dlib/examples/svm_ex.cpp
Davis King b812367930 Updated the example programs so that there isn't this confusing use of the
phase "support vectors" all over the place.  Also fixed them to compile now
that I renamed the support_vectors field in decision_function to basis_vectors.

--HG--
extra : convert_revision : svn%3Afdd8eb12-d10e-0410-9acb-85c331704f74/trunk%403279
2009-11-29 18:59:24 +00:00

252 lines
12 KiB
C++

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the support vector machine
utilities from the dlib C++ Library.
This example creates a simple set of data to train on and then shows
you how to use the cross validation and svm training functions
to find a good decision function that can classify examples in our
data set.
The data used in this example will be 2 dimensional data and will
come from a distribution where points with a distance less than 10
from the origin are labeled +1 and all other points are labeled
as -1.
*/
#include <iostream>
#include "dlib/svm.h"
using namespace std;
using namespace dlib;
int main()
{
// The svm functions use column vectors to contain a lot of the data on which they they
// operate. So the first thing we do here is declare a convenient typedef.
// This typedef declares a matrix with 2 rows and 1 column. It will be the
// object that contains each of our 2 dimensional samples. (Note that if you wanted
// more than 2 features in this vector you can simply change the 2 to something else.
// Or if you don't know how many features you want until runtime then you can put a 0
// here and use the matrix.set_size() member function)
typedef matrix<double, 2, 1> sample_type;
// This is a typedef for the type of kernel we are going to use in this example.
// In this case I have selected the radial basis kernel that can operate on our
// 2D sample_type objects
typedef radial_basis_kernel<sample_type> kernel_type;
// Now we make objects to contain our samples and their respective labels.
std::vector<sample_type> samples;
std::vector<double> labels;
// Now lets put some data into our samples and labels objects. We do this
// by looping over a bunch of points and labeling them according to their
// distance from the origin.
for (int r = -20; r <= 20; ++r)
{
for (int c = -20; c <= 20; ++c)
{
sample_type samp;
samp(0) = r;
samp(1) = c;
samples.push_back(samp);
// if this point is less than 10 from the origin
if (sqrt((double)r*r + c*c) <= 10)
labels.push_back(+1);
else
labels.push_back(-1);
}
}
// Here we normalize all the samples by subtracting their mean and dividing by their standard deviation.
// This is generally a good idea since it often heads off numerical stability problems and also
// prevents one large feature from smothering others. Doing this doesn't matter much in this example
// so I'm just doing this here so you can see an easy way to accomplish this with
// the library.
vector_normalizer<sample_type> normalizer;
// let the normalizer learn the mean and standard deviation of the samples
normalizer.train(samples);
// now normalize each sample
for (unsigned long i = 0; i < samples.size(); ++i)
samples[i] = normalizer(samples[i]);
// Now that we have some data we want to train on it. However, there are two parameters to the
// training. These are the nu and gamma parameters. Our choice for these parameters will
// influence how good the resulting decision function is. To test how good a particular choice
// of these parameters are we can use the cross_validate_trainer() function to perform n-fold cross
// validation on our training data. However, there is a problem with the way we have sampled
// our distribution above. The problem is that there is a definite ordering to the samples.
// That is, the first half of the samples look like they are from a different distribution
// than the second half. This would screw up the cross validation process but we can
// fix it by randomizing the order of the samples with the following function call.
randomize_samples(samples, labels);
// The nu parameter has a maximum value that is dependent on the ratio of the +1 to -1
// labels in the training data. This function finds that value.
const double max_nu = maximum_nu(labels);
// here we make an instance of the svm_nu_trainer object that uses our kernel type.
svm_nu_trainer<kernel_type> trainer;
// Now we loop over some different nu and gamma values to see how good they are. Note
// that this is a very simple way to try out a few possible parameter choices. You
// should look at the model_selection_ex.cpp program for examples of more sophisticated
// strategies for determining good parameter choices.
cout << "doing cross validation" << endl;
for (double gamma = 0.00001; gamma <= 1; gamma += 0.1)
{
for (double nu = 0.00001; nu < max_nu; nu += 0.1)
{
// tell the trainer the parameters we want to use
trainer.set_kernel(kernel_type(gamma));
trainer.set_nu(nu);
cout << "gamma: " << gamma << " nu: " << nu;
// Print out the cross validation accuracy for 3-fold cross validation using the current gamma and nu.
// cross_validate_trainer() returns a row vector. The first element of the vector is the fraction
// of +1 training examples correctly classified and the second number is the fraction of -1 training
// examples correctly classified.
cout << " cross validation accuracy: " << cross_validate_trainer(trainer, samples, labels, 3);
}
}
// From looking at the output of the above loop it turns out that a good value for
// nu and gamma for this problem is 0.1 for both. So that is what we will use.
// Now we train on the full set of data and obtain the resulting decision function. We use the
