mirror of
https://github.com/davisking/dlib.git
synced 2024-11-01 10:14:53 +08:00
d175c35074
* Add instance segmentation example - first version of training code * Add MMOD options; get rid of the cache approach, and instead load all MMOD rects upfront * Improve console output * Set filter count * Minor tweaking * Inference - first version, at least compiles! * Ignore overlapped boxes * Ignore even small instances * Set overlaps_ignore * Add TODO remarks * Revert "Set overlaps_ignore" This reverts commit65adeff1f8
. * Set result size * Set label image size * Take ignore-color into account * Fix the cropping rect's aspect ratio; also slightly expand the rect * Draw the largest findings last * Improve masking of the current instance * Add some perturbation to the inputs * Simplify ground-truth reading; fix random cropping * Read even class labels * Tweak default minibatch size * Learn only one class * Really train only instances of the selected class * Remove outdated TODO remark * Automatically skip images with no detections * Print to console what was found * Fix class index problem * Fix indentation * Allow to choose multiple classes * Draw rect in the color of the corresponding class * Write detector window classes to ostream; also group detection windows by class (when ostreaming) * Train a separate instance segmentation network for each classlabel * Use separate synchronization file for each seg net of each class * Allow more overlap * Fix sorting criterion * Fix interpolating the predicted mask * Improve bilinear interpolation: if output type is an integer, round instead of truncating * Add helpful comments * Ignore large aspect ratios; refactor the code; tweak some network parameters * Simplify the segmentation network structure; make the object detection network more complex in turn * Problem: CUDA errors not reported properly to console Solution: stop and join data loader threads even in case of exceptions * Minor parameters tweaking * Loss may have increased, even if prob_loss_increasing_thresh > prob_loss_increasing_thresh_max_value * Add previous_loss_values_dump_amount to previous_loss_values.size() when deciding if loss has been increasing * Improve behaviour when loss actually increased after disk sync * Revert some of the earlier change * Disregard dumped loss values only when deciding if learning rate should be shrunk, but *not* when deciding if loss has been going up since last disk sync * Revert "Revert some of the earlier change" This reverts commit6c852124ef
. * Keep enough previous loss values, until the disk sync * Fix maintaining the dumped (now "effectively disregarded") loss values count * Detect cats instead of aeroplanes * Add helpful logging * Clarify the intention and the code * Review fixes * Add operator== for the other pixel types as well; remove the inline * If available, use constexpr if * Revert "If available, use constexpr if" This reverts commit503d4dd335
. * Simplify code as per review comments * Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh * Clarify console output * Revert "Keep estimating steps_without_progress, even if steps_since_last_learning_rate_shrink < iter_without_progress_thresh" This reverts commit9191ebc776
. * To keep the changes to a bare minimum, revert the steps_since_last_learning_rate_shrink change after all (at least for now) * Even empty out some of the previous test loss values * Minor review fixes * Can't use C++14 features here * Do not use the struct name as a variable name
181 lines
6.3 KiB
C++
181 lines
6.3 KiB
C++
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
|
|
/*
|
|
Helper definitions for working with the PASCAL VOC2012 dataset.
|
|
*/
|
|
|
|
#ifndef PASCAL_VOC_2012_H_
|
|
#define PASCAL_VOC_2012_H_
|
|
|
|
#include <dlib/pixel.h>
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// The PASCAL VOC2012 dataset contains 20 ground-truth classes + background. Each class
|
|
// is represented using an RGB color value. We associate each class also to an index in the
|
|
// range [0, 20], used internally by the network. To convert the ground-truth data to
|
|
// something that the network can efficiently digest, we need to be able to map the RGB
|
|
// values to the corresponding indexes.
|
|
|
|
struct Voc2012class {
|
|
Voc2012class(uint16_t index, const dlib::rgb_pixel& rgb_label, const std::string& classlabel)
|
|
: index(index), rgb_label(rgb_label), classlabel(classlabel)
|
|
{}
|
|
|
|
// The index of the class. In the PASCAL VOC 2012 dataset, indexes from 0 to 20 are valid.
|
|
const uint16_t index = 0;
|
|
|
|
// The corresponding RGB representation of the class.
|
|
const dlib::rgb_pixel rgb_label;
|
|
|
|
// The label of the class in plain text.
