mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
90 lines
2.8 KiB
C++
90 lines
2.8 KiB
C++
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
||
/*
|
||
|
||
This example demonstrates the usage of the numerical quadrature function
|
||
integrate_function_adapt_simp(). This function takes as input a single variable
|
||
function, the endpoints of a domain over which the function will be integrated, and a
|
||
tolerance parameter. It outputs an approximation of the integral of this function over
|
||
the specified domain. The algorithm is based on the adaptive Simpson method outlined in:
|
||
|
||
Numerical Integration method based on the adaptive Simpson method in
|
||
Gander, W. and W. Gautschi, "Adaptive Quadrature – Revisited,"
|
||
BIT, Vol. 40, 2000, pp. 84-101
|
||
|
||
*/
|
||
|
||
#include <iostream>
|
||
#include <dlib/matrix.h>
|
||
#include <dlib/numeric_constants.h>
|
||
#include <dlib/numerical_integration.h>
|
||
|
||
using namespace std;
|
||
using namespace dlib;
|
||
|
||
// Here we the set of functions that we wish to integrate and comment in the domain of
|
||
// integration.
|
||
|
||
// x in [0,1]
|
||
double gg1(double x)
|
||
{
|
||
return pow(e,x);
|
||
}
|
||
|
||
// x in [0,1]
|
||
double gg2(double x)
|
||
{
|
||
return x*x;
|
||
}
|
||
|
||
// x in [0, pi]
|
||
double gg3(double x)
|
||
{
|
||
return 1/(x*x + cos(x)*cos(x));
|
||
}
|
||
|
||
// x in [-pi, pi]
|
||
double gg4(double x)
|
||
{
|
||
return sin(x);
|
||
}
|
||
|
||
// x in [0,2]
|
||
double gg5(double x)
|
||
{
|
||
return 1/(1 + x*x);
|
||
}
|
||
|
||
int main()
|
||
{
|
||
// We first define a tolerance parameter. Roughly speaking, a lower tolerance will
|
||
// result in a more accurate approximation of the true integral. However, there are
|
||
// instances where too small of a tolerance may yield a less accurate approximation
|
||
// than a larger tolerance. We recommend taking the tolerance to be in the
|
||
// [1e-10, 1e-8] region.
|
||
|
||
double tol = 1e-10;
|
||
|
||
|
||
// Here we compute the integrals of the five functions defined above using the same
|
||
// tolerance level for each.
|
||
|
||
double m1 = integrate_function_adapt_simp(&gg1, 0.0, 1.0, tol);
|
||
double m2 = integrate_function_adapt_simp(&gg2, 0.0, 1.0, tol);
|
||
double m3 = integrate_function_adapt_simp(&gg3, 0.0, pi, tol);
|
||
double m4 = integrate_function_adapt_simp(&gg4, -pi, pi, tol);
|
||
double m5 = integrate_function_adapt_simp(&gg5, 0.0, 2.0, tol);
|
||
|
||
// We finally print out the values of each of the approximated integrals to ten
|
||
// significant digits.
|
||
|
||
cout << "\nThe integral of exp(x) for x in [0,1] is " << std::setprecision(10) << m1 << endl;
|
||
cout << "The integral of x^2 for in [0,1] is " << std::setprecision(10) << m2 << endl;
|
||
cout << "The integral of 1/(x^2 + cos(x)^2) for in [0,pi] is " << std::setprecision(10) << m3 << endl;
|
||
cout << "The integral of sin(x) for in [-pi,pi] is " << std::setprecision(10) << m4 << endl;
|
||
cout << "The integral of 1/(1+x^2) for in [0,2] is " << std::setprecision(10) << m5 << endl;
|
||
cout << endl;
|
||
|
||
return 0;
|
||
}
|
||
|