mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
793 lines
33 KiB
C++
793 lines
33 KiB
C++
|
|
#include <dlib/xml_parser.h>
|
|
#include <dlib/matrix.h>
|
|
#include <fstream>
|
|
#include <vector>
|
|
#include <stack>
|
|
#include <set>
|
|
#include <dlib/string.h>
|
|
|
|
using namespace std;
|
|
using namespace dlib;
|
|
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// Only these computational layers have parameters
|
|
const std::set<string> comp_tags_with_params = {"fc", "fc_no_bias", "con", "affine_con", "affine_fc", "affine", "prelu"};
|
|
|
|
struct layer
|
|
{
|
|
string type; // comp, loss, or input
|
|
int idx;
|
|
|
|
matrix<long,4,1> output_tensor_shape; // (N,K,NR,NC)
|
|
|
|
string detail_name; // The name of the tag inside the layer tag. e.g. fc, con, max_pool, input_rgb_image.
|
|
std::map<string,double> attributes;
|
|
matrix<float> params;
|
|
long tag_id = -1; // If this isn't -1 then it means this layer was tagged, e.g. wrapped with tag2<> giving tag_id==2
|
|
long skip_id = -1; // If this isn't -1 then it means this layer draws its inputs from
|
|
// the most recent layer with tag_id==skip_id rather than its immediate predecessor.
|
|
|
|
double attribute (const string& key) const
|
|
{
|
|
auto i = attributes.find(key);
|
|
if (i != attributes.end())
|
|
return i->second;
|
|
else
|
|
throw dlib::error("Layer doesn't have the requested attribute '" + key + "'.");
|
|
}
|
|
|
|
string caffe_layer_name() const
|
|
{
|
|
if (type == "input")
|
|
return "data";
|
|
else
|
|
return detail_name+to_string(idx);
|
|
}
|
|
};
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
std::vector<layer> parse_dlib_xml(
|
|
const matrix<long,4,1>& input_tensor_shape,
|
|
const string& xml_filename
|
|
);
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
template <typename iterator>
|
|
const layer& find_layer (
|
|
iterator i,
|
|
long tag_id
|
|
)
|
|
/*!
|
|
requires
|
|
- i is a reverse iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
|
|
- i is not an input layer.
|
|
ensures
|
|
- if (tag_id == -1) then
|
|
- returns the previous layer (i.e. closer to the input) to layer i.
|
|
- else
|
|
- returns the previous layer (i.e. closer to the input) to layer i with the
|
|
given tag_id.
|
|
!*/
|
|
{
|
|
if (tag_id == -1)
|
|
{
|
|
return *(i-1);
|
|
}
|
|
else
|
|
{
|
|
while(true)
|
|
{
|
|
i--;
|
|
// if we hit the end of the network before we found what we were looking for
|
|
if (i->tag_id == tag_id)
|
|
return *i;
|
|
if (i->type == "input")
|
|
throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer.");
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename iterator>
|
|
const layer& find_input_layer (iterator i) { return find_layer(i, i->skip_id); }
|
|
|
|
template <typename iterator>
|
|
string find_layer_caffe_name (
|
|
iterator i,
|
|
long tag_id
|
|
)
|
|
{
|
|
return find_layer(i,tag_id).caffe_layer_name();
|
|
}
|
|
|
|
template <typename iterator>
|
|
string find_input_layer_caffe_name (iterator i) { return find_input_layer(i).caffe_layer_name(); }
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
template <typename iterator>
|
|
void compute_caffe_padding_size_for_pooling_layer(
|
|
const iterator& i,
|
|
long& pad_x,
|
|
long& pad_y
|
|
)
|
|
/*!
|
|
requires
|
|
- i is a reverse iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
|
|
- i is not an input layer.
|
|
ensures
|
|
- Caffe is funny about how it computes the output sizes from pooling layers.