|
|
const std::string classlabel;
|
|
};
|
|
|
|
namespace {
|
|
constexpr int class_count = 21; // background + 20 classes
|
|
|
|
const std::vector<Voc2012class> classes = {
|
|
Voc2012class(0, dlib::rgb_pixel(0, 0, 0), ""), // background
|
|
|
|
// The cream-colored `void' label is used in border regions and to mask difficult objects
|
|
// (see http://host.robots.ox.ac.uk/pascal/VOC/voc2012/htmldoc/devkit_doc.html)
|
|
Voc2012class(dlib::loss_multiclass_log_per_pixel_::label_to_ignore,
|
|
dlib::rgb_pixel(224, 224, 192), "border"),
|
|
|
|
Voc2012class(1, dlib::rgb_pixel(128, 0, 0), "aeroplane"),
|
|
Voc2012class(2, dlib::rgb_pixel( 0, 128, 0), "bicycle"),
|
|
Voc2012class(3, dlib::rgb_pixel(128, 128, 0), "bird"),
|
|
Voc2012class(4, dlib::rgb_pixel( 0, 0, 128), "boat"),
|
|
Voc2012class(5, dlib::rgb_pixel(128, 0, 128), "bottle"),
|
|
Voc2012class(6, dlib::rgb_pixel( 0, 128, 128), "bus"),
|
|
Voc2012class(7, dlib::rgb_pixel(128, 128, 128), "car"),
|
|
Voc2012class(8, dlib::rgb_pixel( 64, 0, 0), "cat"),
|
|
Voc2012class(9, dlib::rgb_pixel(192, 0, 0), "chair"),
|
|
Voc2012class(10, dlib::rgb_pixel( 64, 128, 0), "cow"),
|
|
Voc2012class(11, dlib::rgb_pixel(192, 128, 0), "diningtable"),
|
|
Voc2012class(12, dlib::rgb_pixel( 64, 0, 128), "dog"),
|
|
Voc2012class(13, dlib::rgb_pixel(192, 0, 128), "horse"),
|
|
Voc2012class(14, dlib::rgb_pixel( 64, 128, 128), "motorbike"),
|
|
Voc2012class(15, dlib::rgb_pixel(192, 128, 128), "person"),
|
|
Voc2012class(16, dlib::rgb_pixel( 0, 64, 0), "pottedplant"),
|
|
Voc2012class(17, dlib::rgb_pixel(128, 64, 0), "sheep"),
|
|
Voc2012class(18, dlib::rgb_pixel( 0, 192, 0), "sofa"),
|
|
Voc2012class(19, dlib::rgb_pixel(128, 192, 0), "train"),
|
|
Voc2012class(20, dlib::rgb_pixel( 0, 64, 128), "tvmonitor"),
|
|
};
|
|
}
|
|
|
|
template <typename Predicate>
|
|
const Voc2012class& find_voc2012_class(Predicate predicate)
|
|
{
|
|
const auto i = std::find_if(classes.begin(), classes.end(), predicate);
|
|
|
|
if (i != classes.end())
|
|
{
|
|
return *i;
|
|
}
|
|
else
|
|
{
|
|
throw std::runtime_error("Unable to find a matching VOC2012 class");
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// The names of the input image and the associated RGB label image in the PASCAL VOC 2012
|
|
// data set.
|
|
struct image_info
|
|
{
|
|
std::string image_filename;
|
|
std::string class_label_filename;
|
|
std::string instance_label_filename;
|
|
};
|
|
|
|
// Read the list of image files belonging to either the "train", "trainval", or "val" set
|
|
// of the PASCAL VOC2012 data.
|
|
std::vector<image_info> get_pascal_voc2012_listing(
|
|
const std::string& voc2012_folder,
|
|
const std::string& file = "train" // "train", "trainval", or "val"
|
|
)
|
|
{
|
|
std::ifstream in(voc2012_folder + "/ImageSets/Segmentation/" + file + ".txt");
|
|
|
|
std::vector<image_info> results;
|
|
|
|
while (in)
|
|
{
|
|
std::string basename;
|
|
in >> basename;
|
|
|
|
if (!basename.empty())
|
|
{
|
|
image_info info;
|
|
info.image_filename = voc2012_folder + "/JPEGImages/" + basename + ".jpg";
|
|
info.class_label_filename = voc2012_folder + "/SegmentationClass/" + basename + ".png";
|
|
info.instance_label_filename = voc2012_folder + "/SegmentationObject/" + basename + ".png";
|
|
results.push_back(info);
|
|
}
|
|
}
|
|
|
|
return results;
|
|
}
|
|
|
|
// Read the list of image files belong to the "train" set of the PASCAL VOC2012 data.
|
|
std::vector<image_info> get_pascal_voc2012_train_listing(
|
|
const std::string& voc2012_folder
|
|
)
|
|
{
|
|
return get_pascal_voc2012_listing(voc2012_folder, "train");
|
|
}
|
|
|
|
// Read the list of image files belong to the "val" set of the PASCAL VOC2012 data.
|
|
std::vector<image_info> get_pascal_voc2012_val_listing(
|
|
const std::string& voc2012_folder
|
|
)
|
|
{
|
|
return get_pascal_voc2012_listing(voc2012_folder, "val");
|
|
}
|
|
|
|
// Given an RGB representation, find the corresponding PASCAL VOC2012 class
|
|
// (e.g., 'dog').
|
|
const Voc2012class& find_voc2012_class(const dlib::rgb_pixel& rgb_label)
|
|
{
|
|
return find_voc2012_class(
|
|
[&rgb_label](const Voc2012class& voc2012class)
|
|
{
|
|
return rgb_label == voc2012class.rgb_label;
|
|
}
|
|
);
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------------------
|
|
|
|
// Convert an RGB class label to an index in the range [0, 20].
|
|
inline uint16_t rgb_label_to_index_label(const dlib::rgb_pixel& rgb_label)
|
|
{
|
|
return find_voc2012_class(rgb_label).index;
|
|
}
|
|
|
|
// Convert an image containing RGB class labels to a corresponding
|
|
// image containing indexes in the range [0, 20].
|
|
void rgb_label_image_to_index_label_image(
|
|
const dlib::matrix<dlib::rgb_pixel>& rgb_label_image,
|
|
dlib::matrix<uint16_t>& index_label_image
|
|
)
|
|
{
|
|
const long nr = rgb_label_image.nr();
|
|
const long nc = rgb_label_image.nc();
|
|
|
|
index_label_image.set_size(nr, nc);
|
|
|
|
for (long r = 0; r < nr; ++r)
|
|
{
|
|
for (long c = 0; c < nc; ++c)
|
|
{
|
|
index_label_image(r, c) = rgb_label_to_index_label(rgb_label_image(r, c));
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // PASCAL_VOC_2012_H_
|