// value of 0.1 for nu and gamma. The decision function will return values >= 0 for samples it predicts
// are in the +1 class and numbers < 0 for samples it predicts to be in the -1 class.
trainer.set_kernel(kernel_type(0.1));
trainer.set_nu(0.1);
typedef decision_function<kernel_type> dec_funct_type;
typedef normalized_function<dec_funct_type> funct_type;
// Here we are making an instance of the normalized_function object. This object provides a convenient
// way to store the vector normalization information along with the decision function we are
// going to learn.
funct_type learned_function;
learned_function.normalizer = normalizer; // save normalization information
learned_function.function = trainer.train(samples, labels); // perform the actual SVM training and save the results
// print out the number of support vectors in the resulting decision function
cout << "\nnumber of support vectors in our learned_function is "
<< learned_function.function.basis_vectors.nr() << endl;
// now lets try this decision_function on some samples we haven't seen before
sample_type sample;
sample(0) = 3.123;
sample(1) = 2;
cout << "This sample should be >= 0 and it is classified as a " << learned_function(sample) << endl;
sample(0) = 3.123;
sample(1) = 9.3545;
cout << "This sample should be >= 0 and it is classified as a " << learned_function(sample) << endl;
sample(0) = 13.123;
sample(1) = 9.3545;
cout << "This sample should be < 0 and it is classified as a " << learned_function(sample) << endl;
sample(0) = 13.123;
sample(1) = 0;
cout << "This sample should be < 0 and it is classified as a " << learned_function(sample) << endl;
// We can also train a decision function that reports a well conditioned probability
// instead of just a number > 0 for the +1 class and < 0 for the -1 class. An example
// of doing that follows:
typedef probabilistic_decision_function<kernel_type> probabilistic_funct_type;
typedef normalized_function<probabilistic_funct_type> pfunct_type;
pfunct_type learned_pfunct;
learned_pfunct.normalizer = normalizer;
learned_pfunct.function = train_probabilistic_decision_function(trainer, samples, labels, 3);
// Now we have a function that returns the probability that a given sample is of the +1 class.
// print out the number of support vectors in the resulting decision function.
// (it should be the same as in the one above)
cout << "\nnumber of support vectors in our learned_pfunct is "
<< learned_pfunct.function.decision_funct.basis_vectors.nr() << endl;
sample(0) = 3.123;
sample(1) = 2;
cout << "This +1 example should have high probability. Its probability is: " << learned_pfunct(sample) << endl;
sample(0) = 3.123;
sample(1) = 9.3545;
cout << "This +1 example should have high probability. Its probability is: " << learned_pfunct(sample) << endl;
sample(0) = 13.123;
sample(1) = 9.3545;
cout << "This -1 example should have low probability. Its probability is: " << learned_pfunct(sample) << endl;
sample(0) = 13.123;
sample(1) = 0;
cout << "This -1 example should have low probability. Its probability is: " << learned_pfunct(sample) << endl;
// Another thing that is worth knowing is that just about everything in dlib is serializable.
// So for example, you can save the learned_pfunct object to disk and recall it later like so:
ofstream fout("saved_function.dat",ios::binary);
serialize(learned_pfunct,fout);
fout.close();
// now lets open that file back up and load the function object it contains
ifstream fin("saved_function.dat",ios::binary);
deserialize(learned_pfunct, fin);
// Note that there is also an example program that comes with dlib called the file_to_code_ex.cpp
// example. It is a simple program that takes a file and outputs a piece of C++ code
// that is able to fully reproduce the file's contents in the form of a std::string object.
// So you can use that along with the std::istringstream to save learned decision functions
// inside your actual C++ code files if you want.
// Lastly, note that the decision functions we trained above involved well over 100
// support vectors. Support vector machines in general tend to find decision functions
// that involve a lot of support vectors. This is significant because the more
// support vectors in a decision function, the longer it takes to classify new examples.
// So dlib provides the ability to find an approximation to the normal output of a
// support vector machine using fewer support vectors.
// Here we determine the cross validation accuracy when we approximate the output
// using only 10 support vectors. To do this we use the reduced2() function. It
// takes a trainer object and the number of support vectors to use and returns
// a new trainer object that applies the necessary post processing during the creation
// of decision function objects.
cout << "\ncross validation accuracy with only 10 support vectors: "
<< cross_validate_trainer(reduced2(trainer,10), samples, labels, 3);
// Lets print out the original cross validation score too for comparison.
cout << "cross validation accuracy with all the original support vectors: "
<< cross_validate_trainer(trainer, samples, labels, 3);
// When you run this program you should see that, for this problem, you can reduce
// the number of support vectors down to 10 without hurting the cross validation
// accuracy.
// To get the reduced decision function out we would just do this:
learned_function.function = reduced2(trainer,10).train(samples, labels);
// And similarly for the probabilistic_decision_function:
learned_pfunct.function = train_probabilistic_decision_function(reduced2(trainer,10), samples, labels, 3);
}