|
|
Rather than using the normal formula for output row/column sizes used by all the
|
|
other layers (and what dlib uses everywhere),
|
|
floor((bottom_size + 2*pad - kernel_size) / stride) + 1
|
|
it instead uses:
|
|
ceil((bottom_size + 2*pad - kernel_size) / stride) + 1
|
|
|
|
These are the same except when the stride!=1. In that case we need to figure out
|
|
how to change the padding value so that the output size of the caffe padding
|
|
layer will match the output size of the dlib padding layer. That is what this
|
|
function does.
|
|
!*/
|
|
{
|
|
const long dlib_output_nr = i->output_tensor_shape(2);
|
|
const long dlib_output_nc = i->output_tensor_shape(3);
|
|
const long bottom_nr = find_input_layer(i).output_tensor_shape(2);
|
|
const long bottom_nc = find_input_layer(i).output_tensor_shape(3);
|
|
const long padding_x = (long)i->attribute("padding_x");
|
|
const long padding_y = (long)i->attribute("padding_y");
|
|
const long stride_x = (long)i->attribute("stride_x");
|
|
const long stride_y = (long)i->attribute("stride_y");
|
|
long kernel_w = i->attribute("nc");
|
|
long kernel_h = i->attribute("nr");
|
|
|
|
if (kernel_w == 0)
|
|
kernel_w = bottom_nc;
|
|
if (kernel_h == 0)
|
|
kernel_h = bottom_nr;
|
|
|
|
|
|
// The correct padding for caffe could be anything in the range [0,padding_x]. So
|
|
// check what gives the correct output size and use that.
|
|
for (pad_x = 0; pad_x <= padding_x; ++pad_x)
|
|
{
|
|
long caffe_out_size = ceil((bottom_nc + 2.0*pad_x - kernel_w)/(double)stride_x) + 1;
|
|
if (caffe_out_size == dlib_output_nc)
|
|
break;
|
|
}
|
|
if (pad_x == padding_x+1)
|
|
{
|
|
std::ostringstream sout;
|
|
sout << "No conversion between dlib pooling layer parameters and caffe pooling layer parameters found for layer " << to_string(i->idx) << endl;
|
|
sout << "dlib_output_nc: " << dlib_output_nc << endl;
|
|
sout << "bottom_nc: " << bottom_nc << endl;
|
|
sout << "padding_x: " << padding_x << endl;
|
|
sout << "stride_x: " << stride_x << endl;
|
|
sout << "kernel_w: " << kernel_w << endl;
|
|
sout << "pad_x: " << pad_x << endl;
|
|
throw dlib::error(sout.str());
|
|
}
|
|
|
|
for (pad_y = 0; pad_y <= padding_y; ++pad_y)
|
|
{
|
|
long caffe_out_size = ceil((bottom_nr + 2.0*pad_y - kernel_h)/(double)stride_y) + 1;
|
|
if (caffe_out_size == dlib_output_nr)
|
|
break;
|
|
}
|
|
if (pad_y == padding_y+1)
|
|
{
|
|
std::ostringstream sout;
|
|
sout << "No conversion between dlib pooling layer parameters and caffe pooling layer parameters found for layer " << to_string(i->idx) << endl;
|
|
sout << "dlib_output_nr: " << dlib_output_nr << endl;
|
|
sout << "bottom_nr: " << bottom_nr << endl;
|
|
sout << "padding_y: " << padding_y << endl;
|
|
sout << "stride_y: " << stride_y << endl;
|
|
sout << "kernel_h: " << kernel_h << endl;
|
|
sout << "pad_y: " << pad_y << endl;
|
|
throw dlib::error(sout.str());
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
void convert_dlib_xml_to_caffe_python_code(
|
|
const string& xml_filename,
|
|
const long N,
|
|
const long K,
|
|
const long NR,
|
|
const long NC
|
|
)
|
|
{
|
|
const string out_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.py";
|
|
const string out_weights_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.weights";
|
|
cout << "Writing python part of model to " << out_filename << endl;
|
|
cout << "Writing weights part of model to " << out_weights_filename << endl;
|
|
ofstream fout(out_filename);
|
|
fout.precision(9);
