img);
int rect_count = 0;
array_init(return_value);
// Scale the detection locations back to the original image size
// if the image was upscaled.
//
for (auto&& d: dets) {
d.rect = pyr.rect_down(d.rect, upsample_num);
// Create new assoc array with dimensions of found rectt and confidence
//
zval rect_arr;
array_init(&rect_arr);
add_assoc_long(&rect_arr, "left", d.rect.left());
add_assoc_long(&rect_arr, "top", d.rect.top());
add_assoc_long(&rect_arr, "right", d.rect.right());
add_assoc_long(&rect_arr, "bottom", d.rect.bottom());
add_assoc_double(&rect_arr, "detection_confidence", d.detection_confidence);
// Add this assoc array to returned array
//
add_next_index_zval(return_value, &rect_arr);
}
}
catch (exception& e)
{
zend_throw_exception_ex(zend_ce_exception, 0 TSRMLS_CC, e.what());
return;
}
}

36
src/cnn_face_detection.h Normal file
View File

@ -0,0 +1,36 @@
//
// Created by branko at kokanovic dot org on 2018/7/16.
//
#ifndef PHP_DLIB_CNN_FACE_DETECTION_H
#define PHP_DLIB_CNN_FACE_DETECTION_H
#include <dlib/dnn.h>
using namespace dlib;
template <long num_filters, typename SUBNET> using con5d = con<num_filters,5,5,2,2,SUBNET>;
template <long num_filters, typename SUBNET> using con5 = con<num_filters,5,5,1,1,SUBNET>;
template <typename SUBNET> using downsampler = relu<affine<con5d<32, relu<affine<con5d<32, relu<affine<con5d<16,SUBNET>>>>>>>>>;
template <typename SUBNET> using rcon5 = relu<affine<con5<45,SUBNET>>>;
using net_type = loss_mmod<con<1,9,9,1,1,rcon5<rcon5<rcon5<downsampler<input_rgb_image_pyramid<pyramid_down<6>>>>>>>>;
typedef struct _cnn_face_detection {
net_type *net;
zend_object std;
} cnn_face_detection;
ZEND_BEGIN_ARG_INFO_EX(cnn_face_detection_ctor_arginfo, 0, 0, 1)
ZEND_ARG_INFO(0, cnn_face_detection_model_path)
ZEND_END_ARG_INFO()
PHP_METHOD(CnnFaceDetection, __construct);
ZEND_BEGIN_ARG_INFO_EX(cnn_face_detection_detect_arginfo, 0, 0, 2)
ZEND_ARG_INFO(0, img_path)
ZEND_ARG_INFO(0, upsample_num)
ZEND_END_ARG_INFO()
PHP_METHOD(CnnFaceDetection, detect);
#endif //PHP_DLIB_CNN_FACE_DETECTION_H

View File

@ -0,0 +1,15 @@
--TEST--
Testing CnnFaceDetection constructor without arguments
--SKIPIF--
<?php if (!extension_loaded("pdlib")) print "skip"; ?>
--FILE--
<?php
try {
new CnnFaceDetection();
} catch (Exception $e) {
var_dump($e->getMessage());
}
?>
--EXPECT--
Warning: CnnFaceDetection::__construct() expects exactly 1 parameter, 0 given in /home/branko/pdlib/tests/cnn_face_detection_ctor_error.php on line 3
string(41) "Unable to parse face_detection_model_path"

View File

@ -0,0 +1,14 @@
--TEST--
Testing CnnFaceDetection constructor with model that do not exist
--SKIPIF--
<?php if (!extension_loaded("pdlib")) print "skip"; ?>
--FILE--
<?php
try {
new CnnFaceDetection("foo");
} catch (Exception $e) {
var_dump($e->getMessage());
}
?>
--EXPECT--
string(31) "Unable to open foo for reading."