|
|
const auto layers = parse_dlib_xml({N,K,NR,NC}, xml_filename);
|
|
|
|
|
|
fout << "#\n";
|
|
fout << "# !!! This file was automatically generated by dlib's tools/convert_dlib_nets_to_caffe utility. !!!\n";
|
|
fout << "# !!! It contains all the information from a dlib DNN network and lets you save it as a cafe model. !!!\n";
|
|
fout << "#\n";
|
|
fout << "import caffe " << endl;
|
|
fout << "from caffe import layers as L, params as P" << endl;
|
|
fout << "import numpy as np" << endl;
|
|
|
|
// dlib nets don't commit to a batch size, so just use 1 as the default
|
|
fout << "\n# Input tensor dimensions" << endl;
|
|
fout << "input_batch_size = " << N << ";" << endl;
|
|
if (layers.back().detail_name == "input_rgb_image")
|
|
{
|
|
fout << "input_num_channels = 3;" << endl;
|
|
fout << "input_num_rows = "<<NR<<";" << endl;
|
|
fout << "input_num_cols = "<<NC<<";" << endl;
|
|
if (K != 3)
|
|
throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==3, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
|
|
}
|
|
else if (layers.back().detail_name == "input_rgb_image_sized")
|
|
{
|
|
fout << "input_num_channels = 3;" << endl;
|
|
fout << "input_num_rows = " << layers.back().attribute("nr") << ";" << endl;
|
|
fout << "input_num_cols = " << layers.back().attribute("nc") << ";" << endl;
|
|
if (NR != layers.back().attribute("nr"))
|
|
throw dlib::error("The dlib model requires input tensors with NUM_ROWS=="+to_string((long)layers.back().attribute("nr"))+", but the dtoc command line specified NUM_ROWS=="+to_string(NR));
|
|
if (NC != layers.back().attribute("nc"))
|
|
throw dlib::error("The dlib model requires input tensors with NUM_COLUMNS=="+to_string((long)layers.back().attribute("nc"))+", but the dtoc command line specified NUM_COLUMNS=="+to_string(NC));
|
|
if (K != 3)
|
|
throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==3, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
|
|
}
|
|
else if (layers.back().detail_name == "input")
|
|
{
|
|
fout << "input_num_channels = 1;" << endl;
|
|
fout << "input_num_rows = "<<NR<<";" << endl;
|
|
fout << "input_num_cols = "<<NC<<";" << endl;
|
|
if (K != 1)
|
|
throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==1, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
|
|
}
|
|
else
|
|
{
|
|
throw dlib::error("No known transformation from dlib's " + layers.back().detail_name + " layer to caffe.");
|
|
}
|
|
fout << endl;
|
|
fout << "# Call this function to write the dlib DNN model out to file as a pair of caffe\n";
|
|
fout << "# definition and weight files. You can then use the network by loading it with\n";
|
|
fout << "# this statement: \n";
|
|
fout << "# net = caffe.Net(def_file, weights_file, caffe.TEST);\n";
|
|
fout << "#\n";
|
|
fout << "def save_as_caffe_model(def_file, weights_file):\n";
|
|
fout << " with open(def_file, 'w') as f: f.write(str(make_netspec()));\n";
|
|
fout << " net = caffe.Net(def_file, caffe.TEST);\n";
|
|
fout << " set_network_weights(net);\n";
|
|
fout << " net.save(weights_file);\n\n";
|
|
fout << "###############################################################################\n";
|
|
fout << "# EVERYTHING BELOW HERE DEFINES THE DLIB MODEL PARAMETERS #\n";
|
|
fout << "###############################################################################\n\n\n";
|
|
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// The next block of code outputs python code that defines the network architecture.
|
|
// -----------------------------------------------------------------------------------
|
|
|
|
fout << "def make_netspec():" << endl;
|
|
fout << " # For reference, the only \"documentation\" about caffe layer parameters seems to be this page:\n";
|
|
fout << " # https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto\n" << endl;
|
|
fout << " n = caffe.NetSpec(); " << endl;
|
|
fout << " n.data,n.label = L.MemoryData(batch_size=input_batch_size, channels=input_num_channels, height=input_num_rows, width=input_num_cols, ntop=2)" << endl;
|
|
// iterate the layers starting with the input layer
|
|
for (auto i = layers.rbegin(); i != layers.rend(); ++i)
|
|
{
|
|
// skip input and loss layers
|
|
if (i->type == "loss" || i->type == "input")
|
|
continue;
|
|
|
|
|
|
if (i->detail_name == "con")
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.Convolution(n." << find_input_layer_caffe_name(i);
|
|
fout << ", num_output=" << i->attribute("num_filters");
|
|
fout << ", kernel_w=" << i->attribute("nc");
|
|
fout << ", kernel_h=" << i->attribute("nr");
|
|
fout << ", stride_w=" << i->attribute("stride_x");
|
|
fout << ", stride_h=" << i->attribute("stride_y");
|
|
fout << ", pad_w=" << i->attribute("padding_x");
|
|
fout << ", pad_h=" << i->attribute("padding_y");
|
|
fout << ");\n";
|
|
}
|
|
else if (i->detail_name == "relu")
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.ReLU(n." << find_input_layer_caffe_name(i);
|
|
fout << ");\n";
|
|
}
|
|
else if (i->detail_name == "sig")
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.Sigmoid(n." << find_input_layer_caffe_name(i);
|
|
fout << ");\n";
|
|
}
|
|
else if (i->detail_name == "prelu")
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.PReLU(n." << find_input_layer_caffe_name(i);
|
|
fout << ", channel_shared=True";
|
|
fout << ");\n";
|
|
}
|
|
else if (i->detail_name == "max_pool")
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
|
|
fout << ", pool=P.Pooling.MAX";
|
|
if (i->attribute("nc")==0)
|
|
{
|
|
fout << ", global_pooling=True";
|
|
}
|
|
else
|
|
{
|
|
fout << ", kernel_w=" << i->attribute("nc");
|
|
fout << ", kernel_h=" << i->attribute("nr");
|
|
}
|
|
|
|
fout << ", stride_w=" << i->attribute("stride_x");
|
|
fout << ", stride_h=" << i->attribute("stride_y");
|
|
long pad_x, pad_y;
|
|
compute_caffe_padding_size_for_pooling_layer(i, pad_x, pad_y);
|
|
fout << ", pad_w=" << pad_x;
|
|
fout << ", pad_h=" << pad_y;
|
|
fout << ");\n";
|
|
}
|
|
else if (i->detail_name == "avg_pool")
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
|
|
fout << ", pool=P.Pooling.AVE";
|
|
if (i->attribute("nc")==0)
|
|
{
|
|
fout << ", global_pooling=True";
|
|
}
|
|
else
|
|
{
|
|
fout << ", kernel_w=" << i->attribute("nc");
|
|
fout << ", kernel_h=" << i->attribute("nr");
|
|
}
|
|
if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0)
|
|
{
|
|
throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a "
|
|
"network with such pooling layers.");
|
|
}
|
|
|
|
fout << ", stride_w=" << i->attribute("stride_x");
|
|
fout << ", stride_h=" << i->attribute("stride_y");
|
|
long pad_x, pad_y;
|
|
compute_caffe_padding_size_for_pooling_layer(i, pad_x, pad_y);
|
|
fout << ", pad_w=" << pad_x;
|
|
fout << ", pad_h=" << pad_y;
|
|
fout << ");\n";
|
|
}
|
|
else if (i->detail_name == "fc")
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
|
|
fout << ", num_output=" << i->attribute("num_outputs");
|
|
fout << ", bias_term=True";
|
|
fout << ");\n";
|
|
}
|
|
else if (i->detail_name == "fc_no_bias")
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
|
|
fout << ", num_output=" << i->attribute("num_outputs");
|
|
fout << ", bias_term=False";
|
|
fout << ");\n";
|
|
}
|
|
else if (i->detail_name == "bn_con" || i->detail_name == "bn_fc")
|
|
{
|
|
throw dlib::error("Conversion from dlib's batch norm layers to caffe's isn't supported. Instead, "
|
|
"you should put your dlib network into 'test mode' by switching batch norm layers to affine layers. "
|
|
"Then you can convert that 'test mode' network to caffe.");
|
|
}
|
|
else if (i->detail_name == "affine_con")
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
|
|
fout << ", bias_term=True";
|
|
fout << ");\n";
|
|
}
|
|
else if (i->detail_name == "affine_fc")
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
|
|
fout << ", bias_term=True";
|
|
fout << ");\n";
|
|
}
|
|
else if (i->detail_name == "add_prev")
|
|
{
|
|
auto in_shape1 = find_input_layer(i).output_tensor_shape;
|
|
auto in_shape2 = find_layer(i,i->attribute("tag")).output_tensor_shape;
|
|
if (in_shape1 != in_shape2)
|
|
{
|
|
// if only the number of channels differs then we will use a dummy layer to
|
|
// pad with zeros. But otherwise we will throw an error.
|
|
if (in_shape1(0) == in_shape2(0) &&
|
|
in_shape1(2) == in_shape2(2) &&
|
|
in_shape1(3) == in_shape2(3))
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << "_zeropad = L.DummyData(num=" << in_shape1(0);
|
|
fout << ", channels="<<std::abs(in_shape1(1)-in_shape2(1));
|
|
fout << ", height="<<in_shape1(2);
|
|
fout << ", width="<<in_shape1(3);
|
|
fout << ");\n";
|
|
|
|
string smaller_layer = find_input_layer_caffe_name(i);
|
|
string bigger_layer = find_layer_caffe_name(i, i->attribute("tag"));
|
|
if (in_shape1(1) > in_shape2(1))
|
|
swap(smaller_layer, bigger_layer);
|
|
|
|
fout << " n." << i->caffe_layer_name() << "_concat = L.Concat(n." << smaller_layer;
|
|
fout << ", n." << i->caffe_layer_name() << "_zeropad";
|
|
fout << ");\n";
|
|
|
|
fout << " n." << i->caffe_layer_name() << " = L.Eltwise(n." << i->caffe_layer_name() << "_concat";
|
|
fout << ", n." << bigger_layer;
|
|
fout << ", operation=P.Eltwise.SUM";
|
|
fout << ");\n";
|
|
}
|
|
else
|
|
{
|
|
std::ostringstream sout;
|
|
sout << "The dlib network contained an add_prev layer (layer idx " << i->idx << ") that adds two previous ";
|
|
sout << "layers with different output tensor dimensions. Caffe's equivalent layer, Eltwise, doesn't support ";
|
|
sout << "adding layers together with different dimensions. In the special case where the only difference is ";
|
|
sout << "in the number of channels, this converter program will add a dummy layer that outputs a tensor full of zeros ";
|
|
sout << "and concat it appropriately so this will work. However, this network you are converting has tensor dimensions ";
|
|
sout << "different in values other than the number of channels. In particular, here are the two tensor shapes (batch size, channels, rows, cols): ";
|
|
std::ostringstream sout2;
|
|
sout2 << wrap_string(sout.str()) << endl;
|
|
sout2 << trans(in_shape1);
|
|
sout2 << trans(in_shape2);
|
|
throw dlib::error(sout2.str());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
fout << " n." << i->caffe_layer_name() << " = L.Eltwise(n." << find_input_layer_caffe_name(i);
|
|
fout << ", n." << find_layer_caffe_name(i, i->attribute("tag"));
|
|
fout << ", operation=P.Eltwise.SUM";
|
|
fout << ");\n";
|
|
}
|
|
}
|
|
else
|
|
{
|
|
throw dlib::error("No known transformation from dlib's " + i->detail_name + " layer to caffe.");
|
|
}
|
|
}
|
|
fout << " return n.to_proto();\n\n" << endl;
|
|
|
|
|
|
// -----------------------------------------------------------------------------------
|
|
// The next block of code outputs python code that populates all the filter weights.
|
|
// -----------------------------------------------------------------------------------
|
|
|
|
ofstream fweights(out_weights_filename, ios::binary);
|
|
fout << "def set_network_weights(net):\n";
|
|
fout << " # populate network parameters\n";
|
|
fout << " f = open('"<<out_weights_filename<<"', 'rb');\n";
|
|
// iterate the layers starting with the input layer
|
|
for (auto i = layers.rbegin(); i != layers.rend(); ++i)
|
|
{
|
|
// skip input and loss layers
|
|
if (i->type == "loss" || i->type == "input")
|
|
continue;
|
|
|
|
|
|
if (i->detail_name == "con")
|
|
{
|
|
const long num_filters = i->attribute("num_filters");
|
|
matrix<float> weights = trans(rowm(i->params,range(0,i->params.size()-num_filters-1)));
|
|
matrix<float> biases = trans(rowm(i->params,range(i->params.size()-num_filters, i->params.size()-1)));
|
|
fweights.write((char*)&weights(0,0), weights.size()*sizeof(float));
|
|
fweights.write((char*)&biases(0,0), biases.size()*sizeof(float));
|
|
|
|
// main filter weights
|
|
fout << " p = np.fromfile(f, dtype='float32', count="<<weights.size()<<");\n";
|
|
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
|
|
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
|
|
|
|
// biases
|
|
fout << " p = np.fromfile(f, dtype='float32', count="<<biases.size()<<");\n";
|
|
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
|
|
fout << " net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
|
|
}
|
|
else if (i->detail_name == "fc")
|
|
{
|
|
matrix<float> weights = trans(rowm(i->params, range(0,i->params.nr()-2)));
|
|
matrix<float> biases = rowm(i->params, i->params.nr()-1);
|
|
fweights.write((char*)&weights(0,0), weights.size()*sizeof(float));
|
|
fweights.write((char*)&biases(0,0), biases.size()*sizeof(float));
|
|
|
|
// main filter weights
|
|
fout << " p = np.fromfile(f, dtype='float32', count="<<weights.size()<<");\n";
|
|
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
|
|
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
|
|
|
|
// biases
|
|
fout << " p = np.fromfile(f, dtype='float32', count="<<biases.size()<<");\n";
|
|
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
|
|
fout << " net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
|
|
}
|
|
else if (i->detail_name == "fc_no_bias")
|
|
{
|
|
matrix<float> weights = trans(i->params);
|
|
fweights.write((char*)&weights(0,0), weights.size()*sizeof(float));
|
|
|
|
// main filter weights
|
|
fout << " p = np.fromfile(f, dtype='float32', count="<<weights.size()<<");\n";
|
|
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
|
|
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
|
|
}
|
|
else if (i->detail_name == "affine_con" || i->detail_name == "affine_fc")
|
|
{
|
|
const long dims = i->params.size()/2;
|
|
matrix<float> gamma = trans(rowm(i->params,range(0,dims-1)));
|
|
matrix<float> beta = trans(rowm(i->params,range(dims, 2*dims-1)));
|
|
fweights.write((char*)&gamma(0,0), gamma.size()*sizeof(float));
|
|
fweights.write((char*)&beta(0,0), beta.size()*sizeof(float));
|
|
|
|
// set gamma weights
|
|
fout << " p = np.fromfile(f, dtype='float32', count="<<gamma.size()<<");\n";
|
|
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
|
|
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
|
|
|
|
// set beta weights
|
|
fout << " p = np.fromfile(f, dtype='float32', count="<<beta.size()<<");\n";
|
|
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
|
|
fout << " net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
|
|
}
|
|
else if (i->detail_name == "prelu")
|
|
{
|
|
const double param = i->params(0);
|
|
|
|
// main filter weights
|
|
fout << " tmp = net.params['"<<i->caffe_layer_name()<<"'][0].data.view();\n";
|
|
fout << " tmp.shape = 1;\n";
|
|
fout << " tmp[0] = "<<param<<";\n";
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
int main(int argc, char** argv) try
|
|
{
|
|
if (argc != 6)
|
|
{
|
|
cout << "To use this program, give it an xml file generated by dlib::net_to_xml() " << endl;
|
|
cout << "and then 4 numbers that indicate the input tensor size. It will convert " << endl;
|
|
cout << "the xml file into a python file that outputs a caffe model containing the dlib model." << endl;
|
|
cout << "For example, you might run this program like this: " << endl;
|
|
cout << " ./dtoc lenet.xml 1 1 28 28" << endl;
|
|
cout << "would convert the lenet.xml model into a caffe model with an input tensor of shape(1,1,28,28)" << endl;
|
|
cout << "where the shape values are (num samples in batch, num channels, num rows, num columns)." << endl;
|
|
return 0;
|
|
}
|
|
|
|
const long N = sa = argv[2];
|
|
const long K = sa = argv[3];
|
|
const long NR = sa = argv[4];
|
|
const long NC = sa = argv[5];
|
|
|
|
convert_dlib_xml_to_caffe_python_code(argv[1], N, K, NR, NC);
|
|
|
|
return 0;
|
|
}
|
|
catch(std::exception& e)
|
|
{
|
|
cout << "\n\n*************** ERROR CONVERTING TO CAFFE ***************\n" << e.what() << endl;
|
|
return 1;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
// ----------------------------------------------------------------------------------------
|
|
// ----------------------------------------------------------------------------------------
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
class doc_handler : public document_handler
|
|
{
|
|
public:
|
|
std::vector<layer> layers;
|
|
bool seen_first_tag = false;
|
|
|
|
layer next_layer;
|
|
std::stack<string> current_tag;
|
|
long tag_id = -1;
|
|
|
|
|
|
virtual void start_document (
|
|
)
|
|
{
|
|
layers.clear();
|
|
seen_first_tag = false;
|
|
tag_id = -1;
|
|
}
|
|
|
|
virtual void end_document (
|
|
) { }
|
|
|
|
virtual void start_element (
|
|
const unsigned long /*line_number*/,
|
|
const std::string& name,
|
|
const dlib::attribute_list& atts
|
|
)
|
|
{
|
|
if (!seen_first_tag)
|
|
{
|
|
if (name != "net")
|
|
throw dlib::error("The top level XML tag must be a 'net' tag.");
|
|
seen_first_tag = true;
|
|
}
|
|
|
|
if (name == "layer")
|
|
{
|
|
next_layer = layer();
|
|
if (atts["type"] == "skip")
|
|
{
|
|
// Don't make a new layer, just apply the tag id to the previous layer
|
|
if (layers.size() == 0)
|
|
throw dlib::error("A skip layer was found as the first layer, but the first layer should be an input layer.");
|
|
layers.back().skip_id = sa = atts["id"];
|
|
|
|
// We intentionally leave next_layer empty so the end_element() callback
|
|
// don't add it as another layer when called.
|
|
}
|
|
else if (atts["type"] == "tag")
|
|
{
|
|
// Don't make a new layer, just remember the tag id so we can apply it on
|
|
// the next layer.
|
|
tag_id = sa = atts["id"];
|
|
|
|
// We intentionally leave next_layer empty so the end_element() callback
|
|
// don't add it as another layer when called.
|
|
}
|
|
else
|
|
{
|
|
next_layer.idx = sa = atts["idx"];
|
|
next_layer.type = atts["type"];
|
|
if (tag_id != -1)
|
|
{
|
|
next_layer.tag_id = tag_id;
|
|
tag_id = -1;
|
|
}
|
|
}
|
|
}
|
|
else if (current_tag.size() != 0 && current_tag.top() == "layer")
|
|
{
|
|
next_layer.detail_name = name;
|
|
// copy all the XML tag's attributes into the layer struct
|
|
atts.reset();
|
|
while (atts.move_next())
|
|
next_layer.attributes[atts.element().key()] = sa = atts.element().value();
|
|
}
|
|
|
|
current_tag.push(name);
|
|
}
|
|
|
|
virtual void end_element (
|
|
const unsigned long /*line_number*/,
|
|
const std::string& name
|
|
)
|
|
{
|
|
current_tag.pop();
|
|
if (name == "layer" && next_layer.type.size() != 0)
|
|
layers.push_back(next_layer);
|
|
}
|
|
|
|
virtual void characters (
|
|
const std::string& data
|
|
)
|
|
{
|
|
if (current_tag.size() == 0)
|
|
return;
|
|
|
|
if (comp_tags_with_params.count(current_tag.top()) != 0)
|
|
{
|
|
istringstream sin(data);
|
|
sin >> next_layer.params;
|
|
}
|
|
|
|
}
|
|
|
|
virtual void processing_instruction (
|
|
const unsigned long /*line_number*/,
|
|
const std::string& /*target*/,
|
|
const std::string& /*data*/
|
|
)
|
|
{
|
|
}
|
|
};
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
void compute_output_tensor_shapes(const matrix<long,4,1>& input_tensor_shape, std::vector<layer>& layers)
|
|
{
|
|
DLIB_CASSERT(layers.back().type == "input");
|
|
layers.back().output_tensor_shape = input_tensor_shape;
|
|
for (auto i = ++layers.rbegin(); i != layers.rend(); ++i)
|
|
{
|
|
const auto input_shape = find_input_layer(i).output_tensor_shape;
|
|
if (i->type == "comp")
|
|
{
|
|
if (i->detail_name == "fc" || i->detail_name == "fc_no_bias")
|
|
{
|
|
long num_outputs = i->attribute("num_outputs");
|
|
i->output_tensor_shape = {input_shape(0), num_outputs, 1, 1};
|
|
}
|
|
else if (i->detail_name == "con")
|
|
{
|
|
long num_filters = i->attribute("num_filters");
|
|
long filter_nc = i->attribute("nc");
|
|
long filter_nr = i->attribute("nr");
|
|
long stride_x = i->attribute("stride_x");
|
|
long stride_y = i->attribute("stride_y");
|
|
long padding_x = i->attribute("padding_x");
|
|
long padding_y = i->attribute("padding_y");
|
|
long nr = 1+(input_shape(2) + 2*padding_y - filter_nr)/stride_y;
|
|
long nc = 1+(input_shape(3) + 2*padding_x - filter_nc)/stride_x;
|
|
i->output_tensor_shape = {input_shape(0), num_filters, nr, nc};
|
|
}
|
|
else if (i->detail_name == "max_pool" || i->detail_name == "avg_pool")
|
|
{
|
|
long filter_nc = i->attribute("nc");
|
|
long filter_nr = i->attribute("nr");
|
|
long stride_x = i->attribute("stride_x");
|
|
long stride_y = i->attribute("stride_y");
|
|
long padding_x = i->attribute("padding_x");
|
|
long padding_y = i->attribute("padding_y");
|
|
if (filter_nc != 0)
|
|
{
|
|
long nr = 1+(input_shape(2) + 2*padding_y - filter_nr)/stride_y;
|
|
long nc = 1+(input_shape(3) + 2*padding_x - filter_nc)/stride_x;
|
|
i->output_tensor_shape = {input_shape(0), input_shape(1), nr, nc};
|
|
}
|
|
else // if we are filtering the whole input down to one thing
|
|
{
|
|
i->output_tensor_shape = {input_shape(0), input_shape(1), 1, 1};
|
|
}
|
|
}
|
|
else if (i->detail_name == "add_prev")
|
|
{
|
|
auto aux_shape = find_layer(i, i->attribute("tag")).output_tensor_shape;
|
|
for (long j = 0; j < input_shape.size(); ++j)
|
|
i->output_tensor_shape(j) = std::max(input_shape(j), aux_shape(j));
|
|
}
|
|
else
|
|
{
|
|
i->output_tensor_shape = input_shape;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
i->output_tensor_shape = input_shape;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
std::vector<layer> parse_dlib_xml(
|
|
const matrix<long,4,1>& input_tensor_shape,
|
|
const string& xml_filename
|
|
)
|
|
{
|
|
doc_handler dh;
|
|
parse_xml(xml_filename, dh);
|
|
if (dh.layers.size() == 0)
|
|
throw dlib::error("No layers found in XML file!");
|
|
|
|
if (dh.layers.back().type != "input")
|
|
throw dlib::error("The network in the XML file is missing an input layer!");
|
|
|
|
compute_output_tensor_shapes(input_tensor_shape, dh.layers);
|
|
|
|
return dh.layers;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|